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Computer simulation 
of manv-bodv dvnamies 


Even the very simplest model fluid exhibits 

such characteristics of macroscopic nonequilibrium flow 


as irreversibility, shear thinning and dilatancy_ 


William G. Hoover 

The 300-year-old discipline of Newtoni­
an mechanics is still the basis for 
today's computer calculations at our 
national laboratories. However, com­
puters are prompting important 
changes within mechanics itself. Ver­
sions of atomistic mechanics now under 
development save time by matching 
numerical techniques to computer ca­
pabilities, which-even with the fas­
test, newest machines--are quite limit­
ed when compared to the complexities 
inherent in modeling the real world. 

In this article I illustrate the new 
computer methods that are based on a 
modified mechanics. As an example I 
use a very simple model fluid-three 
particles in a steady nonequilibrium 
shear flow. We will see that even this 
small system is large enough to exhibit 
important macroscopic characteristics 
of nonequilibrium fluids and to en­
hance our understanding of such fluids. 
After a few words on the history of 
computational mechanics, I will de­
scribe some of the computer simulation 
techniques that investigators are now 
using to understand macroscopic prop­
erties of materials in terms of behavior 
on the atomic level. We will see that 
the effort to model real systems forces 
us to pay close attention to constraints, 
in particular, to nonholonomic con­
straints, which we do not often encoun­
ter in textbook problems in classical 
mechanics. Then I will dicuss nonlin­
ear nonequilibrium molecular dynam­
ics, looking at the extreme example of 
shockwaves and the interesting ques­
tion of reversibility in two- and three­
body systems. 

Computational mechanics emerges. 
Newton's original formulation of the 
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"many-body problem" stimulated two 
correlated advances in applied science. 
Not only was mechanics developed to 
describe a wide range of astronomical 
and mechanical problems, but applied 
mathematics also had to be invented to 
obtain numerical solutions of these 
problems. Numerical techniques of 
approximation were required because 
even such a simple system as three 
interacting particles was then, and still 
is, analytically intractable. The men 
who followed Isaac Newton (1643-1727) 
in developing mechanics-Leonhard 
Euler (1707-1783), Joseph Lagrange 
(1736-1813), Karl Gauss (1777-1855) 
and William Hamilton (1805-1865)­
also constructed the applied mathemat­
ics necessary to extract numerical re­
sults from the analytic formulation. 
The methods they created to solve the 
differential equations of motion-New­
ton's, Lagrange's or Hamilton's-are 
still in use today. 

Much of twentieth-century refine­
ment of these venerable numerical 
methods has taken place at our nation­
allaboratories, where the best possible 
computers have supported the weapons 
and energy programs and have also 
been available, on the side, for other 
kinds of physics problems. However, 
the proliferation of computers in the 
last decade has narrowed the gap 
between the large laboratories and 
university centers, which now contri­
bute a major share of computational 
advances. 

Our computers are now about one 
billion times quicker than humans, but 
they are still a billion times too slow to 
simulate the real-time dynamics of a 
cube of gas only one millionth of a 
meter on a side! Even today the 
dynamical behavior of many-body 
quantum systems lies well beyond the 
capacity of computer simulation. Li­
mited computer speed also rules out 
straightforward atomistic simulations 
of common but complicated flow phe­
nomena, such as turbulence, detona­

tion and plastic deformation-prob­
lems that involve too many microscopic 
degrees of freedom. Whether we use 
numerical or analytic methods, we can 
treat these complicated problems more 
effectively using continuum-as op­
posed to atomistic-mechanics. Macro­
scopic continuum mechanics, too, was 
pioneered by Newton and his early 
followers, and is now being applied by 
hundreds of thousands of scientists and 
engineers. Indeed, for most engineer­
ing problems that treat real materials 
instead of simplified models, only con­
tinuum mechanics is relevant. 

Computer simulations 
The computer simulations I describe 

here are not directly concerned with 
engineering problems such as stress 
analysis and stability. They are not 
continuum but atomistic. That is, they 
deal with matter made up of individual 
particles rather than viewed as a con­
tinuous body. There is an essential 
difference of scale between the atomis­
tic and continuum views. The more 
detailed atomic view of the processes 
underlying macroscopic behavior is 
necessary to a fundamental under­
standing of continuum physics. 

