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The measurement of plastic-wave profiles in strong shock waves suggests a power-law dependence 
of the solid-phase shear stress on strain rate. The strain rates in these experiments vary from about 
10 kHz to 0.1 GHz. We have carried out molecular-dynamics simulations of steady-state plastic 
flow in two- and three-dimensional close-packed crystals, using recently developed "nonequilibrium" 
equations of motion to maintain a constant strain rate and temperature. These calculations appear 
to be consistent with current experimental data and suggest that the flow of close-packed metals is 
described by a single physical mechanism over a range of strain rates from 10 kHz to 1 THz. 

1. INTRODUCTION 

The use of laser interferometry to measure particle ve­
locities! has enabled accurate shock-wave profiles to be 
determined for rise times of the order of 1 nsec.2 Shock­
wave experiments on samples of different thicknesses have 
established that steady plastic 'waves are formed, with rise 
times that can be measured optically for pressures up to 1 
Mbar.2 These high-pressure experiments have extended 
the experimentally accessible range of strain rates by 5 or­
ders of magnitude, to about 0.1 GHz. 

Grady's analysis of plastic-wave shapes in aluminum 
suggests that the shear stress increases as, approximately, 
the square root of the strain rate.3 His theoretical model, 
based on the idea of shear bands with heat flowing from 
the bands according to a diffusion equation, is consistent 
with a square-root dependence of the shear stress on strain 
rate.3 A different analysis of the same data, by Wallace, 
predicts a shear stress larger by about 2 orders of magni­
tude, and a weaker power-law dependence on strain rate.4 

Such discrepancies indicate the uncertainties involved in 
estimating shear stress from shock-wave profiles. 

It is well known that plastic flow in crystals proceeds 
through defect, primarily edge dislocation, motion.5 Sem­
iempirical theories have been successful in correlating ex­
perimental data obtained in low-strain-rate tension tests,6 
but it has been known for some time that these theories 
underestimate stress relaxation in plastic shock waves.7 

The rate of dislocation multiplication is too small by 
several orders of magnitude. 

At low strain rates, below 10 kHz, grain structure, im­
purities, and other material-dependent properties dominate 
plastic flow, but a universal flow behavior is expected at 
high strain rates, at least in close-packed crystal struc­
tures. It has been our goal to elucidate some of the funda­
mental aspects of high-strain-rate plastic flow by 
molecular-dynamics simulation. A preliminary account of 
this work, including details of the equations of motion has 
already been published.8 

II. RESULTS 

The isothermal equations of motion described in Ref. 8 
have been applied to simulations of steady Couette flow in 
monatomic close-packed crystals. These crystals are 
comprised of point particles interacting via a pairwise ad­
ditive, piecewise linear force law.9 The zero-force separa­
tion is do, and the force constant is K. The attractive force 
is greatest at r = do +W, and decreases linearly to zero at 
r = do +2w. In our calculations, the width parameter 
W =0.15do. The equation of state of the two-dimensional 
triangular lattice has been characterized by computer 
simulation. 1O The temperature dependences of the internal 
energy, pressure, and Lame constants lO are summarized in 
Table 1. We have found the melting point of the triangu­
lar lattice from a plot of energy versus temperature, at 
constant volume. A flat tie line was observed, giving a 
melting point 

kTm /Kd6 =0.0135±0.OOO5 

at a density 

_l1/2~Td!/V-llp- 4 H' 0 - •. 

