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The energy and entropy of interacting edge dislocations have been calculated by atomis­
tic simulations, with the use of piecewise-linear forces in a two-dimensional triangular lat­
tice. We conclude that the interaction energy between small groups of dislocations is well 
described by continuum mechanics for separations greater than a few lattice spacings. Our 
calculations enable us to make a precise determination of the core energy, which is an 
essential parameter in determining dislocation multiplication rates. We find also that con­
tinuum mechanics gives an accurate representation of the interaction of a dislocation pair 
with a homogeneous elastic stress field. The vibrational contribution to the entropy of such 
a pair is small, about O.3k. 

I. INTRODUCTION 

Plastic flow occurs, plimarily, through the 
motion of edge dislocations. The importance of 

dislocations in plastic flow stems from their mobili­

ty, and low energy of formation, which makes it 

possible to create large numbers of them during 

plastic deformation. However, there has been little 

theoretical attention paid to these two properties, 


. despite the scientific and technological interest in a 

quantitative understanding of the relationship be­

tween dislocations and plastic flow. 

Phenomenological models calculate the "plastic 
strain rate" in terms of the density, velocity, and 
mobile fraction of dislocations. I The parameters in 
these models are not directly related to the proper­
ties of individual dislocations, but are determined 
by fitting the predictions of the model to experi­
mental data. This approach has been successful in 
correlating experimental data, but only by using dif­
ferent constitutive laws for different strain-rate re­
gimes. Consequently, the predictive power of these 
models is limited. In addition, these theories have 
been unable to explain, consistently, the large plastic 
relaxation observed behind weak shock waves in 
TiF single crystals.2 . 

.Jc elastic .theory of dislocations3 is insufficient 
for a complete description of plastic flow. It 

predicts stress-field divergences in the dislocation­
core region, where a precise knowledge of the finite 
forces is necessary for a quantitative description of 
dislocation creation and annihilation. Although the 
release of elastic strain energy is the driving force 
for dislocation motion, an effective mass of a dislo­
cation cannot be calculated from first principles. 
The equations of motion of dislocations must, 
therefore, be determined from computer simulation 
or etch-pit experiments. l These results indicate that 
dislocations accelerate extremely rapidly to a con­
stant velocity characteristic of the local stress. The 
time spent in nonuniform motion is short, typically 
a few Einstein vibrational periods. For dislocations 
traveling at one-half the transverse sound speed, 
this corresponds to a distance of about one lattice 
spacing. 

Calculation of the atomic displacements in the 
dislocation core is difficult, even in the linear ap­
proximation. Early efforts are exemplified by the 
peculiar Frenkel-Kontorova model and the more 
realistic Peierls-Nabarro mode1.3,4 Recent efforts 
have concentrated on the analytically more tractable 
screw dislocation.5 Edge dislocations are 
mathematically more complicated, but they dom­
inate plastic flow in three dimensions as well as be­
ing the only type of dislocation that can exist in two 
dimensions. 
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The advent of fast computers has made it possi­
ble to study the properties of a small number of 
dislocations exactly. Computer simulations have 
been used to study the core structure of edge dislo­
cations in the triangular6 and face-centered-cubic 
latticGs,c\,7 dislocation glide and climb,6 and the in­
teraction between pairs of dislocations. S Computer 
simulations are limited to regions less than 100 
atomic spacings wide and to times less than 105 vi­
brational periods. The resolution of experimental 
shock-wave physics is limited to lengths and times 
that are somewhat larger than atomic spacings and 
vibration periods.9 These two classes of experiment 
are thus complementary, so that achieving correla­
tions between them can lead to an increased under­
standing of plastic flow in real materials. Compar­
isons between microscopic molecular dynamics and 
macroscopic Navier-Stokes simulations of strong 
shockwaves in dense monatomic fluids have already 
been made. lO The equation of state and the trans­
port coefficients used in the Navier-Stokes solution 
were obtained by molecular dynamics simulations 
as well. The results of the two calculations were in 
encouragingly good agreement, even for strong 
shocks that result in fjnal densities of twice the ini­
tia\ triple-point density. The absence of a solid-flow 
equivalent to the Navier-Stokes equation is a serious 
hindrance to studies of plasticity. 