Laboratory experiments designed to 
analyze particle behavior help test and 
support computer work based on the 
atomistic view. Such experiments in­
clude the ingenious shear-flow appara­
tus of figure 1, in which film records the 
actual motion of a few hundred real 
macroscopic particles. The experiment 
produces a flow record that is very 
much like the results of computer 
simulations of shear flow. Computer 
simulations, however, allow more pre­
cise control of flow variables and also 
yield more elaborate, fine-grained de­
scriptions of the fluid's behavior. By 
comparing the results of computer and 
lab experiments, we can improve and 
refine the techniques of computer sim­
ulation as well as the theoretical mod­
els of nonlinear flow. 
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The underlying goal of atomistic com­ other as a crack advances in a china 
puter simulation is, of course, to under­ plate. One can incorporate these un­
stand the macroscopic properties of derlying mechanisms into the macro­
materials in terms of the behavior of scopic models that describe cloud for­
their constituent microscopic particles. mation, plastic flow and fracture. 
What sorts of macroscopic behavior can Temperature, stress, internal energy 
computer simulations allow us to and heat flux are typical macroscopic 
study? For a start, think about every­ properties of interest in our simula­
day actions such as opening a can, tions. On a microscopic level, tempera­
lighting a match or boiling water. ture corresponds to the kinetic energy 
These three macroscopic operations of particles; stress, to the flow of 
correspond, on an atomic level, to the momentum; and heat flux, to the flow 
breaking of bonds and the motion of of energy. 
lattice defects, frictional heating and With a fast computer, measuring 
chemical reaction, and a phase change these constitutive properties of micro­
induced by thermal motion. We can scopic systems is straightforward. One 
analyze the fundamental microscopic can express dynamic variables, such as 
processes underly­
ing these large-scale 
events by computer 
simulations on a 
scale of a few 
hundred or thou­
sand atoms. 

It is true that 
such simulations in­
volve a very small 
number of atoms 
compared to the to­
tal number in a can, 
matchstick or cup of 
coffee, but the num­
ber of atoms is still 
much greater than 
we can deal with 
using pencil-and-pa­
per mathematics. 
For analysis by 
hand, even a three­
body problem-pre­
dicting where three 
interacting parti­
cles will go as a re­
sult of their mutual 
interactions-is too 
much. The impor­
tance of the atomis­
tic models solved by 
computation is that 
the few hundred 
particles we can 
study and thereby 
understand are 
enough to give a 
faithful picture of 
atomic behavior. 

Atomistic simula­
tion can follow the 
details of accreting 
water molecules in 
the formation of 
rain drops, the rela­
tive sliding motion 
of iron atoms in a 
nail bending under 
a hammer blow, or 
the separation of 
atoms from one an-

Apparatus for a large-scale macroscopic experiment simulating 

energy, temperature and the pressure 
tensor, as simple functions of particle 
coordinates and velocities. Averaging 
these functions over time or space leads 
to the macroscopic equation of state. 
Entropy is not a dynamical variable, 
and has to be determined indirectly, by 
thermodynamic integration. 

For simplicity, I restrict the discus­
sion here to monatomic point-mass 
particles with short-range forces. How­
ever, one can apply similar techniques 
to long-range Coulomb forces and poly­
atomic molecules. Models of simple 
metals and ionic melts, as well as 
water, benzene, substituted methanes 
and other small molecules have all 

shear in polymer 
solutions. The experiment simulates a polymer solution with quarter-inch plastic spheres­
the "polymer molecules" -in a viscous liquid. In the center of the apparatus, the "solution" 
is sheared by motor-driven belts moving in opposite directions. Experiments with this 
device at Los Alamos National Laboratory have measured the clustering of the "polymer 
molecules" as a function of strain rate and packing density. The results correlate well with 
experimental data for smaller particles. The apparatus is about one meter in height. (From 
reference 10.) Figure 1 

been treated suc­
cessfully. 

The algorithms. A 
computer simula­
tion involves trac­
ing out the motion 
of from two to a 
million particles. 
The particles ad­
vance through space 
according to dis­
crete "difference 
equation" approxi­
mations to the dif­
ferential equations 
of motion. Thus the 
"motion" is de­
scribed as a series of 
snapshots. In a 
steady-state case, 
just as at equilibri­
um, we can accumu­
late time averages 
during the calcula­
tion. Nonsteady 
noncyclic phenom­
ena require a differ­
ent averaging: Sev­
eral replications of 
the calculation, 
with slightly differ­
ent initial condi­
tions, have to be 
averaged together. 