Simulations at zero degrees have shown that the disloca­
tion propagation velocity in this lattice is insensitive to 

TABLE I. Thermodynamic and elastic properties of the tri­
angular lattice. The Lame constants were obtained by 
molecular-dynamics simulations of strained crystals. Results at 
intermediate temperatures can be estimated by interpolation 
(p=l.l). 

kT/Kd ¢'/NKd6 p/K 7J/K J.../K 

0 -0.0643 0.085 0.37 0.54 
0.004 -0.0602 0.080 0.37 0.53 
0.008 -0.0560 0.077 0.36 0.51 
0.012 -0.0514 0.075 0.31 0.51 
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stress once the rather large Peierls strain (-0.05) is over­
come. 1I At higher temperatures we have found that the 
Peierls strain is reduced, but the propagation velocity is 
similar, approximately 0.3(K/m)1/2dQ, or about one-half 
the transverse sound speed. Finally, the energy and stress 
of small groups of dislocations has been determined.9 

Analogous results for the three-dimensional lattices are 
not yet available. 

We have investigated the effects of dimensionality, sys­
tem size, density, temperature, and strain rate on the inter­
nal energy and stress tensor. The two- and three­
dimensional stress tensors have been compared with each 
other and with results deduced from laser interferometry 
measurements of shock-wave profiles in closed-packed 
metals.2~4 We have compared the results in two dimen­
sions with theoretical predictions based on a model of a 
dilute "gas" of point dislocations. 12 

A. Two dimensions 

At each density, temperature, and strain rate studied, 
results were obtained for systems of 64-400 atoms. The 
calculations were run up to strains of at least 10 in each 
case, which was sufficient to establish a steady state and 
reduce statistical errors in the shear stress and internal en­
ergy to a few percent. The fluctuations in the normal 
stresses were larger. A typical set of results is shown in 

'Table II for a density p= 1.1 and temperature 
kT/Kd~ =0.008. An estimate of the statistical uncertain­
ties can be obtained from the two sets of results at 
i=0.05(K/m)1/2, N 144. The potential energy of the 
crystals does not exhibit any statistically significant num­
ber dependence. At low strain rates, there is number 
dependence in the stress tensor, caused by large fluctua­
tions in the dislocation density between states with no 
dislocations and states with a single dislocation pair. The 
smallest system size that requires a pair of dislocations to 
be permanently present can be estimated from the plastic 
strain rate e=bvPD, where PD is the dislocation number 

density. Using our estimate of the dislocation propagation 
velocity, v=0.3(Kd5/m ,we find Nrnin~0.7E-I(K/ 
m)ll2. This fits nicely with our simulation results, where 
at a strain rate of 0.01(K/m)1/2, the 64-particle system is 
anomalous and where at a strain rate of 0.005(K/m)112 
both 64· and 144-particle results are different from 
N =256. These estimates indicate that results at strain 
rates of 0.001(K/m)I/2 would require about 700 atoms. 

A summary of our two-dimensional results is contained 
in Table III. The pressure shift 6.p is the difference be­
tween the hydrostatic pressure at the given strain rate and 
that at the same density and temperature, but at zero 
strain rate. The thermal pressures used are given in Table 
I. The dislocation energy <PD is obtained from the poten­
tial energy per particle by subtracting the potential energy 
of the equilibrium crystal at the appropriate density and 
temperature (Table I), ~nd the shear energr due to. t~e 
mean shear stress ax" gIven by <Ps =(V/2)a;y/T/. ThIS IS 

consistent with the elastic theory of dislocations in period­
ic systems.9

,J3 We made a few calculations at a density 
equal to 1, but the results were not significantly different 
from those at P= 1.1. This work concentrates on the tem­
perature and strain-rate dependence. 

The shear stress at each temperature is well represented 
by a power-law dependence on strain rate of the form 

axyex 

The exponent r is almost linear in the temperature. If the 
temperature-dependent Lame constants calculated earlier 
are used to determine the dislocation strength parameter 
D,S 

then r is almost exactly given by 

r=3kT/Db 2 • 

Molecular-dynamics data, together with the fitted curves 
are shown in 1. The theoretical significance of the 

TABLE II. Number dependence of molecular-dynamics simulations of two-dimensional steady 
Couette flow at a density p= l.l. The potential energy and stress tensor quoted are relative to those at 
zero temperature and strain rate. 

