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The grain-boundary free energy of a two-dimensional E 7 bicrystal has been estimated by combining a quasiharmonic 
method based on evaluation of the partition function, with Monte Carlo energy sampling. 

Free energies are fundamental to understanding the 
thermodynamics of solids [1] . Grain-boundary phase 
transformations in polycrystalline solids can be char
acterized in terms of the excess free energy per unit 
length associated with the different grains [2] . The 
determination of equilibrium grain-boundary struc
tures at finite temperatures requires minimising con
strained free energies, though frequently only the po
tential energy is minimised [3] . 

Computer simulations are efficient methods for 
sampling the configuration space of many-particle 
systems. These techniques have two advantages over 
static calculations [3] . Dynamical mechanisms can be 
followed, and thermal effects, including entropy and 
pressure, are included, thus providing estimates of the 
Gibbs or Helmholtz free energies [4] . In this letter 
we describe a general approach to calculating bicrystal 
grain-boundary free energies as a function of tempera
ture, by combining lattice dynamics with Monte Carlo 
energy measurements. These methods can be applied 
to any bicrystal boundary with a stable quasiharmonic 
energy minimum. We use a piecewise-linear nearest-

neighbor force law. These results have interesting im
plications, and the methods used can be applied to 
other, two- or three-dimellsional, solid interfaces. 

We consider four different crystal sizes all of the 
shape shown in fig. 1. Each bicrystal contains a 
I: 7 (38.21°) coincidence boundary, with repeat 
length of V7 times the equilibrium interatomic spac

d. The interatomic potential leads to piecewise

.. .:.. 
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Fig. 1. A E 7 (38.21°) bicrystal withN 150 atoms and a 
grain-boundary length of L " 3..j7d. The system can be con
verted to a lOx 15 atom parallelogram by connecting the two 
sides after a relative out-of-plane rotation. 
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linear forces: 

4;(r) :i I< (r di - I<w2 
, r <d +w, 

(r - d - 2wp, d +w < r <d +2w , 

0, d+ 2w<r. 

For this potential the crystal bulk and surface prop
erties have been characterized by Huckaby and others 
[5] . Here we illustrate the free energy calculation for 
the width parameter w = 0.15 d. First, relaxed crystal 
structures were obtained by solving damped equations 
of motion, mq == F cx4 . Five thousand time steps pro
vided energy minima with machine (sixteen-digit) ac
curacy and forces less than 10- 14 I<d. 

The classical canonical partition function can be 
evaluated at low temperatures, in the quasiharmonic 
approximation, 

exp(-A/kBT) == ZQH 

=V(21fr)(1fkBT)N-1.5(Detro.51i\2N, 

where i\ is the thermal de Broglie wavelength, 
h(21fmkBT), and Det is the determinant of a (2N - 3) 
X (2N - 3) symmetric matrix constructed by fIxing par
ticle 1 at the origin, (x 1,Yl) (0,0), and placing particle 
2 on thex-a,xis at a distance r away, (x2'Y2) (r,O). 
The matrix is the N-particle, 2N X 2N force-constant 
matrix, with the 3 rows and columns, corresponding 
tox1'YI Y2,removed [6]. 

By co~paring the grain-boundary energies and en
tropies with those of perfect crystals, in our case 
parallelograms of 4 X 7,7 XII, 10 X 15, and 13 X 19 
atoms, the energy and entropy data shown in table 1 
were obtained. Plotting these data versus the recipro
cal grain-boundary length gives the infrnite-crystal 

Table 1 

Table 2 
Energies obtained by Monte Carlo sampling for constrained 
parallelogram and grain-boundary crystals with N = 77. Values 
shown are for 50000 moves at eaeh temperature (the last figure 
is uncertain). Bulk melting temperature is about 0.012 Ii.d2 /kB. 

0.003 -4.19 -4.06 
0.006 -3.93 ·3.79 
0.009 -3.60 -3.43 

quasiharmonic grain-boundary free energy, 

MQHIL == 0.0225 I<d - 0.430 kBT/d , 

where L is the grain-boundary length. Eannme et al. 
found a grain-boundary entropy of 1.3 kB per atomic 
area for a :z; == 5 face-centered cubic model of alumi
num [7] . Hashimoto et al. found similar results for 
the :z; == 5 case and considerably smaller entropies in 
the case of:Z; 11 [8]. 

To estimate the magnitude of anharmonic contri
butions (of order T2 and higher) we performed Monte 
Carlo calculations of the energies of the 77 particle sys
tems, grain-boundary and perfect crystal. System confIg 
rations were sampled with each particle constrained to 
lie within a circle of radius dl2 centered at its mini
mum energy position, and data up to 3/4 of the bulk 
melting temperature were obtained. Table 2 shows the 
results for the 77 particle systems. The difference be
tween the Monte Carlo results and those of table 1 is 
the anharmonic contribution to the internal energy. 
Assuming this follows a T 2 variation we can integrate 
the energy difference to obtain an estimate of the coef
fIcient of the T2 contribution to the free energy. For 
the 77 particle grain-boundary system one fInds the 
interface free energy per unit length to be 

Parallelogram and grain-boundary energies for two-dimensional crystals. Energy and entropy differences are tabulated. I is the mo
ment of inertia. Infinite size extrapolations are also given. 

2N Ip/md2 
Igb/md2 '1>p/t<.d2 

'1>gb/t<.d t:.'1>/t<.dL t:.Sd/kp,L 

4X7 
7 X 11 

10 X 15 
13 X 19 

147 
1078 
4037.5 

10868 

152.34 
1104.4 
4110.8 

11024 

-1.4175 
-4.4100 
-9.0225 

-15.2550 

-1.3605 
-4.2936 
-8.8460 

-15.0196 

0.021559 
0.022005 
0.022165 
0.022244 

0.0225 

0.54330 
0.48932 
0.46942 
0.45964 

0.430 
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The anhannonic free energy shift is seen to be relative
ly large, such that the quasihannonic approximation 
could be in error by a factor of two near melting. 

The methods illustrated here should be equally ef
fective with other potentials and three-dimensional sys
tems. The simple size dependence, with corrections to 
M/L of order dkBT/L, found here suggests that ex
trapolating a series of small crystal calculations in
creases the accuracy of the estimated free energies. 
The detenninant method for quasihannonic free ener
gy evaluation is orders of magnitude faster than the 
corresponding matrix diagonalisa tion. If necessary, 
quantum corrections can be included. The use of simu
lation techniques to estimate free energy of defect 
solids deserves further attention. 
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