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Heat conduction in a rotating disk via non equilibrium molecular dynamics 
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Nonequilibrium molecular dynamics is used to study the conduction of heat due to a 
radial temperature gradient in a rotating two-dimensional disk of dense fluid. These cal
culations show that Coriolis's force contributes to the heat flux. 

I. INTRODUCTION 

Transport simulations of linear phenomena, such 
as Fick's-law diffusion, Newtonian viscosity, and 
Fourier heat conduction, are in good agreement 
with theoretical predictions based on the 
Boltzmann equation and the Green-Kubo theory. 
Less is known of the richer class of nonlinear prob
lems. Recent work has shown that some nonlinear 
problems, such as the propagation of strong shock 
waves in dense fluids, can be treated successfully 
using the linear transport theory. Because the non
linear theory is still in the process of development, 
microscopic computer simulations are particularly 
valuable for testing theoretical models and suggest
ing new approaches. See, for instance, the shock 
wave and shear flow simulations described in Refs. 
1 and 2. 

Up to now rotating molecular systems have not 
been simulated. But the attention of theorists has 
already been attracted to the coupling of diffusive 
processes with rotational accelerations in rotating 
systems. For example, the CorioHs accelerations, 
linear in the rotational frequency, and the centrifu
gal accelerations, quadratic in frequency, can cou
ple with gradients of momentum and temperature. 
Here we explore the simplest problem involving 
this coupling, the flow of heat in a rotating system. 
The microscopic equations of motion, solved in the 
"comoving" coordinate frame rotating with the 
material, reveal the dependence of the heat-flux 
vector and the density profile on the rotational 

motion. 
Several autbors3 have considered heat conduction 

in rotating disks from the two different theoretical 
standpoints, microscopic and macroscopic. Those 
favoring microscopic kinetic theory find that 
Coriolis's force should lead to an angular heat-flux 
vector component in the presence of a purely radial 
temperature gradient. Those favoring the macro
scopic continuum concept of "frame indifference" 
believe instead that the heat-flux vector (in a 
comoving frame) must be purely radial, as 
Fourier's linear law q = 'AVT predicts. These 
conflicting views have stimulated the present work. 

An experimental test of the conflicting predic
tions is made difficult by the extreme angular fre
quencies required. Perhaps real tour de force ex
periments could be carried out by using electric 
and magnetic fields to suspend and spin conducting 
microspheres. 

Lacking experimental evidence, we sought to 
satisfy the curiosity piqued by this apparent 
theoretical disagreement by applying a much more 
direct approach, solving the N-body problem nu
merically. In this work we simulate a dense-fluid 
system with a wholly radial temperature gradient 
to find out which of the two theoretical views 
agrees with that derived from Newton's equations 
of motion. 

We study a spinning disk, hot at the center and 
cold on the outer boundary. Despite the large fluc
tuations that characterize two-dimensional systems, 
the results indicate that angular accelerations do 
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influence the flow of heat so that the qualitative 
predictions of low-density kinetic theory are justi
fied in dense media. In the present paper we 
describe first our understanding of the conflicting 
theoretical predictions, next the numerical example 
chosen to test the relative merits of the predictions, 
and last the numerical results. 

II. THEORETICAL PREDICTIONS 

The Boltzmann equation correctly describes the 
transport of mass, momentum, and energy at low 
density provided that the gradients are sufficiently 
small and that the system under consideration is 
sufficiently large relative to the mean free path. 
Not only does Boltzmann's derivation of his equa
tion appear very plausible, but also the comparison 
of its predictions with experimental data provides 
strong independent evidence for the equations'S 
validity.4 Outside the regime of linear transport 
theory, Boltzmann's equation is not to be trusted. 
Kinetic theorists have recently shown that the Bur
nett coefficients describing flux contributions qua
dratic in the gradients are divergent, at least in 
principle.s For this reason we must view with 
suspicion the application of Boltzmann's equation 
to the nonlinear coupling of two different linear ef
fects, a temperature gradient, and Coriolis's force. 