N 	 t::.Ux,,:iK t::.Uyy/K UXy/K 

0.005 	 64 0.0121 0.021 0.008 0.028 
144 0.0123 0.017 O.ot1 0.027 
256 0.0127 0.017 0.012 0.024 

0.01 	 64 0.0136 0.024 0.007 0.032 
144 0.0139 0.020 0.013 0.027 
256 0.0141 0.020 0.012 0.026 

0.02 	 144 0.0156 0.022 0.011 0.032 

0.05 	 64 0.0197 0.026 0.010 0.043 
144 0.0197 0.030 0.009 0.041 
144 0.0192 0.029 0.012 0.042 .­

0.1 	 64 0.0238 0.042 0.004 0.056 
400 0.0243 0.043 0.005 0.054 
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TABLE III. Molecular-dynamics simulation of two-dimensional steady Couette flow at a density 
p= 1.1. The thennal contributions to the pressure and potential energy have been removed, using the 
equation of state given in Table I. The energy due to the average shear stress Ifls=( V/2)u~y/TJ is also 
subtracted from the potential energy to give IflD • The stress Ul is the normal stress difference 

b.p/K 

0.004 	 0.005 0.042 0.010 -0.013 0.003 
0.01 0.043 O.ot8 -0.015 0.005 
0.02 0.051 0.022 -0.020 0.006 
0.05 0.064 0.047 -0.024 0.009 
0.1 0.065 0.068 -0.029 0.014 

0.006 	 0.005 0.036 0.014 -0.010 0.003 
O.ot 0.034 0.011 -0.012 0.005 
0.05 0.052 0.027 -0.018 0.010 
0.1 0.062 0.047 -0.022 0.013 

0.008 	 0.005 0.024 0.005 -0.007 0.004 
0.01 0.026 0.008 -0.008 0.005 
0.02 0.032 0.011 -0.009 0.006 
0.05 0.041 0.019 -0.012 0.009 
0.1 0.054 0.Q38 -0.016 0.013 

0.010 	 0.005 O.ot5 0.005 -0.004 0.005 
O.ot 0.019 0.003 -0.005 0.006 
0.05 0.037 0.012 -0.007 0.010 
0.1 0.048 0.022 -0.010 0.0[3 

0.012 	 0.005 0.008 0.001 -0.002 0.006 
0.01 0.011 -0.001 -0.003 0.007 
0.02 0.017 0.000 -0.003 0.008 
0.05 0.031 0.012 -0.002 0.010 
0.1 0.044 O.ot8 -0.005 0.012 

temperature dependence of the exponent and its relation to 
theoretical predictions l2 are discussed later. 

The convergence of the stress-strain-rate data at a shear 
stress uo=0.079K and a strain rate €o=0.3(Klm)1I2 indi­
cates a general constitutive equation for high-strain-rate 
plastic flow, 

-1,-----~------------------,-----__, 
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FIG. 1. Comparison of molecular-dynamics simulations of 
the shear stress as a function of strain rate with a power-law 
dependence of the fonn 0'", =A (T)ii r, with r=3kT/Db 2• The 
three lines correspond to temperatures kT /Kd5 of 0.004, 0.008, 
and 0.012. They converge at a strain rate of 0.30(K/m)l/2 and a 
stress of 0.079K. 

in good agreement with the molecular-dynamics data. A 
similar relation, with a linear def,endence of r on tempera­
ture, has been used by Sokolov 4 to represent low-strain­
rate data obtained from compression tests on several dif­
ferent metals. It is reasonable to assume that the point of 
convergence corresponds to a solid saturated with disloca­
tions, and thus marks the transition to a different flow 
mechanism in which close-packed rows slide past each 
other with velocities dominated by the streaming contribu­
tion. Using this idea we can identify the phenomenologi­
cal constants Uo and €o with fundamental properties of the 
dislocations. 

