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Lattice dynamics and molecular dynamics are used to study close-packed crystals with pairwise-additive 
Hooke's-Iaw interparticle potentials. Lattice dynamics describes a mechanical soft-mode instability at high 
pressure. In two dimensions molecular dynamics reveals that a thermodynamic transition, from the triangular 
close-packed lattice to the square lattice, occurs before the soft-mode instability density is reached. Similar 
phenomena occur in the three-dimensional close-packed lattices. 

When a solid is subjected to large stresses, such as 
those associated with shock waves, plastic and viscous 
flows can occur, in addition to elastic deformation. In 
exploratory computer-simulation stUdies of inelastic 
behavior in solids, the piecewise-linear-force mod-

has some advantages over more realistic force 
laws. In particular, there is a close correspondence 
between the microscopic Hamiltonian and the macro
scopic strain-energy function. 2 As a preliminary to 
future molecular dynamics simulations of shock-in
duced plastic flow, the properties of the two-dimen
sional close-packed triangular lattice are examined 
here. The work reveals an interesting high-pressure 
"soft-mode,,4 instability, 

Our model is a periodic two-dimensional triangular 
lattice with an LX L atom parallelogram unit cell. The 
interatomic potential is of the form 

(1/2)K(r - do? - KW2 
, y< do+w, 

<p(r) - (1/2)K(r - do - 2w)2, do+w< r< do+2w, (1) 

0, do+2w< y, 

The force derived from this potential is continuous. 
For all values of y less than do + u) (where the "width" 
UJ is typically 0, 15do), this potential is equivalent to a 
purely harmonic Hooke's-law interaction. The near
est-neighbor lattice dynamics for this model is worked 
out in the Appendix as a function of the reduced density 
p Vo/V, where the (two-dimensional) stress-free 
"volume" is (3/4)1!2Nd~. This Va is exactly the volume 
occupied by N hard disks of diameter do in a close
packed triangular lattice, For a potential width w 

0. 15do, second-neighbor interactions would need to 
be included for densities than L 78. If we ex
clude such higher-neighbor interactions, then the 
2(N -1) ~ 2(L2 -1) vibrational normal-mode frequencies 
have the form 

a)This work was performed under the auspices of the U. S. De
partment of Energy at the Lawrence Livermore National 
Laboratory under contract W-7405-Eng-48 and was partially 
supported by the Army Research Offiee at University of Cali
fornia, Davis. 

(rn/K)w2- (2 pl!2)T ±pl!2U i =1,2, •. , L,- - ij ii' 

j~1,2,."L, (2) 

where Tij and U ij are density..;independent functions of 
i and j, given in the Appendix, and where the case 
i L, corresponding to center-of-mass translation, 
is excluded, The + and - signs in Eq, (2) correspond, 
in certain symmetry directions, to longitudinal and 
transverse modes, 

The longitudinal and transverse sound speeds can be 
obtained from a long-wave expansion of Eq. (2): 

(3) 

The transverse sound speed [plus sign in Eq. (3)] is zero 
at a density of 16/9, indicating a shear instability at that 
density. A detailed numerical study of the dispersion 
relation (2) shows that this is, in fact, the lowest com
pressive instability density. The "soft" modes that re
sult are centered on the three symmetry lines in the 
Brillouin zone which correspond to correlated shear mo
tion of close-packed rows of atoms. 5 A comparison of 
the dispersion relations at the stress-free density (p 1) 
and at a density (p= 1. 75) very close to the instability 
density is shown in 1. The low-frequency soft 
shear modes show up as deep valleys parallel to and 
centered on the symmetry lines. 

Similar shearing modes cause instabilities, corre
sponding to shearing parallel to close-packed planes in 
the three dimensional close-packed lattices, where the 
instability density is 1.23 1. 728. The single-particle 
Einstein model predicts only a higher-density lattice in
stability: at p= 4 (rather than 1. 778) in a two-dimen
sional triangular lattice and at 3 .. 375 (rather than 1. 728) 
in the three-dimensional face-centered-cubic lattice. 

