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A new Hamiltonian method for deformation simulations is related to the Green-Kubo fluctuation theory through 
perturbation theory and linear-response theory. Numerical results for the bulk and shear viscosity coefficients are 
compared to corresponding Green-Kubo calculations. Both viscosity coefficients depend similarly on frequency, in a 
way consistent with enhanced "long-time tails." 

1. INTRODUCTION 

Fluid flow can be treated at a variety of levels1 

by including only some of the difficulties asso­
ciated with compressibility, viscosity, heat con­
duction, entropy production, gravity, and turbu­
lence. In discussing shockwaves, only the last 
two of these complications can be ignored. The 
unique feature of shock compression2 is the abrupt 
transformation of a fluid or solid from one equi­
librium state to another. In a dense fluid this 
transformation can take place in approximately 
one atomic vibration time. 3 The details of this ir­
reversible transformation process depend upon the 
transient transport of momentum and energy within 
the shockwave front. With pressure jumps of tens 
of kilobars occurring in distances of only a few 
atomic diameters it is not clear a priori that a 
continuum point of view is appropriate to shock­
waves at all. Nevertheless, it is known that the 
predicted shockwave profiles from the simplest 
reasonable continuum model-the Navier-Stokes 
equations, with compressibility, viscosity, con­
duction, and entropy production included-agree 
fairly well with profiles from atomistic computer 
simulations. 3,4 

Viscosity is the physical property whigh domi­
/ 

nates shockwave structure. Viscosity describes 
the extra work required when deformation takes 
place rapidly, rather than slowly and reversibly. 
General deformations include both changes in 
shape and in size so that two different viscosity 
coefficients, shear (for shape) and bulk (for size) 
are required to describe the dependence of work 
on deformation rate. 

In many flow problems changes in shape, involv­
ing only shear viscosity, are much more important 
than changes in size. In shockwave problems the 
bulk viscosity is equally important. Because the 
fluid density may change by a factor of two, the 
viscous irreverSibility associated with rapid com­
pression must be included. Because the only op­
erational theory for bulk viscosity in dense flUids, 
the Enskog theory,5 is inadequate/ we have under­
taken a study of dense -fluid bulk viscosity. We 
have developed a new method for simulating fluid 
deformation, and here compare it with previous 
bulk-viscosity calculations. The new method can 
also be applied to shear flows, and has some in­
teresting connections with the more usual Green­
Kubo methods for calculating transport coeffi­
cients. 

Green and Kubo showed that the transport coef­
ficients describing nonequilibrium flows of mass, 
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momentum, and energy can be expressed in terms 
of the decay of equilibrium fluctuations of velocity, 
stress, and heat flux. 7 Numerical decay calcula­
tions have been carried out for both hards and 
interparticle potential functions. Motivated both 
by the long times required for accurate equilibri:l!n 
fluctuation calculations, and by the desire to de­
velop an independent computational method as a 
check, several groupsl()'14 have carried 01...1: direct 
measurements of the transport coefficients uSing 
nonequilibrium molecular dynamics. In these di­
rect approaches steady or oscillatory hydrcxIy­
namic states are maintained by performL'1g e:h.ier­
nal work. Phenomenological hydrodynamics is 
then used to relate the resulting mass, momentum, 
and energy fluxes to transport coefficients. The 
direct calculations are often more efficient than is 
the indirect approach of fluctuation theory, but 
suffer from the drawback that the results of the 
calculations must be extrapolated to the small­
gradient limit of macroscopic hydrodynamics. 
The direct calculations make it possible to gen­
erate nonequilibrium distribution functions and to 
study nonlinear effects. 