In a solid saturated with dislocations, the dislocation 
density is the same as the particle number density. The 
plastic strain rate €o=bv(N IV) indicates a propagation 
velocity v =0.25(Kd5Im)I/2, which is consistent with oth­
er estimates. II The energy of a triangular lattice saturated 
with dislocations of alternate signs can be evaluated nu­
merically'l with the result <P=2<Pc 1. 38Db 2• The core 
energy <Pc is 0.087Kd5.9 The elastic energy released by a 
pair is ub 2, and thus the saturated solid is energetically 
favored for stresses greater than 0.076K, when <P-ub 2 <0. 

The statistical uncertainties in the normal stresses are 
larger than in the shear stress, and it is difficult to detect 
consistent trends in and • However, the normal U xx Uyy 

stress difference U xx u yy exhibits a power-law depen­

-2 



PLASTIC FLOW IN CLOSE-PACKED CRYSTALS VIA ...28 1759 

dence on strain rate with a temperature-independent ex­
ponent of about 0.7. The pressure shift D.p has a similar 
dependence with a power of roughly 0.3. Our studies of 
dislocations in cold crystals9 revealed normal stress effects 
of similar magnitude to these, but they would be expected 
to be linear in the dislocation density, and therefore linear 
in the strain rate. The reason for these noninteger power­
law dependencies is unclear. 

The directions of maximum shear stress are almost 
parallel to the x and y axes, the largest deviation, occuring 
at low temperatures and high strain rates, being about 15°. 
This is consistent with a picture of plastic flow via the 
motion of edge dislocations in the x direction, which re­
lieves the shear and rotational components of the strain 
rate simultaneously. Continuum theories generally assume 
that the plastic strain-rate directions are exactly parallel to 
the principal stress directions. 

The dislocation energy is almost independent of tem­
perature in the range OJXJ4 <kTIKd6 <0.008. At higher 
temperatures and low strain rates the energy increases 
slightly. This increase is probably due to excitation of 
low-frequency anharmonic oscillations of the dislocations, 
rather than to changes in the static elastic stress fields 
around them. The absence of a large temperature depen­
dence in the dislocation energy indicates that the disloca­
tion density and structure are insensitive to temperature. 
The variation in normal stresses is probably due to a 
reduction in the core stress with temperature.9 A 
temperature-independent dislocation density is in agree­
ment with our observation of a temperature-independent 
dislocation propagation velocity. 

B. Three dimensions 

We have investigated plastic flow in a three-dimensional 
solid at two different strain rates: €(mIK)1/2=0.01 and 
0.1. The solid was initially a hexagonal close-packed lat­
tice, with the sixfold axis Perpendicular to the flow direc­
tion. We collected thermodynamic data but did not at­
tempt to analyze the crystal structure of the steady-state 

material. The analysis could perhaps be accomplished us­
ing Voronhoi polyhedra but such a task would probably 
take longer than the simulations themselves. Most of the 
calculations were for 216 atoms; we could not detect sta­
tistically significant differences between N =216 and 512. 
The results reported here are all for N =216. 

In these calculations the temperature slowly decreased 
due to truncation errors in solving the isothermal equa­
tions of motion. The cooling rate was slow, 

tiT - -1O-4(m IK)1I2 , 

but substantial over typical runs of 2000( m I K) 112 to 
lOOOO(m IK)1I2. In two dimensions, these truncation er­
rors caused the system to heat up, but at a much slower 
rate, which, together with the shorter runs, did not signifi­
cantly affect i the results. The temperature drift could be 
overcome by 'occasional momentum rescaling. In analyz­
ing these results we have divided them into batches, typi­
cally of times of 1000(mIK)1I2, which are long enough to 
obtain meaningful statistical averages but short enough to 
be characterized by a single thermodynamic state. The re­
sults are collected in Table IV. 