If anharmonic forces are included, as, for example, 
in the long-range part of a piecewise-linear-force model 
(1), then a phase transition to another lattice structure 
occurs, rather than the one-phase catastrophic insta
bility. A static -lattice calculation of energies for the 
piecewise-linear-force model with u) = O.15do indicates 
a first-order triangular-to~square lattice transition at 
a pressure of O. 21K, with coexisting densities of 1. 25 
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p 1.00 Low p 1.00 High 


p = 1.75 Low p = 1.75 High 
FIG. 1. (a) Low-frequency modes at the stress-free density. Frequency is plotted as a function of k. The region of k space 
shown has an area equivalent to four Brillouin zones. (b) High-frequency modes at the stress-free density. (c) Low-frequency 
modes at p'" l. 75. Note the deep valleys in k space corresponding to the soft-mode instability analyzed in the text. (d) High-fre
quency modes at p 1. 75. 

and 1. 53. The square lattice, which is always unstable 
with just nearest-neighbor forces, is stabilized by sec
ond-neighbor interactions. 

Consider, for example, a density of 1. 50. The near
est-neighbor spacing is then O. 81650do in the triangular 
lattice and O. 75984do in the square lattice. With w 
=0.15do the second neighbors (at L41421do in the tri
angular case and 1. 07457do in the square case) lie within 
the range of the potentiall. 3doonly in the square-lattice 
case. The energy per particle is - O. 0170Kd~ in the tri
angular case and - O. 0268Kd~ in the square case. Ex
cept at zero temperature, dynamical simulations must 
be used to establish stability. 

We performed a series of simulations using molecular 
dynamics to solve the equations of motion for systems 
interacting with the potential (1). Molecular dynamiCS 
simulations at finite temperatures indicate that the tri
angular lattice is stable up to densities of about 1.2, 
and that the square lattice is stable at densities greater 
than 1. 6. The melting temperatures of both lattices are 
of order 0.OlKd5/k, in agreement with previous esti
mates. 3 

The Helmholtz free energy of the triangular quasi
harmonic lattice is, in the thermodynamic limit, 

A/NkT (Kd5lkT)[1. 5(p·1I2 _1)2 - 3(w/don 
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(4) 

The first term is the static lattice contribution; the sec
~nd is the uncorrelated single-particle (Einstein) con

ibution to the free energy; and the last term gives the 
collective normal-mode correction to the Einstein free 
energy. The Einstein frequency is 

wE /(21T) = (3(K/m)(2 p1!2) ]1!2/(21T) , (5)vE 

and t:.S/Nk is computed by averaging, over all nonvanish
ing normal-mode frequencies, the high (+) and low (-) 
frequency contributions to the vibrational entropy: 

t:.S/Nk (In(vi/vVl>. (6) 

The sum over frequencies has been worked out analyti
cally at p=l by Huckaby, 6 with the result t:.S/Nk=0.273. 
At the instability density we find !::.S/Nk = (1/2) ln12 

1. 242. 

To analyze the mechanical soft-mode instability we 
consider the transverse modes that lie close to the sym
metry line kl =k2 (see the Appendix). We choose (II 

(I +08, (I -oe, and op ¥P. We find that in theeJ 
thermodynamic limit the minimum frequency varies as 
(6p)1!2. The variation of frequencies near the minimum 
is parabolic in 6e, with an effective width also propor
tional to (6p)1/2: 

(m/K)(w-)2 

= (1 -cos(l)(20e2 + (9/8)6p) + higher-order terms. (7) 

The contribution of each mode to the pressure is propor
~'"ional to the "mode gamma" y =iHnw/a Inp. For small 

p, the Brillouin-zone average can be calculated by in
tegrating over (I I and (I) with the result 

(y) =«(_ 26(12 _ (9/8)op)"I)= _ 20p-1/2 , (8) 

where the average includes all modes in the low-fre
quency w- branch. 