Shear flow and heat flov;- ha\-e both been simu­
lated by carrying out molecular -dynamics calcula­
tions with" reservoirs" v;-hich maintain constant 
velocities and temperatures at the boundaries.12,15 
The reservoirs themselves v;-ere kept at fixed 
velocities and temperature by external forces. 
Such forces do work on both the reservoirs' cen­
ters of mass and on the half-mdth of the reser­

voirs' velocity distributions relative to the center­
of-mass velocities. These reservoir calculations 
provided estimates for the thermal conductivity 
and for the shear viscosity 7J which appears in 
Xenon's phenomenological model16 for stress in 
a flOwing fluid: 

-- - ... ]- [-.... -... ,]o = L o.q ..:.. A Y • u I + 7J YU + YU • (1 ) 

In (1) the streal11 velocity uvaries in space and 
time. The viscous contributions to the stress ten­
sor cr, o,er and above the equilibrium stress, are 
proportional to the symmetric tensors V' uI, 
where Yis the unit tensor, and Vu + 'Vii j, where t 
indicates transpose. The "second viscosity coef­
ficiene?" >c can be expressed in terms of the bulk 
viSCOSity 7" =?.-'­

The bulk viscosity describes the extra stI:ess 
due to dilation in the absence of shear. Because 
this effect depends upon volume change-a change 
of thermodynamic state -bulk viscosity cannot be 
measured in a steady-state-reservoir experiment. 
If the volume is cycled over a small range, with a 
frequency w, the constitutive relation (1) implies 
that in addition to the elastic stress, proportional 
to the strain and the adiabatic (frequency-depen­
dent) bulk modulus B, there will also be a viscous 
stress proportional to the strain rate and the bulk 
viscosity. The bulk viscosity can be obtained 
either by determining the strain-rate component 
of stress, or by averaging the work done, by the 
forces cycling the VOlume, over a complete cycle 
of dilation and compression: 

f dW= f adV= f21' do.: t(3n'ocoswt)(aeQ + 3B~ sinwt + 37Jv~w coswt)= 97TeV oW7J•• (2) 
o 

In (2) ; is the maximum one -dimensional strain 
amplitude. In a complete cycle, the elastic part 
of the stress does no work. 

We have developed a methcxI for Simulating such 
a cyclic process by using nonequilibrium molecu­
lar dynamics. 6 The viscosities from 
such nonequilibrium simulations can be compared 
with Green-Kubo results and used to interpret the 
shockwave profiles from computer experiments. 3 

The new data should also stimulate improvements 
in two areas of dense-fluid transport theory-the 
data show that the Enskog theory of transport is 
inadequate for soft potentials and that the mode­
coupling18 estimates of transport -coefficient fre­
quency dependence are much too near the 
triple pOint. 

In the present work we first indicate the relation 
of our numerical method to the Green-Kubo theory. 
We then apply the method to a dense-fluid state 

near the triple point. For this numerical work we 
have chosen to study the Lennard-Jones potential 

(3) 

at the same reduced denSity Na 3!V 0.8442, and 
reduced temperature kT!E= O. 722 studied by 
Levesque et al. 9 Notice that in (3), in Sec. IV of 
the text, in the tables, and in the figures, (J and E 

represent .potential parameters rather than stress 
and strain. 

II. HAMILTONIAN FOR ADIABATIC DEFORMATION 

Any mechanical flow can be described by specify­
ing the space and time dependence of the "strain­
rate tensor" vii. The tensor describes the rate 
at which any macroscopic coordinate q changes 
with time: 

(4) 
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The two simplest such flows are homogeneous 
plane Couette flow (with du,,/dy the only nonzero 
element of vii, for instance) and homogeneous 
dilation (with vii proportional to the tmit tensor f). 
If we consider a microscopic collection of N par­
ticles with coordinates if (now, and in what follows, 
using q to indicate a set of coordinates) and poten­
tial energy tP, the application of the purely mech­
anical deformation (4) for a short time changes 
the potential energy:.i; - VP'I> : vii, where 15 'I> is 
that part of the pressure tensor which depends up­
on the interparticle forces. In a thermodynamic 
deformation we expect to do work against the kine­
tic part PR, of the pressure too: k= - VPk : vii. 
This work is done exactly if we choose to vary the 
momenta in a way parallel to (4): 

(5 ) 

A microscopic Hamiltonian which incorporates not 
only the coordinate and momentum changes from 
(4) and (5), but also the usual changes from iner­
tia and interparticle forces, is 

(6) 

The microscopiC equations of motion derived from 
(6) are 

oJC /op= (p/In) +q' vii, 
(7)- ~= -oJC/aq= F- vii·p. 