The theoretical treatment of this coupling can be 
based on the relaxation-time approximation to 
Boltzmann's equation, as described in Mcquarrie's 
recent textbook. 6 For a motionless (nonrotating) 
but conducting disk composed of mass m particles 
at a temperature T with a radial temperature gra
dient dTIdr, the relaxation-time Boltzmann equa
tion 

(1) 

gives 

=1 ~ [[mV 
2 ]_41[dlnT] (2)

2 VrT kT dr'r 
This res lIlt is obtained by combining r functions 
corresponding to particles at local equilibrium a 
time of order T in the past. r is the equilibrium 
one-particle distribution function and T is the col
lisional relaxation time. For simplicity we ignore 
any dependence of T on velocity. In a frame rotat
ing counterclockwise at angular velocity ill, a parti
cle moving in the e direction has a radial Coriolis 

acceleration vr=2illVe. Thus, a particle now with 
Vr had, a time T previously, radial velocity com
ponent Vr-2illTV(}. To first order in ill, v2 is un
changed by Coriolis's forces so that the combined 
effects of temperature gradient and rotation give 

J' ~1-+(,,-2WTV,) [ [ ~~ ]-41 d!:T ] 
(3) 

The resulting e heat-flux component varies linearly 
with ill; 

q(} 
-2illT. 	 (4) 

qr 

Thus, the microscopic kinetic theory predicts a 
heat flux lagging behind the disk's rotation. 

The continuum view can lead to a different con
clusion. Continuum mechanics appears to be based 
upon a judicious mixture of mechanics, macroscop
ic thermodynamics, and intuition. The principles 
of the subject are that no material can violate 
known thermodynamic laws and that, under 
reasonable conditions, the results of experiments 
should not depend upon the time of the experiment 
or upon the coordinate frame from which that ex
periment is observed. If a macroscopic body obey
ing Fourier's law q = AVT is viewed in a comov
ing coordinate system, rotating with the body, the 
"principle of frame indifference" suggests that 
Fourier's law is still obeyed, so that a radial tem
perature gradient can excite only radial heat flow. 
On the other hand, microscopic Newtonian 
mechanics implies that Coriolis's force causes 
field-free particles to follow curved trajectories. 
From the macroscopic standpoint of continuum 
mechanics the microscopic motion is simply a part 
of the internal energy. There is no macroscopic 
motion in a comoving frame so that no Coriolis's 
phenomena can occur. 

III. 	 MICROSCOPIC FORMULATION OF ROTATION 
AND HEAT FLOW 

The mechanics of rotation was described by G. 
G. Coriolis7 0792-1843, a French mathematician 
and professor of mechanical engineering). He was 
the first to consider the effect of relative accelerat
ed motions, such as rotations, on dynamical obser
vations. If a system obeying Hamilton's equations 
of motion in an inertial laboratory frame is viewed 
from a Cartesian xy frame rotating at angular fre
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quency m, a transformation of the coordinates to 
the rotating frame gives the result8 

H =Heq - 2,m(xpy-ypx) 

= ~ ~ tb .. + ~ m (x 2 +y'.2 _m2x2 __ m2y2) 
~~ .IJ ~ 2 I I , 

(5) 

where the single sum ranges over all N particles 
and the double sum ranges over all N (N - I ) 12 
pairs of particles. The equations of motion in the 
moving frame follow by differentiation: 

x=(px1m)+my, Px=Fx+mpy, 

(6) 

and are wen suited to numerical integration. Posi
tive angular velocity corresponds to the counter
clockwise motion of the xy frame relative to the la
boratory frame. It should be noted that the mo
menta in the (fixed) laboratory frame are identical 
with the (comoving) rotating-frame momenta. 

There is an apparent similarity between the 
.- Hamiltonian (5) and the Doll's tensor Hamiltonian9 

used to describe adiabatic deformation. The latter 
formulation would describe the equations of motion 
in an inertial frame, viewed from a rotating labora
tory frame, and therefore is not useful for the 
present problem. In the Doll's tensor formulation 
the momenta are products of moving-frame veloci
ties and particle masses, while in the present 
description of a rotating system the momenta are 
products of laboratory-frame velocities and particle 
masses. 