A typical calcula­
tion includes mil­
lions of discrete 
time intervals. We 
must make these 
time intervals small 
enough so that we 
can interpolate par­
ticle trajectories 
between them as 
low-order polynomi­
als in time. For a 
time step dt small 
enough to replace 
the particle's posi­
tion r (t) by a qua­
dratic, we can re-
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place Newton's equation of motion, 
mr F(r), by Verlet's time-reversible 
difference equation 

m(rCt + dt) - 2rCt) + rCt - dt)JI(dt)2 
= F(r(t» 

A typical time step dt for liquid argon 
at its triple point, using Verlet's equa­
tion, corresponds to 10 femtoseconds of 
real time. We can use Verlet's equa­
tion to compute the position of a 
particle at time (t + dt) in terms of its 
earlier positions r (t) and r (t dt). 
From this coordinate information we 
can calculate interpolated velocities 
using either 

vet) = [r (t + dt) - r (t - dt)]/(2dt) 

or, more accurately, but more expen­
sive in terms of storage, 

vet) = (r (t - 2dt) - 8r (t - dt) + 
8r (t + dt) - r (t + 2dt)]/(12dt) 

There are a variety of software pack­
ages that one can use to perform inte­
gration and interpolation efficiently.! 

There are two types of molecular 
dynamics simulations: equiJibrium2 
and nonequilibrium.3 Equilibrium 
simulations use regular Newtonian 
equations of motion, without modifica­
tion, to determine the thermodynamic 
equation of state. Nonequilibrium sim­
ulations, which we will discuss in the 
second half of this article, use modified 
Newtonian equations to determine the 
state of a system. The equation of state 
relates the pressure, energy, volume 
and temperature of an isolated system 
whose energy and volume do not 
change with time. Equilibrium calcu­

lations, which reflect the simplest 
states of a system, naturally developed 
first and were fairly well perfected 
before any nonequilibrium simulation 
began. The experience gained from 
work on equilibrium simulation made 
it possible later to venture into the 
more complicated realm of systems 
away from equilibrium, which are 
characterized by inhomogeneities, gra­
dients, flows, external forces, dissipa­
tion and heat reservoirs. 

Approximate numerical solutions of­
ten provide unexpected insight into 
fluid behavior. Feigenbaum's univer­
sality theory, which deals with differ­
ence equations,4 is a well-known exam­
ple of this. (See "Roads to chaos," by 
Leo Kadanoff, December, page 46.) 
Difference equations were originally 
developed to give approximate numeri­
cal answers to differential equations; 
nonlinear problems give rise to simple 
difference equations that have a com­
plex, rich topological structure, where 
very small changes in the equations 
lead to startling patterns of wide 
change in the results. Motivated by 
numerical solutions, Feigenbaum 
showed that the simplest nonlinear 
equations have a chaotic behavior that 
is optimistically called "universal"­
applicable to a wide range of physical 
phenomena. 

Computer simulation gives the re­
searcher virtually unlimited flexibility 
in varying the parameters in a calcula­
tion. With this numerical experimen­
tation one can do much more than with 
ordinary laboratory experiments to 
clarify patterns of behavior in physical 
phenomena. An example is the sur­

prising discovery that even simple two­
and three-body systems already clearly 
embody the irreversible dissipative be­
havior described by the second law of 
thermodynamics, which is ordinarily 
written for macroscopic systems. 
Among the many-body phenomena 
that computer simulations have re­
vealed are the failure of slightly anhar­
monic chains to equilibrate, the slow 
decay of velocity autocorrelation func­
tions in fluids (see the article by Berni 
Alder and W. Edward Alley on page 
56), and the universality ofthe melting 
transition. A more recent example is 
the surprising non-Newtonian flow be­
havior of "simple fluids," discussed by 
Denis Evans, Howard Hanley and Sieg­
fried Hess in their article on page 26. 

Constraints become important. Equa­
tions of motion, and ways to solve them, 
underwent little change for 250 years. 
Equivalent formulations of Newtonian, 
Lagrangian and Hamiltonian mechan­
ics all agreed, provided that isolated 
conservative systems were treated and 
that all degress of freedom were expli­
citly included. With the advent of 
computer calculations, difficulties asso­
ciated with fluctuations and boundar­
ies in small systems became important 
concerns. Physicists developed meth­
ods to include these effects efficiently, 
or to eliminate them altogether by 
imposing special constraints on the 
equations of motion. 