It can be seen from Table IV that the flow is qualita­
tively different at the two different strain rates. At the 
lower strain rate the flow is two dimensional; the solid is 
primarily sheared in the xy plane, parallel to the x axis. 
Both the shear stresses a xy and axx -ayy are comparable 
to the two-dimensional results. The dislocation energy, 
calculated without the small anharmonic corrections to 
the energy of the unsheared crystal, is also similar to the 
two-dimensional energies. At the higher strain rate the 
flow is characterized by temperature-independent shear 
stresses, a large normal stress in the zz direction, and a 
smaller dislocation contribution to the internal energy. 
The large shear stresses at the two highest temperatures 
are probably due to the shear-induced melting,15 resulting 
in a liquid state. It is not obvious what the high-strain­
rate flow mechanism is, and a structural analysis of these 
plastically flowing solids would be of interest. At the 

TABLE IV. Molecular-dynamics simulation of three-dimensional steadY Couette flow at a density 
p=Nd5;VVz= 1.1. The thermal contribution to the potential energy has been estimated from 
equipartition. The stresses 0'1 and 0'2 are the normal stress differences 0'xx - O'yy and 0'yy - 0'II> respec­
tively. 

€(m/K)1I2 kT/Kd~ O'xy /K O'l/K O'2/K p/K 4>D/NKd~ 

0.01 0.0010 0.050 0.016 -0.003 -0.001 0.008 
0.0035 0.038 0.008 0.000 0.002 0.007 
0.0066 0.029 0.006 0.001 0.004 0.008 
0.0079 0.022 0.007 0.000 0.005 0.006 
0.011 0.014 0.002 0.002 0.009 0.010 
0.012 0.012 0.004 0.001 0.009 0.011 

0.1 0.0029 0.035 0.026 0.048 0.02i 0.002 
0.0038 0.035 0.025 0.038 0.020 0.001 
0.0048 0.032 0.Q25 0.032 0.019 0.000 
0.0058 0.032 0.026 0.032 0.018 0.001 
0.0068 0.032 0.028 0.027 0.016 0.003 ~. 

0.011 0.056 
0.012 0.053 

http:mIK)1/2=0.01
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lower strain rate it is presumably slippage of the basal 
planes over each other. 

C. Scaling laws and comparison with experiment 

The most important characterization of a plastically 
flowing solid is the constitutive law for the shear stress as 
a function of density and temperature. In this section we 
describe a scaling relation that can be used to compare our 
simulation results with estimates deduced from shock­

4wave experiments.2- The natural dimensionless variables 
are TITm, Ed leT, and axylTJ, where Tm is the melting 
temperature, d is a characteristic interatomic distance, CT 

is the transverse sound speed, and TJ is the shear modulus. 
For simplicity we have used the zero-tempetatlire moduli 
in scaling the simulation data. The three,.qimensional 
simulations involve the shearing of basal plates. The ap­
propriate shear modulus, 1'/=CS5 -P =0.408, is used to 
scale the shear stresses. The experimental materials are 
polycrystalline characterized by an average isotropic shear 
modulus. The results of the scaling are illustrated in Fig. 
2. 

The two-dimensional results are shown by solid lines, 
corresponding to temperatures of 0.3Tm' 0.6Tm' and 
0.9Tm , and are extrapolated with dashed lines to lower 
strain rates where estimates are available from interpreta­
tion of shock-wave profiles. The experimental results in­
clude Wallace's calculations for aluminum.4 These calcu­
lations are based on a continuum model, fitted to plastic­
wave data and consistent with reasonable thermodynamic 
bounds on the temperature, stress, and entropy within 
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FIG. 2. Strain-rate dependence of the shear stress. 1/ is the 
shear modulus, d the nearest-neighbor spacing in a close-packed 