Special boundary conditions must be added in 
order to maintain a temperature gradient in the 
rotating-frame heat-flow simulation based on the 
microscopic Hamilton's equations (6). It is neces
sary to provide a heat source and a heat sink. One 
way to accomplish this lO is to partition the system 
into separate "reservoir" and "bulk" regions with 
mathematical walls. The reservoir regions can 
then be maintained at steady temperatures by re
scaling the moving-frame velocities at each time 
step. We tried this method, using reservoirs of dif
ferent sizes, but the reservoirs proved ineffective. 

2The centrifugal forces mm r inhibited thermal con
tact between the two reservoirs and the bulk re
gion. We therefore adopted a different method for 
introducing and extracting heat, rescaling the radi
al velocities of a fixed number of particles nearest 
the inner boundary of the system to maintain a 

nearly-constant hot temperature, and rescaling the 
radial velocities of the same number of particles 
nearest the outer boundary to maintain a nearly
constant cold temperature. This rescaling process 
was carried out at time intervals of O. 1(m a 21E) 1/2. 

Except at the times of these heat transfers (which 
affect no angular velocities) the ordinary equations 
of motion were solved. The negative temperature 
gradient dTIdr <0 inhibits convection by reinforc
ing the positive density gradient due to centrifugal 
forces. 

In order to describe the heat transfer process in 
terms of thermal conductivity, it is necessary that 
the radial extent of the system be more than a few 
mean free paths. The number of particles required 
can be greatly reduced by using periocic boundary 
conditions in plane polar coordinates as shown in 
Fig. 1. The boundaries at ria = 12 and 28 were 
implemented with a wall potential of the form 
¢wall =E(a1108r )12. With this geometry the 
periodic images required to compute the forces on 
particles near the periodic "boundary" are rotated 

Cold 

'Tr/6 

ria 28 

FIG. 1. Geometrical configuration of the system 
under study. The 30° slice between the inner and outer 
radii contains 80 particles, all interacting with the soft
disk potential, modified by adding a very small Hooke's 
law attraction to make the force and energy vanish at 
r = 30-. The radial temperature in the inner region (de
fined by the 20 particles closest to the center) is con
strained to be lOE/k and the temperature in the outer 
region (defined by the 20 particles closest to the outer 
boundary) is 2E/k. The two particles i and j shown in 
the figure lie at different angles OJ and OJ. When the 
potential contribution of this pair to the heat-flux vector 
is computed, basis vectors lying at the point (ri + r j) 12 
are used. This ambiguity in the radial and theta com
ponents of the potential contribution to q is negligible 
for the short-range forces used here, but could not be 
nored with long-range interactions. 
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relative to the particles "inside" the system, so that 
the sum of the forces on particle i due to j and par
ticle j due to i is not necessarily zero. These forces 
must be properly taken into account in computing 
the potential contribution to the heat flux. Conser
vation of energy (in any frame) and angular 
momentum (in the inertial laboratory frame only) 
serve as powerful checks of the numerical work. 
To suppress fluctuations in angular velocity in the 
cO!lloving frame, the theta velocities were adjusted 
(Bei =A +Bri + Cr?) at the rescaling intervals of 
0.1 (m a 2/E) 1/2 to constrain the three sums 
~ e, ~er, ~er2 to vanish in the comoving frame. 

To interpret the microscopic solution of the 
equations of motion in terms of macroscopic quan
tities, a heat-flux vector must be defined. The ac
cepted definition results in a natural way if the mi
croscopic flow of heat is treated in parallel with 
the flow of momentum, as described by the virial 
theorem.! I It is not usually emphasized that these 
momentum and heat theorems can be applied not 
only to equilibrium fluids or solids, but also to 
fluids or solids in steady nonhydrostatic heat
conducting nonequilibrium states. Both the 
momentum-flux (pressure tensor) and the heat-flux 
vector are always defined relative to the comoving 
(rotating) frame. 