As a first step towards understanding plastic flow 
at high strain rates, we have carried out molecular 
dynamics simulations of simple crystals undergoing 
steady isothermal shear. I ! From these calculations 
we obtain constitutive equations for the stress and 
energy as a function of plastic strain rate and tem­
perature. Most of these simulations involved the 
two-dimensional triangular lattice described below, 
but some calculations sheared a three-dimensional 
close-packed lattice. In both cases piecewise-linear 
forces were used. It seems implausible that plastic 
flow can depend in a fundamental way on such de­
tails as the crystal structure or interatomic force 
law. We have found that the shear stress in both 
two- and three-dimensional crystals is well 
represented by a power-law dependence on strain 
rate of the fonn (]' 0:: EP, where E is the strain rate. 
The parameter p is temperature dependent. At low 
temperatures p -0.1 where the flow is close to be­
ing perfectly plastic and near melting p ~ +. Such 
power-law dependences of the stress on strain rate 
are often observed experimentaUy,u There is semi· 
qll:1ntitative agreement between the results of the 
computer simulations in both two- and three­
dimensions and experimental results deduced from 
strong shock waves in aluminumY Although there 

has been considerable theoretical eff0I1 devoted to 
theories of plastic flow based on dislocation 
motion,I4 there have been few quantiative results 
that can be compared with experiment. A notable 
exception is the work of Weme,I5 which incor­
porates a dislocation-based model of plastic flow 
into continuum solid-mechanics simulations of sim­
ple mechanical tension tests. We are investigating 
the applicability of dislocation theory to computer 
simulations of plastic flow at high strain rates. A 
necessary preliminary is the ability to describe the 
energy and stress of crystals containing dislocations. 
This is the subject of the present paper. 

Plastic flow in the triangular lattice incorporates 
the creation, interaction, motion, and annihilation 
of crystal defects without the geometrical complexi­
ties involved in three-dimensional crystals. The 
possible dislocation reactions in the triangular lat­
tice are illustrated in Fig. 1. This geometrical sim­
plicity together with the elastic isotropy and 
mechanical stability with just near-neighbor forces 
makes this lattice ideal for initial studies of plastic 
flow. 

It has been found that linear forces .result in 
small, stable dislocation cores with large Peierls 
strains.6 This means that stable dislocation pairs 
can be created at small separations (four or five lat­
tice spacings), and the results of atomic and contin­
uum mechanics compared. In view of the size limi­
tations of atomic calculations this is a very desirable 
feature. By comparison, use of the Lennard-Jones 
potential results in extended cores and much small-
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FIG. 1. Dislocation reactions in a triangular lattice. 
There are three glide directions in a triangular lattice 
orientated at angles of 120", 240., and 3600, and thus six 
orientations for edge dislocations. The dislocation reac­
tion matrix is shown on the left-hand side of the figure. 
The reaction call proceed in either direction. A zero indi­
cates that it is not a geometrically possible reaction and a 
blank space indicates a perfect lattice. The right-hand 
side shows dislocation production in a sheared crystal. 
The direction of the shear is the one that is most favor­
able for the reactions. shown. The arrows on the disloca­
tions indicate the direction of glide of the dislocations if 
the external shear is larger than the attractive force be­
tween the pair. 

.L >-

Bo 0 'y c.( 0 

.Lo 0 (/ r 
o 0 T 

l' . -\ 
T 0-< 

0 

-\ 
[:]--[:]

o .L o 0 

s" 
dence .he 
soft linear fo 
law, 

¢(r)= 1­

f 

where do is 
free lattice, ; 
value of w· 
bond in the 
free bounda,:, 
this lattice (. , 
lated.16 

Accordinf 
two-dimensi \ 
isotropic con 

E=nE, 

when' 
given in ten,; 

For the tria:; 
the Lame CCJ 

7l=(~~1 

A=(V~~, 

where p is t':" 
sity. 

The to' ' 

served du' 
the term [; j, 

mation ar:<:: 
Fnrthermor~' 

are not ind~' 

mary purpo: 
the elastic th 
ameters, and 
value for tl: 
angular latti, 

Our calcul 
cations in a 1 
(Fig,~' Th, 
finiL __ t ;: 

an accurate ( 

i 

http:lated.16


5471 ENERGY AND ENTROPY OF ... 

strains. In addition the number depen­
::i. ;Jf the propagation velocity is reduced with 

linear forces..6 We use piecewise-linear force 
,('I

1_1'1) 


[+K(r d c,j2_KU'=. :;do u; 

\--...1.-I(r do 2w)2, 

I 
o( r) • 2 

do+w <r :;do+2w (1) 

0, do+2u: r 

here do is the interatomic distance in the strain­
~·c lattice, and K is the force constant. We use a 