The perturbing influence of contain­
er walls extends so far into a fluid that 
it is not practical on our computers to 
consider systems large enough to make 
boundary effects negligible. To elimi­
nate the influence of the container, 
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Two views of a periodic three-particle system undergoing steady 
shear at constant temperature. Colored arrows show the direction of 
the shear. In the left half of the figure, arrows show the thermal motion 
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of the particles measured relative to the local comoving velocity. At 
the right, arrows show velocities of the same particles, this time 
measured relative to an observer at the center of the picture. Figure 2 



researchers have adopted the periodic 
boundary conditions used in lattice 
dynamics, as indicated in figure 2. One 
can picture a periodic system either as 
extending infinitely far in all direc­
tions, or as a finite system in which 
opposite sides are artificially coupled 
together. These special periodic me­
chanical boundaries greatly improve 
the rate of convergence to the large­
system limit. Note that the layered 
structure induced by boundary sur­
faces is not always unrealistic: Granu­
lar materials, such as gravel or grain, 
do exhibit a fairly well-defined bound­
ary layer that extends only half a dozen 
particle diameters from the container 
wall. One can use computer simula­
tions to study the flow properties of 
granular materials, too. 

When one imposes special con­
straints to handle the difficulties asso­
ciated with fluctuations and boundar­
ies in small systems, the constrained 
versions of the equations of motion can 
be based upon the "holonomic" and 
"nonholonomic" constraints explained 
in textbooks on classical mechanics.5 

Holonomic constraints involve only co­
ordinates and time, and have the form 
fh (q,t) O. Konholonomic constraints 
involve velocities, and have the form 
fn (q,q,t) O. The most common hoi on­
omic constraints are those used to fix 
bond distances or angles in rigid polya­
tomic molecules. The use of holonomic 
constraints has made possible the study 
of both rigid and flexible molecules. 
Computer time requirements have li­
mited quantitative studies of the con­
stitutive relations for polyatomic mole­
cules, but these studies are proceeding 
through use of the same basic tech­
niques described here for monatomic 
simple fluids. 

Nonholonomic constraints, which in­
volve velocities, typically occur in me­
chanical problems with rolling con­
tacts. The resulting linear constraints 
are straightforward to treat. Until 
recently, the only nonlinear nonholon­
omic constraint discussed in the litera­
ture6 was that governing the motion of 
the front-wheel-drive cart shown in 
figure 3. 

Scientists in countries around the 
world are now studying many types of 
nonlinear nonholonomic constraints. 
In atomistic simulations, constraints 
fixing temperature, energy, pressure or 
heat flux involve both the coordinates 
and the velocities in a nonlinear inho­
mogenous way. Temperature and ki­
netic pressure are quadratic in the 
velocities. The kinetic heat-flux vector 
is cubic. It isn't clear how to constrain 
temperature, pressure or heat flux 
using classical, unmodified Newtonian 
mechanics. There are two complica­
tions. First, dissipative constraints 

"Appell's cart." This 
device, driven by a 
falling weight, is the 
classical example of a 
mechanical system 
with nonlinear 
nonholonomic 
constraints involving 
velocities. Such 
constraints typically 
occur in systems with 
rolling contacts. As 
the arrows indicate, the 
cart can run forward or 
backward and rotate 
about the lowest point 
on its knife-edged 
wheel. Figure 3 

cause the energy to vary with time 
because the forces that induce the 
constraints do work--such constraint 
forces are ordinarily avoided in text­
book classical mechanics. Second, once 
we allow energy changes, the many 
trajectories satisfying nonlinear non­
holonomic constraints frustrate a 
straightforward Lagrange-multiplier 
approach, which no longer uniquely 
describes the motion. 

Nonequilibrium molecular dynamics 
The first atomistic fluid simulations 

at Los Alamos and Livermore estab­
lished two interesting points: First, a 
dilute many-body hard-sphere gas 
reaches thermal equilibrium rapidly, 
after just a few collisions per particle, 
confirming the low-density behavior 
predicted by the Boltzmann equation. 
Second, the ensuing equilibrium prop­
erties agree with the predictions of the 
Mayers virial-series approach, namely, 
that one can calculate the equilibrium 
pressure and energy by summing each 
particle's two·body interactions, three­
body interactions, and so on. These 
initial successes clarified the regions of 
usefulness of both the gas-phase non­
equilibrium and the fluid-phase equi­
librium theories. E. G. D. Cohen de­
scribes the gas-phase theory in his 
article on page 64. 