The virial theorem derivation proceeds by com
puting the time average of the tensor product of 
the particle coordinates and the time rate of change 
of particle momenta. By equating the external
force contributions to the time rate of change, the 
virial theorem is obtained. For the particular case 
in which the interaction is pairwise additive, the 
theorem has the form 

where the double sum includes all distinct pairs of 
particles. 

Heat flow can be described in a similar way. We 
follow Kirkwood and Irvingl2 in associating half 
the energy of each pair interaction with each of the 
interacting particles. If we indicate the external 
contribution to the time rate of change of particle 
i's energy with a superscript e then 

(8) 
'" (Pi +Pj)

Ei .£..Fij~·~, 

where the sum in (8) includes all particles j with 

which i interacts. Notice that the time rate of 
change of particle i's energy depends explicitly on 
particle j's momentum. If we next construct the 
sum, over all particles in t~e volume V, of particle 
i's pcsition multiplied by E j from (8), and average 
over time, replacing the external heat flow with the 
product of the volume and the heat-flux vector q, 
we get 

qV ~riEi+ ~~(ri-rj)(FijHri+rj)/2. 

(9) 

This form is well suited to numerical calculation. 
The force terms linking particles i and j have been 
combined, so that the heat flux, like the momen
tum flux, has both an individual-particle convective 
part and a two-particle potential part. 

Because we are interested in finding both the an
gular and radial components of the heat flux, it is 
essential to write the macroscopic vector qV in (9) 
as a sum of microscopic short range, nearly local 
vectors. In (9) this has been done; the contribution 
to the heat flux of the force exerted by particle j on 
particle i depends on the relative separation vector 
ri-ri' Unless the ij terms are combined in this 
way, the division of the microscopic vectors into 
radial and angular parts loses physical significance. 

IV. NUMERICAL RESULTS 

We decided to study a simple soft-disk fluid, 
rather than a solid, in order to avoid long phonon 
free paths and to enhance the expected contribution 
of the Coriolis force to the heat-flux vector. The 
soft-disk system, with particles interacting with an 
inverse 12th-power potential ¢>=E(o-/r)12, has been 
carefully investigated by CapeY His numerical 
work located the freezing transition and showed 
that a truncated virial expression provides a useful 
analytic expression for the fluid-phase equation of 
state: 

PV/NkT 1+ 1.773x +2.362x 2 + 1.484x 3 

+9.477x 4 -l1.544x 5+ 11.038x 6 , 

with 

(10) 

This equation of state allows us to estimate the 
thermal conductivity for the soft disks from Gass's 
two-dimensional Enskog theory.14 Gass's expres
sion for the ratio of the dense-fluid thermal con
ductivity to the low-density conductivity is 

http:theory.14
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},I}'o=bp( lIbpX) + 1.5+0.872bpX] , (11) 

where bp and X follow from Cape's equation of 
state, (10), for the soft disks: 

bp= 1.478(NO' 2 IV)(Elknl16 =. 1.478x , 
(12) 

bpX 1.478x + 1.575x 2 

+0.742x 3+3.159x 4 -1.924x 5 
• 

Gass quotes the low-density hard-disk conduc
tivity, Ao(S) (1.l6/s)(k 3T Im)1/2, in terms of the 
hard-disk diameter s. We estimate the soft-disk 
conductivity at low density by matching the second 
virial coefficient contributions to the thermal pres
sures: 

(13) 

The resulting soft-disk thermal conductivity at 
T=6E1k and 

NO' 2IV 801[( 1T112)(282 _122)] =0.477 

IS 

6.lk (elmO' 2)1/2 , 

in fairly good agreement with the value deduced 
from our numerical radial-heat-flux data 
4.4k(ElmO' 2 )1I2 discussed below. 