,due of w =0.15do1 corresponding to one broken 
",md in the dislocation core of a lattice with stress­
.tee boundaries.6 The thermodynamic properties of 
b,S lattice over a range of densities have been caleu­

:ated. 16 

,A,ccording to linear elastic theory, the energy of a 
-,/o-dimensional array of n edge dislocations in an 
:,otropic continuum at constant pressure is 

E nE -I-D 'C' [-Cb··b.)ln(r .. /b)C'.£j I J IJ 
i>j 

(2) 

" Ec is the core energy of a dislocation and D is 
given in terms of the Lame constants by 

For the triangular lattice with Hooke's-law forces, 
;he Lame constants are given by16 

'I] (V3/4)(4-3pIl2) , 
(3) 

A=(V3/4)(SpI/2_4) , 

where p is the density relative to the stress-free den­
sity. 

The total Burgers vector ~~= 1hi is con­
sen·ed during plastic deformation. Consequently, 
the term B III V is unchanged during a shear defor­
mation and is, therefore, not included in Eq. (2). 
.Furthennore, the core radius rc and core energy 
;lre not independent. We choose rc =b. The pri­
ilary purpose of this work is to test the validity of 
~he elastic theory at separations of a few atomic di­
~:metcrs, and to determine, if possible, a consistent 
,alue for the core energy in the Hooke's-Iaw tri­
:~ngular lattice. 

Our calculations use groups of two or three dislo­
,:ations in a triangular lattice arranged so that B =0 

2). The strain energy is small, and tends to a 
,.c limit as the crystal gets large. This permits 

;m accurate detemlination of the core energy, which 

FIG. 2. Periodic arrays of dislocations. The upper 
half of the figure shows seven cells of the infinite period­
ic array. The dislocation separation is indicated. The 
lower half of the figure shows typical arrangements in 
fully relaxed unit cells. 

is typically an order of magnitude larger than the 
interaction energy. The displacement fields ob­
tained from elastic theory are not unambiguous, but 
depend on the short-range and long-range boundary 
conditiolls.4 We therefore use periodic boundary 
conditions, ",ith a hexagonal unit cell, which is su­
perior to a rectangular one, because the latter intro­
duces an N-dependent elastic anisotropy. Typical 
arrangements of dislocations are shown in Fig. 2. 

Most atomic simulations have focused on details 
of the core structure in various crystals containing a 

7single dislocation.4
• The energy of such crystals 

divt'rges logarithmically with system size and con­
tains a constant term that depends 011 the exact na­
ture of the imposed boundary conditions. It is not 
possible, therefore, to determine a core energy from 
such a calculation that can then be used to charac­
terize the energy of a plastically flowing crystal. 
More recently, a core energy has been estimated 
from simulations of pairs of dislocations in the 
two-dimensional electron solid.8 The core energies 
obtained from the various pair arrangements were 
not very consistent, varying by factors up to 1.6. 

Our calculations involve several different system 
sizes, ranging from about 102 to 10J atoms, for the 
same dislocation arrangements. The arguments 
given in Ref. 8 predict that the energy N depen­
dence will vary as. N - I, where N is the number of 
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atoms. This means \YC can extrapolate our results 
to the limit and estimate the errors in 
doing so. In addition, we have used elastic theory 
to estimate directly the effects of the pel;oclic boun­
dari~" on energy of smnl1 

II. RESULTS 

A. Relaxation 

The initial conditions were obtained by using the 
results of elastic theory for the displacement fields 
around a dislocation.3 The location of each disloca­
tion was chosen to minimize the displacements in 
the core The two arrangements used are 
shown in 2. For the triangular arrangement, 
the boundary eonditions require the remo­
val of a small number of atoms. We then adjusted 
the volume to maintain a constant density, as this 
resulted in smaller number dependencies. 

.The relaxation was carried out using the equa­
tions of motion of a damped harmonic oscillator. 

(4) 

For a single oscillator of frequency wo=(Klm)1/2, 

the optimal value of the damping factor A is Wo, 
which results in exponential damping. For a collec­
tion of oscillators, 'A is chosen to damp the low­
frequency modes. We have found, empirically, that 

where L is the number of atoms on the 
side of the hexagon, is a suitable choice, 

We used Verlet's scheme, which for damped 
equations of motion is 

(x + -Xo [(xo-x)( l-),LH} 

+ (Folm)6.t 2 ]1( 1 +AAt) , 
(5) 

Va (x + )(26.t) , 

with a time 6.t =0, 1wo '. Typically 103 time 
steps were required to reduce the magnitudes of the 
forces to less than 1O-8K do. 

of dislocation pairs and tripletsB. 