While we can make direct compari­
son between theoretical analyses and 
simulations for dilute gases, both at 
equilibrium and away from equilibri­
um, for dense nonequlibrium fluids we 
have had very little useful theory. 
Hence, for dense fluids the computer 
experiments have acted as helpful pi­

lots in correlating microscopic atomic 
forces with macroscopic nonequilibri­
urn phenomena. The principal such 
phenomenon of interest to simulation 
is nonequilibrium flow. A fluid's shear 
viscosity-its resistance to changes in 
shape-helps characterize its macro­
scopic flow. Viscous flow, first de­
scribed by Newton, is an irreversible 
flow in which a fluid is heated by 
internal friction occurring during de­
formation. Alder and Alley, in their 
article on page 56, describe the general­
ization of viscosity that takes account 
of linear frequency and wavelength 
dependence. 

The second law of thermodynamics 
distinguishes between reversible pro­
cesses, which can be seen as a sequence 
of equilibrium states, and irreversible 
entropy-producing nonequilibrium 
flows, in which there is usually energy 
conversion-work into heat. This con­
version normally occurs in the process 
of transporting mass, momentum or 
energy from one place to another. 
Thus, most nonequilibrium problems 
are also "transport problems." In New­
tonian viscous flow, stress is propor­
tional to the strain rate; that is, the 
force per unit area is proportional to 
the relative deformation rate. In heat 
flow, the flow per unit area and time is 
proportional to the negative of the 
temperature gradient. The proportion­
ality coefficients for these flows-the 
viscosity and thermal conductivity­
are "transport coefficients." 

A major goal of theory and simula­
tion is to generate transport coeffi­
cients and to correlate these with the 
results of the appropriate laboratory 
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A pair of shockwaves, generated by compressing a fluid with two and unshocked (blue) material are expressed in terms of the piston 
moving periodic images of itself. Mean velocities x in the shocked velocity u. Small arrows show shockwave motion. Figure 4 

experiments. Alder and Alley discuss 
the definition and utility of generaliza­
tions of the hydrodynamic transport 
coefficients when those generalizations 
take into account frequency and wave­
length dependence. Now that we have 
reliable methods for simulating non­
equilibrium flows and for deriving mac­
roscopic constitutive relations, we can 
expect to see more quantitative com­
parisons with high-frequency short­
wavelength experiments in the years 
ahead. 

Ten years ago it was established that 
a standard method for estimating 
transport properties, the "Green-Kubo 
fluctuation method," converged very 
slowly for dense fluids. 2 The Green­
Kubo approach requires integration of 
a correlation function that describes 
the decay of velocity fluctuations about 
equilibrium and is computationally 
more cumbersome than the accumula­
tion of steady-state averages. The 
stage was set to seek better methods, 
and indeed, starting with work at 
Livermore in 1974, the development of 
steady-state computer simulations be­
gan. In these, the underlying idea is to 
simulate steady flows-flows that do 
not change with time-to avoid the 
inefficient alternative of waiting for 
equivalent equilibrium fluctuations. 

Shockwaves. One can adapt steady­
state simulations to the analysis of 
shockwaves? Figure 4 shows the basic 
geometry. Shockwaves are an extreme 
case of nonlinear fluid flow, and as such 
reveal interesting new aspects of flow 
in general. They involve abrupt, vio­
lent changes in all ofthe fluid's thermo­
dynamic properties. Gone are the 
smooth, gentle gradients of normal 
fluid flow-the pressure can rise mil­
lions of atmospheres in little more than 
one atomic vibration time! Heat flow 
occurs in a shockwave in the presence 
of shear, or changes in shape. The 
combined effect of compression, heat­
ing and shear is nonlinear, not simply a 
sum of individual contributions. 