Mechanical equilibrium requires that the centri
fugal force on an element of mass at rand 0, 
(r dr dOlmpuir, must balance the pressure-gradient 
force -(r dr dO)dP Idr. An exact solution of the 
corresponding mechanical equilibrium equation, in
cluding heat flow, is tedious, and the resulting den
sity profile differs only slightly from the simpler 
isothermal profile, as shown in Fig. 2. Cape's 
equation of state indicates that rotational frequen

z 

80...----,--

60 

20 24 
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FIG. 2. Density profile for a rotating two
dimensional disk with w=0.25(f/mu 2 )1/2. Cape's equa
tion of state for the soft-disk fluid, at a temperature of 
6f /k, was used to solve the mechanical-equilibrium 
equation for a system rotating at the highest angular fre
quency shown in Table I, and with the same number of 
particles. The profile has been integrated to display the 
average number of particles N(r) lying within a circle of 
radius r. The points shown along the curve correspond 
to average locations of the 10th, 20th, 30th, ... , parti
cle, counting outward from the center, from the corre
sponding molecular dynamics simulation. In the draw
ing, the figure IE, m, u, and k have all been set equal to 
one. The arrows indicate the shifts required at zero fre
quency to match the isothermal mechanical-equilibrium 
calculation with the corresponding microscopic heat
conducting simulation. 

cies, up to the maximum we used,' all correspond 
to wholly fluid-phase states. 

The numerical results given in Table I and illus-

TABLE L Numerical results for six rotational frequencies w. The time, radial, and angu
lar heat fluxes in the volume V are tabulated. In the table the units correspond to setting f, 
m, u, and k all equal to one. 

Radial' Angular 
Frequency Time qV (potential) qV (kinetic) qV (potential) qV (kinetic) 

...._-_... ..._-_.._
~----------~---... 

0.00 400 322 241 4 9 
0.05 200 328 215 -23 1 
0.10 200 308 214 -25 -4 
0.15 1400 350 233 -33 35 
0.20 400 379 250 -22 -24 
0.25 400 389 237 -57 -36 

to ef
fective system width with frequency. The centrifugal forces increase the effective tempera
ture gradient. We have not made a precise estimate because the accuracy of the results does 
not warrant it. Energy was conserved to at least one part in 105 in integrilting over the time 
intervals between momentum rescalings. 
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FIG. 3. Ratio of the angular to the radial heat flux 
as a function of rotational frequency. Despite consider
able fluctuations the data establish that the qualitative 
predictions of kinetic theory are correct. The slope of 
the line drawn through the data agrees well with the 
collisional relaxation time estimated in the text. 

trated in Fig. 3 all refer to the geometrical situa
tion indicated in Fig. 1. A periodic 30° portion of 
an annulus, containing 80 particles, was followed 
for a sufficiently long time to estimate the radial 
and angular parts of the heat flux. The radial part 
corresponds to a thermal conductivity which is not 
significantly affected by rotation and which agrees 
fairly well with the Enskog theory. This indicates 
that ordinary Fourier heat conduction is an ade
quate description of the radial heat flow in this 
small two-dimensional system. 
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The angular part of the heat flux found here 
contains nearly equal potential and kinetic parts. 
H fluctuates wildly with time and is considerably 
smaller than the radial part. The angular flux is 
equal to twice the product of minus the radial flux, 
the angular frequency, and the relaxation time, ac
cording to the approximate Boltzmann treatment 
given in Sec. II. Our observed angular heat flux 
confirms this order-of-magnitude estimate. The 
data correspond to a relaxation time 
T=0.30(mu 2/1:)112. An independent estimate for T 
can be obtained from the exponential relaxation 
theory (ERT). That theory predicts a thermal con
ductivity AERT=2pk 2TTlm. Setting this equal to 
the kinetic part of the conductivity estimated from 
Table I and Fig. 2, 1.9k(Elmu 2 )112 gives 
T=0.33(mu 2/E)1I2. 

We conclude that the approximate kinetic theory 
and Enskog's dense-fluid modification of 
Boltzmann's equation correctly predict a violation 
of Fourier's heat conduction law. In dense media a 
radial temperature gradient induces an angular 
heat flux in a comoving frame. 
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