Preliminary calculations were carried out at the 
strain-free density, p (V3/2)Ndt,IV 1, with a 
pair of dislocations, of opposite sign, on the same 
glide plane, at a separation of 6do [Fig. 2(a)]. Crys­
tals with 6, 7, 8, and 10 atoms on a side were used, 
corresponding to uuit cells of 108, 147, 192, and 
300 atoms. Both periodic and stress-free boundary 

conditions were used as a numerical check of the 
extrapolation procedure. Linear extrapolation gave 
infinite-system for the pair E (6do) of 
0.256Kd~ and 0.252!(d~ for the stress-free <md 
periodic In order to obtain 
more accurate extrapolated results at the p 
of 1.1, crystals of up to 972 atoms per unit cell were 
used, together with polynomial fits. 
The errors were estimated from the of 
the extrapolated energy derived from the 
fits. 

The energies of various arrangements of disloca­
tions in different sized systems are shown in Table 
1. From the initial conditions that we used, it was 
impossible to obtain relaxed configurations with 
dislocations pairs closer than 6d, where 
dldo=p--1/2, nor was it possible in the two small­
est systems to obtain relaxed configurations with 
dislocations pairs at 12d, A plot of energy vs liN 
is shown in Fig. 3 for pairs of dislocations at 
separations between 6d and 12d. It can be seen that 
the energy is essentially linear in liN with small 
corrections from higher-order terms. The N depen­
dence is large and varies strongly with the disloca­
tion separation and arrangement. For the triangu­
lar arrangements, the N dependence has the oppo­
site sign to thai for the pair arrangements. Thus, 
unless the N-dependent contribution can be calcu­
lated accurately, it is essential to extrapolate the 
dislocation energies to the infinite-system limit be­
fore making comparisons with elasticity theory. 

For all the pair configurati01ls, the data is almost 
exactly fitted by a quadratic polynomial in liN. 
The extrapolated energies are consistent to within 
the error bars with thos~ obtained from higher­
order polynomial fits. In 3 we show the linear 
(liN) deviations from the infinite-system 
based on the polynomial fits. The quadratic devia­
tions are significant for crystals less than about 500 
atoms. The results at 12b are much less precise, 
and the error bars in this case may be underestimat­
ed. The N dependence is largest for this system and 
we only have results for three crystal sizes. For the 
triangular arrangement, the agreement between the 
quadratic and higher-order fits is not as good espe­
cially when r =:= 8b. The error bars are consequently 
larger. Our estimates of the extrapolated energies, 
together with probable error bars, are shown in 
Table II. 

Some crystals were relaxed in the presence of a 
homogeneous external shear strain E by applying a 
volume-consenring displacement x -}X +EY to each 
atom in the lattice. We usc pairs of dislocations at 
separations of 2d and 4d, and crystals of 75, 108, 
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TABLE 1. Energies of dislocations in finite-size crystals. The subscripts 2 and 3 refer to 
the pair and triangular arrangements. The dislocation energies are given rdative to the energy 
of a perfect lattice at the same density, p= 1.1. 

rib 

4 

6 192 0.263837 
243 0.256528 
300 0.251534 
432 0.245366 
972 0.238204 

8 192 0.314571 
243 0.300 136 
300 0.290196 
432 0.277 979 
972 0.264164 

10 192 0.370070 
243 0.347639 
300 0.331203 
432 0.310391 
972 0.286824 

12 300 0.375462 
432 0.344854 
972 0.308297 

0.35 

0.30 

0.25 

972 

c 2 

1000lN 

FIG. 3. Energies of dislocation pairs in finite-size 
stals with p= 1. L The straight lines correspond to 

our estimates of the linear (I IN) deviations of the ener­
of a dislocation pair from the infinite-system result. 