The microscopic representation of the pressure 
tensor for a fluid with pairwise additive forces: 

VI' quFu+(pp/m), (8) 

can then be used to establish that the coupled equa­
tions of motion (7) satisfy exactly the first law of 
thermodynamics for adiabatic flow: 

E -VI' :Vu, (9) 

where E is the internal energy .p + (p2/2m). 
Thus the Hamiltonian (6) has the desirable fea­

ture of providing equations of motion consistent 
with thermodynamics. This Hamiltonian has other 
applications too. Anderson19 has just arrived in­
dependently at the same equations of motion (7). 
In his work, the pressure is treated as an inde­
pendent variable to which the strain-rate responds. 
In our work the roles of pressure and strain-rate 
are reversed. Before proceeding to numerical 
applications of the equations of motion, we discuss 
the connection of the Hamiltonian and Green-Kubo 
fluctuation theory. 

III. CONNECTIONS WITH GREEN-KUBO THEORY 

There are two different ways to relate our per­
turbed Hamiltonian to conventional Green-Kubo 
theory. Let us consider first a treatment resemb-
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ling one of the several sketched by Zwanzig. 7 For 
simplicity we choose a particular strain-rate ten­
Sor vii= €I; this choice describes a homogeneous 
isotropic dilation. An analogous treatment applies 
for shear flows, Because the perturbed Hamil­
tonian describing this system includes a velocity 
gradient proportional to E, we expect that in the 
limit of small strain rates € - 0, a thermodynamic 
system described by the Hamiltonian 

JC=q, +K+Eqp:Y, (10) 

could also be correctly described by Newton's 
phenomenological model (1); 

{PV)nonaq={PV)&Q -3€TlvV 

1< - - m/)\non",,' (11 )=3qij,Fij+P(2/ 

If we introduce the Hamiltonian (10) into the ordi­
nary canonical probability distribution 

(12) 

we find a simple expression for the bulk viscosity 
TIl>: 

-3f TIl> V= t([ -Eq 'p/kT][ qi] .Fij + (p2/m )J) eq • (13) 

The virial theorem5 can then be used to express 
the instantaneous pressure in (13) in terms of the 
dot product q . p, giving 

3PV=qi] 'Fu+ (p2/m )=3PV+(d/dt)(t!·p) , (14) 

where P is the long -time -average pressure. Be­
cause the average value of t!.p vanishes at equi 
librium, (13) and (14) can be combined to give 

(15 ) 

This last relation can then be converted into the 
usual Green-Kubo autocorrelation form by writing 
the q. p as integrals of pressure fluctuations: 

V fT 1~
Tlv = lim 2 kT ds dt <6P (s )6P(t »eq 

f-oo Too 

V foo 
= dt (6P(0)6P(t»eq' (16) 

o 

where 6P is P -Po An essential step in this heur­
istic derivation is the smoothed, or coarse 
grained, evaluation of the time derivative in (15). 
The derivative approaches the value given by New­
ton's phenomenological model only at times ex­
ceeding microscopic relaxation times. 