Shockwaves, because of the speed 
and size of their gradients, have impor­
tant applications in metallurgical and 

chemical syntheses. Computer simula­
tion may be able to explain the use of 
shockwaves to produce macroscopic 
specimens of metallic glasses and to 
induce chemical reactions. Computer 
simulations of shockwaves have al­
ready shown that nonlinear effects on 
even the monatomic transport coeffi­
cients are relatively small, but signifi­
cant. A shockwave compressing liquid 
argon from the triple-point liquid state 
to a much denser fluid state at 400 
kilobars causes viscous stresses only 
30% different from those based on the 
Navier-Stokes model of Newtonian vis­
cosity. Fourier's law, which states that 
the flow of heat is proportional to the 
temperature difference, also applies 
with similar corrections under these 
conditions. Interestingly, the shock­
wave effect on the transport coeffi­
cients is in the opposite direction from 
that found in the simpler (but still 
nonlinear) case of plane Couette flow, 
shown in the figure on page 29. In 
Couette flow, the velocity U x of the 
fluid varies linearly with displacement 
y in the direction perpendicular to that 
of the flow: U x = (dux Idy)y. 

A plane shockwave is a particularly 
clean nonlinear problem because the 
only boundaries needed to confine it 
are equilibrium liquid states. The two 
boundaries, made up of shocked and 
unshocked particles, differ in velocity, 
density and temperature. Computer 
simulations of shockwaves are compli­
cated by the need to resolve velocity, 
stress, energy and heat flux spatially 
and in a moving coordinate system. 
Even so, a shockwave simulation re­
quires only a few hundred lines of 
FORTRAN. 

Describing nonequilibrium states 

We specify the "state" of a many­
particle system by listing its properties; 
our list should be sufficiently detailed 
so that any other interesting property 
necessarily follows from those listed. 
The simplest states are equilibrium 
fluid states, which are completely 
specified by only a few variables­
pressure, temperature and composi­

tion. Equilibrium thermodynamics re­
lates the work and heat involved in 
reversible changes between states. 

As we move away from equilibrium, 
we need additional variables to de­
scribe a state. In "linear" nonequilibri­
um situations that are still relatively 
close to equilibrium, it is sufficient to 
specify the flow of mass, momentum 
and energy, that is, the particle cur­
rent, the shear stress and the heat flow. 
Far away from equilibrium, where 
conditions become nonlinear, it is not 
known what constitutes a complete set 
of state variables. For isothermal 
Couette flow, Evans, Hanley, and Hess 
suggest that density, temperature and 
strain rate are sufficient. In Couette 
flow viscosity decreases with increasing 
strain rate, as figure 5 indicates; this 
behavior is known as "shear thinning." 
On the other hand, for sufficiently 
large deviations from equilibrium, a 
complete description would require 
that the pressure tensor and heat flux 
vector in a shear flow be specified too. 
In a shockwave the viscosity generally 
increases with increasing strain rate. 
Thus even the sign of the nonlinear 
shear behavior depends upon more 
than the local thermodynamic state 
and the strain rate. The mechanisms 
underlying this complex behavior 
aren't yet known. 

Edwin T. Jaynes of Washington Uni­
versity in St. Louis has emphasized the 
need for a complete description of state 
in formulating nonequilibrium statisti­
cal mechanics. However, identification 
of the relevant state variables contin­
ues to be a major difficulty, hindering 
progress in nonequilibrium statistical 
mechanics. For simulations of non­
equilibrium molecular dynamics, we 
can specify the additional state varia­
bles that are needed by imposing 
boundary conditions or by imposing 
constraints on the dynamical trajector­
ies. The use of external physical boun­
daries is relatively undesirable in com­
puter simulations because these 
boundaries cause geometric inhomo­
geneities and increase the dependence 
of calculated thermodynamic and hy­
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drodynamic properties on the size of 
the system. The use of specially con­
strained equations of motion that 
maintain steady values of state varia­
bles help to avoid these boundary 
effects. 

Gauss's principle of least constraint5 

occupies an obscure corner of classical 
mechanics, but is extremely useful for 
solving nonequilibrium problems. 
Gauss enunciated this principle two 

after developing the mathemat­
least-squares technique. He stated 

that the forces of constraint acting 
on a system should be made as small as 
possible, in a least-squares sense, mini-

l: Fc 2/m. This leads to the 
Newtonian equations of motion. Mod­
els of molecular structure have long 
used Gauss's principle to impose geo­
metric "holonomic" constraints, but it 
has only just recently been observed 
that the principle is also effective for 
constraining the much more complicat­
ed hydrodynamic and thermodynamic 
functions in nonequilibrium systems. 