N3 
...._------­ --..--........--~~-

184 0.428354 
292 0.449681 
424 0.460448 
964 0.473073 

180 0.398712 

288 0.449432 
420 0.475175 
960 0.504713 

176 0.333342 

284 0.417497 
416 0.464 665 
956 0.519717 

and 192 atoms. We found that the energy of a pair 
of' dislocations is a linear function of the applied 
strain, within O.OOlKd~, with a coefficient that is 
only weakly dependent on the number of atoms in 
the crystal. These coefficients, together with the 
range of shear strains for which the pair is stable, 
are summarized in Table III. The almost complete 

TABLE II. Energy of interacting dislocations. These 
energies are obtained by extrapolating the dislocation en­
ergies of finite-size crystals. The error bars are estimated 
from the consistency of different polynomial fits. The 
asterisks indicate that these energies were obtained by 
first extrapolating results in homogeneously strained 
crystals to zero strain (see Table Ill). 

rib 

2 0.147 ±0.00l * 
4 0.200 ±0.00l * 0.4825±0.OOO5 
6 0.2330±0.0001 0.526 ±O.OOI 
8 0.2545±0.OOO5 0.560 ±0.OO4 

10 0.270 ±0.002 
12 0.281 ±O.002 
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TABLE III. Energy of dislocation pairs in a homogeneous strain field. The energies shown 
here are obtained by extrapolating the results for crystals that are homogeneously sheared, 
x'=x +EY, with a shear strain E, which varies over the range em;n to Em3x• All the results can 
be fitted within 0.OOlKd6 by an expression of the form E 2(E)=Er t-l::.E 2E. Elastic theory 
predicts that l::. -7]br, which corresponds to coefficients of -0. 672J.:dA and -1.34Kd6 for 
r =2b and 4b, respectively, At this density p= 1. 1, the Lame constants are 11 0,37(h: and 
A=0.539IL D (2)J i" 0.0836K. The interparticle spacing d=bc,O. 953do. 

rib N2 

2 75 
108 
192 
00 

0.1546 
0.1520 
0.1496 
0.147 

4 75 
108 
192 
00 

0.2389 
0.2263 
0.214578 
0.200 

absence of N dependence in these results indicates 
that the shear modulus of the cold crystal is essen­
tially u1laffected by dislocation densities of 1% or 
less. We can extrapolate the dislocation-pair ener­
gies to zero strain even for arrangements that are 
unstable at zero strain. Since the N dependence of 
the interaction energy is relatively small at these 
separations, we can obtain reasonable estimates of 
the energies of these arrangements in the infinite­
system limit. These results have been added to 
Table II. 

A graph of the variation of energy per dislocation 
with In(r /b) is shown in Fig. 4. The straight lines 
correspond to the best fits that can be obtained with 
the slope -Dbj'bz derived from elastic theory. In 
fitting these lines a larger weight was given to the 
points that were determined more accurately. For 
both the pair and the triangular arrangements, the 
data is consistent with these straight lines to within 
the errors involved in extrapolating to the large­
system limit, which is always less than 1%. The 
two lines are parallel and represent an energy differ­
ence, (1/3)E 3 -( 112)£2, of 0.060Kd6. Elastic 
theory predicts a constant difference of O.057Kd5 
[Eq. (2)]. The core energies resulting from the two 
calculations are in good agreement, also; 0.086Kd6 
and O.089xd5 for the pair and triangular arrange­
ments, respectively. Given this value for the core 
energy, elastic theory can be llsed to calculate the 
energy of an array of n interacting dislocations in 
an infinite system, with an accuracy of order 
1O-3nKd5. Reference 8 describes the difficulties in­
volved in extending this calculation to dislocations 
in finite periodic crystals. Our direct calculation:> 
have resulted in core energies for nine different ar­

l::.E2 Emin Emax 
~-.-~- -.-~..~~ 

-0.645 0.10 0.22 
-0.645 0.08 0.20 
-0.645 0.08 0.20 
-0.645 0.08 0.20 

1.34 0.02 0.22 
-1.335 0.02 0.20 

1.327 0.00 0.18 
-1.32 0.00 0.16 

rangements that are consistent within 2% of 
0.087Kd5. 

A dislocation moving in a stress field releases 
stored elastic energy, which is converted into heat. 
The homogeneous nucleation of a pair of disloca­
tions is assisted by an applied shear stress, which 
reduces the energy of the pair by an amount bur, 

0.20 
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0.10 
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o 1.0 2.0 
In (r/bl 

FIG. 4. Energies of dislocation groups with p= 1. 1. 
This figure shows the extrapolated energies per disloca· 
tion as a function of separation. The straight lines corre­
spond to best fits consistent with the slope (0.0380) 
predicted by elastic theory. The intercepts are consistent 
to within 0.002Kdl with a core energy per dislocation of 
0.087Kd5, 
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,i.h~!·e r is the separation of the pair. The stress a is 
'lernal shear stress, resolved along the glide 
of the dislocation pair. In our atomic calcula­

tions, the "external shear stress" results from the 
x--+x +E)" so that 0/=1]6. The coeffi­

L\J~'2' of the stain-dependent energy, defined 
l,i Table III, is 217b2 and -41Ib2, according to 
"hstic theory, for dislocations at separations of 2b 
,,,leI 4b, respedively. 