We next consider a more convincing derivation 
of (16) from (10), based on linear response the­
ory.20 This treatment resembles Kubo's calcula­
tion of the electrical conductivity. 7 Linear re­
sponse theory considers the effect of adding a per­
turbation -A(q,p)a(t) to the Hamiltonian, where A 
is a function of the coordinates and momenta and 
a(t> 0) is a ftmction of time. The theory expresses 
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the time behavior of the (arbitrary) response func­
tion R in terms of the correlation of dA/dt and R 
at different times: 

1 l' . (17)(R(q,P»nonoq kT dsa(s){A(O)R(t-s».q' 
o 

If we select for the response function the time de­
rivative of the trace of Doll's tensor, 

(18) 

where the long-time-average pressure p[=P(O) 
- 3BSE(t)] is evaluated at the volume V(t) and in­
ternal energy E(t),21 and if we use the phenomen­
ological viscoelastic equation of state,22.23 valid 
for small strains and strain rates, we have 

(R(t»noneq 9[B" -B(w)]Ve(t) -9T/v(w)V€(t) 

2[I= - V ds 9E(t -s){ oP(0)6P(s»eq, (19) 
o 

where € is the strain, E= ~ sinwt, and 5P=P 
The short-time limit of (19) reproduces Zwanzig 
and Mountain's relation23 between the infinite-fre­
quency bulk modulus and equilibrium pressure 
fluctuations. For long times the upper limit in 
the integral can be replaced by infinity; (19) can 
then be separated into two independent equations, 
one for sinwt and one for coswt. These establish 
the well-known results for the frequency-dependent 
bulk modulus B(w) and bulk viscosity T/v(w); 

V 1'"B(w) -BO dwtsinwt{6P(0)6P(t»ect' (20) 
o 

T/)w) = kTVi" dtcoswt(6P(0)6P(t»eq' (21) 
o 

Thus we obtain the Newtonian liquid model from 
the microscopic equations as a direct long-time 
limit of linear-response theory. In the case that 

~ii is chosen to correspond to a shear flow, a 
similar calculation provides the Green-Kubo for­
mulas for the shear modulus G(w) and the shear 
viscosity T/(w). Although the bulk and shear rela­
tions are "well-known," the methods used here to 
derive them are remarkably direct. In the next 
section we consider numerical applications of the 
Hamiltonian for adiabatic deformation. 

IV. LENNARD-JONES TRIPLE-POJ..",lT CALCULATIONS 

The Lennard-Jones thermodynamic state Ncr 31V 
0.8442, 0.722 has been studied exhaus­

tively.9,12 This state corresponds to liquid argon 
near the triple point if cr and Elk are given the 
values 3.405 A and 119.8 K. The published 
Green-Kubo shear viscosity9 has recently been 
supplemented by unpublished calculations carried 
out by Levesque in France and Pollock in America. 
We have also extended the earlier steady homo­
geneous-shear calculations,12 which treated suc­
cessively wider systems of 108, 2 x 108, and 
3 x 108 particles, by carrying out a calculation 
with a width eight times that of a 108-particle 
cube. These results are all summarized in Table 
I. The unpublished results of Levesque and Pol­
lock for 108 to 500 particles agree fairly well with 
each other and with the experimental shear vis­
cosity for liquid argon, expressed in terms of the 
atomic mass tn, cr, and e. The French 864-parti­
cle data, both published and unpublished, deviate 
from the rest. The directly calculated reservoir 
calculations are also summarized in the table, and 
agree with all but the 864-particle results. The 
two homogeneous-shear calculations for the shear 
viscosity use slightly different (steady versus 
oscillatory) algorithms-Denis Evans will publish 
details of his calculations (Table II) separately. 

We have verified that the present perturbed­
Hamiltonian method reproduces correctly the 

TABLE I. Green-Kubo, reservoir, and homogeneous-shear values for the Lennard-Jones 
shear viscosity in the vicinity of the triple point. These calculations were carried out at a 
reduced density Nrfl/V of 0.8442 and typically include 105 time steps. 