To illustrate Gauss's principle, con­
sider temperature. The kinetic tem­
perature of a classical D-dimensional 
N-particle system is proportional to the 
kinetic energy: 

DNkT= l:(p2/m) 

If we hold the kinetic temperature to a 
constant, Gauss's principle produces 
the equations of motion 

P=F+Fc 

Fc = - (;p 


(; l: F.(p/m)/l:(p2 Im) 

Here F represents the applied forces. 
The "friction coefficient" t; varies with 
time, changing sign and ~agnitude in 
such a way that temperature remains 
fixed. To see that these constrained 
equations of motion satisfy the con­
straint of fixed temperature, multiply 
both sides of thePequation bypim and 
sum over all particles. The left-hand 
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side is then the time derivative of the 
kinetic energy, and the right-hand side 
is identically equal to zero. The con­
strained equations are stable and effec­
tive in keeping the temperature con­
stant for systems of two or more 
particles (three or more in one dimen­
sion). One can also apply Gauss's 
principle to shear flow, diffusion, elec­
trical conduction and heat conduction. 

Simulating shear and heat flows 
The stress tensor from two-particle 

nonequilibrium calculations exhibits 
shear-thinning and dilatant behavior 
similar to the many-particle effects 
discussed by Hanley and Hess. 
The viscosity decreases, and the pres­
sure increases, with increasing strain 
rate. In the two-particle case, the 
motion can be treated as that of a single 
reduced-mass particle moving in a 
time-dependent field. Application of 
the Boltzmann equation to the two­
particle Lorentz gas problem produces 
a very similar shear-thinning behavior, 
as shown in figure 5. 

Heat flow has been more difficult to 
study than shear flow. The simplest 
heat-flow model requires three bodies. 
One can carry out simulations of homo­
geneous periodic heat flow with exter­
nal forces that induce a heat current. 
The amplitude of the external force, 
analogous to the voltage driving an 
electric current, can be kept fixed or, 
using Gauss's principle, adjusted to 
maintain a constant heat current. The 
dissipation associated with this current 
not only matches that calculated for 
the system's linear response to small 
currents, but it also allows one to 
estimate the system's nonlinear re­
sponse. Evans8 has shown that the 
external-force approach to heat flow 
dramatically reduces the fluctuations 
inherent in alternative methods. 

There is no reasonable doubt that the 
computer flow simulations reproduce 

Viscosity of a two­
body system as a 
function of strain rate. 
The data come from a 
numerical solution of 
the Boltzmann 
equation for a two­
body system of hard 
disks. Figure 5 

correctly the linear viscous 
and conductive transport phenomena. 
The accuracy of computer simulations 
of nonlinear properties is currently 
being investigtaed, mainly by compari­
son with less restrictive simulations 
and with experiment. To the extent 
that disagreement is found, we must 
expand our list of nonequilibrium state 
variables to include new constraints, as 
Jaynes has emphasized. (Particular 
fluctuations could also be imposed 
through Gauss's principle.) So far the 
indications are that we can determine 
the nonlinear stress tensor, at least 
semi-quantitatively, by nonequlibrium 
isothermal or isoenergetic simulations. 
For instance, normal stresses calculat­
ed from isothermal "homogeneous 
shear" equations of motion (see figure 
6c) agree with predictions of the Boltz­
mann equation for low-density systems. 

Reversibility. The equations of motion 
for nonequilibrium simulations are 
characteristically "reversible in the 
time."9 This means that a movie of the 
nonequilibrium motion, run back­
wards, would show a "reversed" motion 
obeying the same equations of motion. 
However, macroscopic hydrodynamics 
insists that the conversion of work to 
heat is irreversible. This macroscopic 
view is correct, even for two or three 
bodies~ Formally, reversibility implies 
that the viscosity and thermal conduc­
tivity can change sign. Newton's, 
Lagrange's and Hamilton's classical 
equations of motion all share this 
reversibility property, but the hydrody­
namic equations, which include the 
irreversible production of entropy, with 
viscosity and conductivity always posi­
tive, do not share this property. Thus, 
real life movies make little sense when 
run backwards. This lack of reversibi­
lity results from the instability inher­
ent in the microscopic equations of 
motion-the equations of motion of 
point masses. 