The actual coefficients determined from the 
calculations are 1. 9271b 2 and 3. 931]b 2. 

the continuum theory results in a quantitative 
.;:llculation of the energy of groups of dislocations 
;n the presence of external stresses. The only 
parameter in this calculation is the core energy 
which has been determined for Hooke's-law forces 

O.037Kd6 =O.261]b 2• 

This paper has described a computational 
with which the energies of small groups of 

dislocations can be aecurately determined. Our re­
sults are in good agreement with elastic theory and 
r,~sulted in a core energy that is accurate to about 

It should be emphasized that this accu­
racy is a minimum requirement for the quantitative 
prediction of dislocatiOi~ multiplication rates in 
r:rvstals undergoing plastic flow, which typically 

"s at tern peratures in the range 
O.V05-0.01Kd6IkB' In the last two sections, we 
examine the applieability of elastic theory to calcu­
lations of the energy and stresses of dislocations in 
finite-size crystals. 

C. Entropies of dislocation pairs 

We have determined the entropies of 75­ and 
In-atom crystals containing a pair of dislocations 
at various separations, and with various external 
shear strains. The entropy is evaluated from the 
determinant of the force-constant matrix.17 Two 
tOWS and two columns were deleted to remove the 
zero-frequency translational modes and the deter­
minant was evaluated by Crout factorization. 18 The 
entropy of a pair of dislocations is then given by 

J ++ ++ 
.1S'v;blk = -iln(det IF~ Iidet IF' i ) , (6) 

where j,"':~ and }if are the perfect-crystal and 
dislocated-crystal force constant matrices, with two 
rows and two columns deleted. A useful check on 
the results is that they are independent of which 

'$ and columns are deleted. 
he vibrationai entropy of a pair of dislocations 

(Table IV) is almost independent of the number of 

TABLE IV. Entropies of dislocation pairs. The entro­
py change~ due to the presellce of a pair of 
dislocations, a distance r apart, computed at a density 
p 1.1 using Eq. (6) of the text. 

rib '" N2 t:.S,;blk 

2 0.10 75 0.1800 
192 0.1795 

0.20 75 0.1972 

4 0.00 192 0.2280 
0.10 75 0.2627 

192 0.2672 
0.20 75 0.2921 

6 0.00 192 0.2563 

8 0.00 192 0.2729 

10 0.00 192 0.2849 

atoms in the crystals. This suggests that the fre­
quency shifts are confined to modes that are local­
ized around the dislocations. The entropy is weakly 
dependent on a homogeneous shear strain, varying 
by less than 2% for a 1 strain. It increases slowly 
with increasing separation of the dislocation pair 
and appears to be approaching a constant value of 
about. O. 3k at large separations. The vibrational en­
tropy of a dislocation pair is usually negative, but 
with Hooke's-law forces the elastic moduli decrease 
under compression resulting in a positive entropy. 
The melting point of the triangular lattice is about 
1O-2(Kd5Ik),14 and so the vibrational entropy mul­
tiplied by the temperature (c:::.;O.003Kd6) is always 
small compared with the strain energy (=O.2Kd6). 

D. Stresses of dislocations in finite-size crystals 

A dislocation produces a macroscopic displace­
ment, proportional to the Burgers' vector and the 
d· t d 8 19 F . f d' I . .IS ance move . ' 'or a pall' 0 IS ocatlOns, 1Il a 
crystal with fixed periodic boundary conditions, this 
results in a shear strain, Exy = br IV-in our calcula­
tions we use the unsymmetrized strain tensor 