lattice, E the strain rate dux/dy, and CT the transverse sound 
velocity. The nonequilibrium molecular dynamics was generated 
for two-dimensional solids at );I times the stress-free density 
and temperatures of 0.3 (top solid line), 0.6 (middle line), and 0.9 
(bottom line) times the melting temperature, using from 64 to 
400 particles. The scaled three-dimensional simulation results, 
at corresponding density and temperatures, are shown as solid 
squares. The melting temperature of the thrce-dimensional crys­
tal was assumed to be O.012Kd5/K, and the required reduced 
temperatures were obtained by interpolating the data in Table 
IV. The beryllium data from Asay et al., Wallace and Grady's 

none~uilibrium shock waves. The low-strain-rate data 
(10- 0 < Ed leT < 10-6) are taken from weak shock-wave 
experiments (21-89 kbar) , where the change in thermo­
dynamic state is small. The temperature, 300-400 K, 
corresponds to about one-third the melting temperature of 
aluminum. The agreement between these results and our 
0.3Tm line is good. The high-strain-rate results are from 
strong shocks (-1 Mbar) where the thermodynamic state 
is not well specified. The discrepancies between Wallace's 
and Grady's less sophisticated estimates, from the same 
experimental profiles, reflect the difficulty in estimating 
shear stress from measured longitudinal profiles. Asay's 
calculations for beryllium1 likewise include some uncer­
tain approximations. The upper bounds for shear stress, 
computed for aluminum, copper, and iron by Chhabildas 
and Asay,2lie well above our low-temperature line. 

The approximate methods used to estimate shear stress 
in Refs. 3 and 4 are oversimplifications of complex phe­
nomena, but they represent the best available experimental 
description of the dependence of shear stress on strain 
rate. The agreement between these results and the simula­
tion data suggests that a common explanation of high­
strain-rate plastic flow (strain rates exceeding 10 kHz) can 
be obtained from an analysis of the two-dimensional simu­
lation results. 

m. THEORY 

We consider a simple model of plastic flow, a 
two-dimensional "gas," of point dislocations, propagating 
in an elastic continuum at constant strain rate and iem· 
perature. In this model, free dislocations can be Iludeated 
from bound pairs, by an external stress fkId. We use :i 

simplified but fundamentally similar to that 
used by Bruinsma et al,12 to calculate the nucleation rate 
at constant stress. In addition, we consider the effect of 
stress fluctuations, which can increase the rate of recom­
bination of free dislocations into bound paig, InclIlsion of 
these stress fluctuations is essential to bring the predic­
tions of this model into agreement with the simulation re­
sults. 

A pair of dislocations on the same plane with 
Burgers vectors (±b,O), subject to an external shear stress 
ax>, =a, move in a potential 

<P(r)=2<Pc+Db 2[ln(rlb)-lJ-abr; 

where <Pc is the core energy_ This equation, which can be 
derived from continuum elastic theory, has been validated 
by atomic simulations.9 The potentiai has a maximum 
when r =Dbla, and therefore, the rate of nudeation of 
free dislocations from bound pairs can be calculated from 
an Arrhenius rate law, 

R + a: exp( - <PmaxlkT) a: 

A more sophisticated calculation, including the change in 
potential when the dislocations are not on the same glide 
plane, leads to the same dependence of the nucleation rate 
on shear stress.12 

At steady state, the nucleation rate is equal to the 
recombination rate 

estimates for- aluminum, and Campbell's older low-strain-rate es­ R_c:=:XcvPb~cv(i:lbv)2 , 
timate are shown. The uncertainty in the slope of the lines is a 
few percent. where Xc is the capture cross section proportional to 

http:stress.12
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0'-1.12 Since Db 2 »kT, this model predicts a stress­
strain-rate relation of the form 

2ua: i;2kTIDb 

whereas the observed power is 3kT/Db 2• This discrepan­
cy may be due to stress fluctutations caused by the time 
delay in transmitting plastic strain from a moving disloca­
tion. 