Quantitatively, the accuracy re­
quired in the initial conditions varies 
exponentially with the length of time 
over which the trajectory is to be 
reversed. Reversing the motion of at­
mospheric-pressure argon gas for one 
second would require initial conditions 
known to a trillion decimal places. In a 
very short time from the macroscopic 
viewpoint-a few collision times-the 
work and heat terms in a reversed flow, 
as well as the viscous stress, change 
sign and exhibit macroscopic irrevers­
ible dissipation. It is extremely inter­
esting that deterministic two- or three­
body problems already contain the 
dynamical complexity required to 
thwart formal microscopic reversibility 
and to obey--on a time-averaged ba­
sis-the second law of thermodynamics 

PRODUCT OF STRAIN RATE AND SHEAR RELAXATION TIME (dux/dy)r instead. 
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Inducing a shear flow in three different ways. These are the methods ies are constrained to move as indicated. In c, periodic images of the 
commonly used in computer experiments. In a, shear flow is driven by system itself provide homogeneous deformation; heat may be extract­
a spatially-dependent external force, a sinusoidal field. In b, boundar- ed to maintain constant temperature or energy. Figure 6 

When Gauss's principle is applied to 
two- or three-body shear flows, not only 
are the few-body viscosities positive, 
but they also exhibit nonlinear shear 
thinning, where the viscosity is a de­
creasing function of strain rate, as in 
figure 5, The mean pressure, on the 
other hand, shows a rapid increase with 
strain rate, a behavior known as "dilat­
ancy." Both shear thinning and dilat­
ancy are well-known macroscopic prop­
erties. The appearance of these 
nonlinear phenomena in two- and 
three-body problems promises to sim­- plify our theoretical understanding of 
them. 

Nonequllibrium simulations 

While researchers have put the main 
emphasis on the determination of lin­
ear and nonlinear transport coeffi­
cients, they have done considerable 
work on spatial distribution functions 
in shear flows and in shockwaves. 
Although many of the simulations cor­
respond to conditions more extreme 
than those ordinarily encountered in 
the laboratory, most are typical of the 
violent deformation of materials 
caused by laser heating or strong, 
explosively-driven shockwaves. It is 
only a matter of time before more 
careful analyses will make possible a 
direct confrontation between simula­
tion and experiment. Already, light 
scattering from sheared polymer sys­
tems has shown qualitative agreement 
with the nonlinear shear effects seen in 
computer simulations. Larger-scale, 
truly macroscopic experiments10 at Los 
Alamos have simulated the shear of 
polymer solutions. These experiments 
show the clustering of "polymer mole­
cules"-quarter-inch plastic spheres­
suspended in a viscous fluid sheared by 
moving belts (figure 1). Data showing 
this clustering as a function of strain 
rate and packing density correlate very 
nicely with experimental data for 
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smaller particles and should stimulate 
corroboratory computer simulations. 

The results obtained so far indicate 
that the transport coefficients depend 
relatively little on the driving gradi­
ents. However, the small dependence 
isn't uniform. The coefficients either 
increase or decrease, depending upon 
the particular conditions of the simula­
tion. In strong shockwaves the effec­
tive transport coefficients exceed their 
small-gradient values. In simple shear 
flow such as that indicated in figure 5, 
the viscosity lies below the low-gradi­
ent value. Even the relatively small 
decrease seen in shear flow greatly 
exceeds current theoretical predic­
tions. The reason for this disagree­
ment is not yet understood. 

The computer simulations of "simple 
shear" in "simple fluids" have revealed 
unexpectedly complicated stress states. 
The "normal stresses," Pxx , - Pyy 

and Pzz , all depend upon the shear 
strain rate du,Jdy in a complicated 
way. We can ascribe the compressive 
zz stress to an overall energetic distor­
tion of the fluid's structure, induced by 
shear. The xx and yy stresses include 
not only a similar distortion, but also 
the effect of "stress rotation." Because 
Couette flow is a rotational flow­
clockwise for dux I dy positive-any xy 
shear stress present in the fluid has a 
tendency to rotate clockwise through 
an angle (r/2)du Idy, where 'T is thex 

shear relaxation time. This rotational 
memory should increase the normal 
stress Pxx relative to the normal 
stress Pyy , and this increase is in fact 
observed in computer simulations of 
dense fluids. 

As the pace of activity in computer 
simulation has quickened, the need for 
frequent international gatherings to 
communicate findings and to avoid 
duplication has become more pro­
nounced. The Gordon conferences and 
the National Bureau of Standards con­

ferences in this country, and the Centre 
Europeen De Calcul Atomique et Mole­
culaire workshops and the Collabora­
tive Computational Project workshops 
abroad, have been particularly valu­
able forums for the exchange of infor­
mation. 
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