VIT, where IT is the displacement vector-and 
for the triplets a dilation, Exx = Eyy V3br 12V, 
where V = {V3 /2 )Nb 2. This dilatation corre­
sponds, exactly, to the number of atoms removed. 
Thus elastic theory predicts that there should be a 
shear stress for the pair arrancrement 
axy (271r lV3bN), with all other stresse; bein~ 
zero. These predictions are compared with results 
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TABLE V. Stresses of dislocation pairs and triplets. The stressC5 for each arrangement of dislocations were fitted by 
io liN. The best vatues for the linear {l IA') deviations of the stresses from the infinite·system limit are 

the 

NCT)!.yIK :\'a:u/K 

Elastic theory 
NUYJ-IK 

Pairs 6 
8 

10 
12 

1.21 
1.32 
1.4 
L4 

0.12 
0.13 
0.1 
OJ 

2.55 
3.40 
4.26 
5.10 

0 
0 
0 

0 

2.56 
3.41 
4.27 
5.12 

Triplets 1.39 
1.51 
1.6 

.39 

.51 

.6 

0 
a 
0 

a 
0 

0 
0 
0 

a 
a 
0 

from the atomic simulations in Table V. The shear make only a small contribution to the energy of 
stresses obtained from the atomic calculations are in dislocations in finitcwsized crystals. 
essentially exact agreement with elastic theory. The 
reasonably constant values of Na:u and Nay}, jndi~ E. Energies of dislocations in finitt~size crystals 
catc the presence of a core stress, proportiona! to 
b'IN, in the range 0.7 <N"bbiK < 1.0. These core Elastic theory can be used to calculate the energy 
stresses~ which are absent from the elastic theof)' of dislocations in finite~size periodic crystals.8 

The core energy in an arniniSement of n dislocations is given by 
obtained from atomic calculatior:s (Table I); ELS is the sum of the palr energies 

is the shear 

4 192 0.025027 0.086692 	 184 0.169239 0.086372 
292 0.186215 0.087822 
424 0.195245 0.088401 
964 0.206401 0.088891 

0.0891 
192 0.053798 0.086833 180 0.155962 0.080917 
243 0.054198 0.086795 
300 0.054751 0.086752 288 0.195614 0.084606 
432 0.055851 0.086674 420 0.216643 0.086177 
972 0.057924 0.086548 960 0.242137 0.087525 

0.0864 O.osS 
192 0.076808 0.086549 176 0.105611 0.075910 
243 0.075879 0.086582 
300 0.075612 0.086599 284 0.174504 0.080998 
432 0.076067 0.086586 416 0.213 076 0083863 
972 0.078409 0.086491 956 0.259973 0.086581 

0.0864 	 0.088 
10 	 192 0.096049 0.086491 


243 0.095041 0.086383 

300 0.093771 0.OS6384 

432 0.092621 0.086432 

972 0.094041 0.086412 


0.0864 
12 	 300 0.109719 0.086313 


432 0.107631 0.086279 

972 0.106891 0.086333 


0.0864 



5477 

',led by 
;nit are 

2,56 
HI 
4,27 
S.i2 

o 
o 

fY of 

:: by 
f:::-gies 

;':372 
r- 522 
1,541)1 

" 891 
IS: 
[ 917 

E:-IERGY A'iD E~TROPY OF , , 

These energies are useful in attempting to under­
stand. quantitatiHly, the role of dislocations in 
computer simulation'; of plastic £10\\ in smail crys­
tals. The period:.c energy caku1adons may also lead 
to more accurate core energ.ies by estimating the 
number dependence of the dislocation bteraction 
energies, For a crystaj \v:th periodic boundaries. 
the energy sum in E,g, (2) must all 
images. We use the Ewald 
the Appendix, to e\,'alUa1t these lattice sums. In ad· 
dition, there is typically an er::ergy from the 
macroscopic deformations caused by disloca· 
tions, The energy due to the average shear stress 
caused by a pair of dislocations is 

(il 

\Vhen atoms are remo\·ed to accommodate disloca­
tions) the density changes. Thus. for the iriangular 
arrangement, there is an ambiguity in assigning the 
themlOdynamic state. \Ve use the density of the 
crystal with dislocations (Le., p= L I) to calculate 
the elastic constants. The Burgers vector is chosen 
so that the periodic repeat distance is an integer 
multiple of iL Different chokes do not affec! the 
extrapolated values of the core energy. but change 
the core energies for small crystals by about 
O,()()SKd5, The results are collected in Table VI, 

For the pair arrangement, the core energ.ies are 
spread over a narr~)w range of O.fXXJSKd5. The 
smaH number dependence of these core energies 
shows that elastic theo!")', adapted to finite-size 
periodic crystals, works remarkably weH, even when 
the dislocation separation is comparable to the 
periodic repeat distance. The lattice sum of the 
dislocation energy E LS is not a simple function of 
the number of atoms in the crystal. In particular. 
(aELs/aN), changes sign when the dislocation 
separation is half the repeat distance, This t..\plains 
the small inconsistency when r = 12b in the energy 
obtained by direct ntrapo]ation of the simulation 
results. For the triangular arrangement, there is 
significant number dependence in the core energies 
associated with the slightly arbitrary thennodynam­
ic state. The discrepancies are an order of magni­
tude smaller than those reported by Fisher el at! 
for the two-dimensional electron crystal. 