Plastic strain is initially generated as a discontinuity in 
the displacement field, localized behind the moving dislo­
cation. It spreads out as shear waves at a rate determined 
by the transverse sound speed. The plastic strain is 
transmitted over a distance comparable to the mean 
separation between dislocations, approximately pi)1/2, 
with a corresponding transmission time of CT Ipi)1I2 
Thus the characteristic frequency (f) and amplitude Au of 
the stress fluctuations are 

(f)~cT(€!bv)1/2 0::. (6)1/2 

and 

AU~TJ€/(f) a: (6)112 . 

The stress fluctuations in this picture are sawtoothed rath­
er than sinusoidal. The shear stress rises linearly in time, 
until it is sharply reduced by a passing dislocation. 

At low strain rates the average spacing between disloca­
tions pi)1I2 is much larger than the capture cross 'section 
Xc' Recombination takes place via dislocation motion, re­
sulting in the expression given earlier for the recombina­
tion rate. At high strain rates when the dislocation densi­
ty is relatively large, the average spacing is comparable to 
the capture radius. It is possible that under these condi­
tions, recombination occurs, predominantly after a passing 
dislocation has reduced the local stress, thus increasing the 
effective capture area. Thus recombination becomes a 
"three-body" process at high strain rates with a rate pro­

lL. M. Barker, in Behavior ofDense Media Under High Dynamic 
Pressures (Gordon and Breach, New York, 1968), p. 483. For 
a review of earlier work, see J. C. Campbell, Mater. Sci. Eng. 
.12, 3 (1973). 

2L. C. Chhabildas and J. R. Asay, J. Appl. Phys. 50, 2749 
(1979). J. R. Asay, L. C. Chhabildas, and J. L. Wise, in Shock 
Waves in Condensed Matter'-1981 (Menlo Park), Proceedings 
of the Conference on Shock Waves in Condensed Matter, edit­
ed by W. J. Nellis, L. Seaman, and R. A. Graham (AlP, New 
York, 1982), pp. 417 and 427. 

3D. E. Grady, Appl. Phys. Lett. 38, 825 (1981); D. B. Hayes 
and D. E. Grady, in Shock Waves in Condensed Matter-1981 
(Melno Park), Proceedings of the Conference on Shock Waves 
in Condensed Matter, edited by W. J. Nellis, L. Seaman, and 
R. A. Graham (AlP, New York, 1982), p. 412. 

4D. C. Wallace, Phys. Rev. B 22, 1477 (1980); 22, 1487 (1980); 
M, 5597 (1980; M, 5607 (1981). See also P. W. Bridgman, 
Rev. Mod. Phys. 21,56 (1950). 

SA. 	 H. Cottrell, Dislocations and Plastic Flow in Crystals 
(Clarendon, Oxford, 1953); F. R. N. Nabarro, Theory ofCrys­
tal Dislocations (Clarendon, Oxford, 1967); Dislocation 

portional to Pb, leading to the stress-strain-rate relation 

ua: i:3kT /Db 1 

observed in the simulations. 

IV. DISCUSSION 

In this work we have presented numerical results for 
high-strain-rate steady Couette flow in simple crystalline 
solids. The results have only a small number dependence 
for unit cells greater than SO atoms, and we have found an 
unambiguous power-law dependence for the shear stress 
on strain rate in two-dimensional crystals. The power is 
of the noninteger type, varying approximately linearly 
with temperature up to a maximum of just over 0.5 at 
melting. The power is 1 in "Newtonian" liquids, and 0 in 
perfect plasticity. It is intriguing and probably significant 
that the power varies almost exactly as 3kT/Db 2• 

Development of our qualitative explanation of this obser­
vation presents an interesting theoretical challenge. 

We have found a simple scaling relation linking our 
computer-simulation results to estimates based on experi­
mental shock-wave data. Both simulation and experimen­
tal data closely obey this corresponding states principle. 
This strongly suggests a universal mechanism for high­
strain-rate flow in close-packed structures, independent of 
dimensionality force law or impurities. It would be of in­
terest to develop plastic constitutive laws based on these 
simulation results. 
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