The average indicated in Eq. (8) is to be carried out 
in the Brillouin zone described by the oblique coordi
nates (11 and (12' Sixfold rotational symmetry within the 
zone allows us to use the region within which (11 varies 
from 0 to 11 and (12 is restricted to a narrow strip near 
(11' The integral of gamma over this region must then 
be divided by one sixth the zone area, namely, 112/3 112, 
to obtain (y). Because the integrand depends only on 
6(1, not (il and (12 separately, the (11 integration can be 
performed to give a multiplicative factor of 11. The re
maining integral - (3/211) f d08/[6(l2 + (96p/16)] repro
duces the result just given in Eq. (8). 

At intermediate densities we calculated the frequency 
sums numerically, using crystals of up to 160000 atoms, 
in order to estimate the large-N limit. The data for 
t:.S/Nk can be fitted within 0.001 by the function 

t:.S/Nk (1/2) In(12) exp[ - 6pl/2(1. 811 0.166p2) J • (9) 

The contribution to the compressibility factor PV/ 
NkT from all the soft shear modes, calculated in Eq. 
(8), agrees with a numerical calculation (giving 2.00 
as the coefficient of - op-1I2) of the pressure from lattice 
dynamics at densities near the instability density. In 
the three-dimensional case an average of the form (8) 
would lead to a logarithmic singularity in the pressure. 
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APPENDIX: LATTICE DYNAMICS FOR THE 
TRIANGULAR HOOKE'S-LAW CRYSTAL 

Using an oblique coordinate system (see Ref. 2 for 
details) to index the particles, the linear restoring force 
on the central (00) atom, in terms of the Cartesian dis
placements from the lattice sites, is 

Y. K[2xOO - XOI - x()"l + (1 _ r2p1l2) 

x (4xoo - Xl0 - X_l0 - xl_l - X_l1) 

+ (r/2)p1l2( - YIO - Y-l0 + Yl-1 + Y-l1)] , 

= - K[ (1 - p1l2)(2yoo - YOI - y()..j) 

+(1- tpl/2)(4yoo -Yl0 -Y-jO -Yl-1 -Y-11) 

+ (r/2)pl12(-Xl0 X-l0 +XI_l +X_11)] , (Al) 

where r is (3/4)112. By using Dean's method for diago
nalizing the dynamical matrix, 7 the eigenfrequencies of 
the lattice are found to be given by Eq. (2) of the text, 
with 

T;j 3 -cose; -cos((I; -(lj) -cos(l} , 

Uij=[cos 2
(1; +COS2((li -(I) +cos 2e} -cos(l; cose) 

- (cose; +cos(lj) cos((I; _8)J1I2 , 

with 

8 i k1rd=211i/L, (lj=kzrd=21Tj/L. (A2) 

The expression for the frequencies reduces to Dean's re
sult in the stress-free case p= 1. 

1W. G. Hoover, W. T. Ashurst, andR. J. Olness, J. Chern. 
Phys, 60, 4043 (1974). 

2W, T. Ashurst and W. G. Hoover, Phys. Rev. B 14, 1465 
(1976). 

3W. G. Hoover. N. E. Hoover, and W. C. Moss, J. Appl. 
Phys. 50, 829 (1979), 

4]'or a general review of soft modes, see J. ]'. Scott, Rev. 
Mod. Phys. 46, 83 (1974), 

'B. J. Alder, W. G. Hoover, and T. E. Wainwright. Phys. 
Rev. Letts. 11, 241 (1963), 

"D. A. Huckaby, J. Chern. Phys. 54, 2910 (1971). 
1p. Dean, Proc. Cambridge Philos. Soc. 59, 383 (1963). 

J. Chem, Phys" Vol. 74, No.2, 15 January 1981 


	p1
	p2
	p3