The core energies for the various size systems. 
have been extrapolated to the large·!\' limiL For all 
the pairS, the extrapolaled core energy is O.0864Kd~, 
For the triplets it is about O,088I(d5, This 
discrepancy could be due to nonlinear elastic ef­
fects. In particular the dlslocation separation in the 
triangular arrangement is not likely to be an integer 

r!lultiple of the Burge:-s Vector. The difference in 
core could b::: explained by shifts in the lo~ 
cation dislocations of about 0,1 b, 
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APPENDIX, DISLOCATION I~TERACTION 
E'iERGlES IN PERIODIC CRYSTALS 

The interaction energ.y, per unjt cell, of a periodic 
array of n dislocations, is 

E1.5 = ±!,EDd;i,bj;R-?ijl 
i>j ·It 

±!, Ej)ib"biiRJ, 
i R,/,D (All 

Epib"b,;r'J=D (-:b1'b1)]nlrlb), 

The 50m over R includes vectors linking lattice 
points ill the periodiC bexago:1al array, This set ?f 
vectors can be generated by writing R=njL1+n2Ll 
and summing over all integer values of n I and n l' 

The vectors L! and I2 are inclined at an angle of 
60' to each other and are of length V3L, where L is 
the side length of the hexagon. These vectors 're 
perpendicular bisectors of the sides of the hexagon. 

The series can be summed by decomposing lhe 
interaction energy ED into a short~range E < and a 
long-range E:> part, \Ve use the same choice for 
E < as Ref. 8, namely, 

E< =D I+lb,'b,)[E,(ar'Hln(ab'l+y] 

l 

I' (All 

where Ej(;d= f;xfil')(e-'/t)dl is the exponential in­
tegral function, and r is Euler's constant. The lat­
tice sum of E < is rapidly convergent, if a is of or­
der L ..~2, and is summed directly. The long-range 
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part is Fourier transformed and summed in recipro­
cal space. 

The reciprocal lattice is the set of vectors 
k fl1k1+n2kl' where kl and k2 are vectors of 
length 41113L,' inclined at an angle of 120° to each 
o~hcr. The sum of E > can be written as 

CR-Yl= 19L 2 ) 2: e~ir.-tE>(k), 
-r;tO 

(AJ) 

where E> (k) is the Fomler transform of E > (I''), 

(A4l 

In Eq. (A3), a factor (2/11'3) arises in transforming 
from oblique coordinates to the rectangular ones 
used in defining the Fourier transform [Eq. (A4)). 
The terms with k =0 callcel out when summed over 
a number of dislocations with a total Burgers vector 
of zero. 

The two-dimensional Fourier transfonn 
("Fourier-Bessel transform,,2o) of E> can be writ­
ten as 

E> d<')=D [1 ~1'b2)[g(k)+go(kJ+g2(k)] 
(bl 'k)(b2'k) 

(A5) 

where the scalar coefficients are integrals involving 
Bessel functions, 

g(k)=211 fa"'! [E j (ar 2 J+ln(ar 2 )+r] 

XJo(kr)r Jdr , 

(A6) 

Using the series expansion for the exponential in­
tegral function,21 we obtain an equation for g(k), 
a(ag/Cla) -go. Although the integrands in Eq. 
(A6) diverge as r·--+ 00, the integrals themselves are 
finite for nonzero k. Using the standard integrals 
tabulated in Ref. 22, we find that 

/ 4ago(k)=lo (11'la)e- k2
, 

gz (k) (411'Ik) fo 00 (l-e -ar
2 
)J I (kr )dr 

-go(k) 	 (A7) 

(411 Ik 2)(l +k 2/4a)e -k2/4a -10 , 

where all the diverging integrands are eontainedin 
the integral 

(AS) 

Thus collecting terms, we obtain for E> (k), 

(A9) 

This is the same as the expression given in Ref. 8 for the case b1=­

Useful checks of the analysis and the numerical procedure are that E LS is independent of a and reflects 
the periodicity of the unit cell. If rlL <<1, E LS can be approximated by Eq. (2). 
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