N kT/E 1/02/ (mE)1h Type Source 

108 0.728 2.97 GK Levesque 
256 0.715 2.92 GK Levesque 
256 0.722 2.6±0.1 GK Pollock 
500 0.722 3.2 ± 0.2 GK Pollock 
864 00722 3.85 GK Levesque 
864 0.722 4.03 GK Ref. 9 
108-324 0.722 2.95±0.2 R,l'I Ref. 12 
108X8 0.715 3.0 0.15 H Present work (steady shear) 
108 0.722 3.18±0.1 H (Table II) (oscillatory) 

Experimental estimate: 3.0 Ref. 25 

http:state,22.23
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TABLE II. Lennard-Jones shear viscosity near the 
triple point obtained by applying homogeneous oscilla­
tory isothermal shear. These results were all obtained 
with Lennard-Jones's potential truncated at 2.5 a and 
with a timestep of 0.007 a(m/E)il3; N 108, Nu 3/V 
"'0.8442, andkT/E =0.722. Amplitude times frequency 
~w, frequency w, and number of shearing cycles are 
listed. 

~w a{m/Ej1/2 wa(m/E)1/2 1)0</ (m E)1/2 Cycles 

0 0' 3.18± 0.1 
0.10 8.98 1.27 770 
0.20 1.12 2.70 25 
0.20 2.24 2.18 100 
0.20 4.49 1.74 100 
0.20 8.98 1.22 200 
0.20 11.98 1.10 533 
0.20 14.96 0.90 333 
0.30 1.12 2.41 32 
0.30 2.24 2.33 80 
0.30 4.49 1.72 100 
0.30 8.98 1.25 200 
0.30 11.97 1.14 267 

a Extrapolation from Ref. 14. 

shear viscosities already obtained using external 
reservoirs. To enhance the importance of the 
kinetic contribution to the shear flow (almost 
negligible at the triple point) we carried out a 
shear-flow simulation at a reduced density of 0.45 
with a reduced temperature of 2.16. Both this 
perturbed-Hamiltonian calculation and the exter­
nal-reservoir calculation give lOB-particle vis­
cosities of (0.45 ± o. 02) (mE)1/2 /a 2 , with nearly 
equal contributions from the kinetic and potential 
parts of the momentum flux. A trial calculation 
was carried out to assess the importance of the 
perturbation force Fy = -(du,,/dy)p')f; when this 
essential term was omitted the kinetic contribu­
tion to the shear viscosity was reduced from 
0.23 (mE)i/2/u2 to nearly zero. 

For bulk viscosity the only previous calculations 
used the Green-Kubo method-there is no bulk­
viscosity analog for the reservoir calculations 

used to simulate shear flow. The Green-Kubo 
results are summarized in Table lII. Again we 
have included recent unpublished calculations car­
ried out by Levesque. We have carried out a 
series of lengthy calculations using the equations 
of motion 

(7') 

It is convenient to solve these first-order equa­
tions using a standard packaged routine. 24 We 
also add to the set of 6N equations the adiabatic 
equation for conservation of energy: 

(9') 

The integrated energy change over a cycle of di­
lation and compression can then be compared with 
the change in the internal energy over the cycle, 
calculated from <I> + K with the initial and the final 
coordinates and momenta. We chose a timestep 
such that these two independent estimates of the 
hysteresis agreed to about one part in ten thou­
sand. At the end of every compressional cycle 
the particle momenta p were rescaled so that the 
next cycle would begin with the desired initial in­
ternal energy. After completing most of the cal­
culations we found that the computation could be 
made considerably faster by adding a small term, 
proportional to y+6, to the pair potential to make 
the forces vanish continuously at the potential cut­
off. 

Each calculation began in a body-centered-cubic 
initial state with a Maxwell-Boltzmann velocity 
distribution chosen to give the same thermal (i.e., 
relative to a perfect crystal) energy per particle 
as that found for B64 particles by Levesque et a1.9 

Melting was enhanced by the bcc structure and a 
check of the temperature indicated that there was 
no difficulty in melting to form a liquid state. AL­
though only the first cycle appeared obviously 
anomalous we took the precaution of discarding 
the first ten cycles. 

The adiabatic external work for each cycle can 
be separated into potential and kinetic components, 
but these have no particularly simple significance 

TABLE m. Comparison of Green-Kubo bulk viscosities for the Lennard-Jones potential 
with the present calculations. The densities and temperatures for Levesque's unpublished 
calculations correspond to those given in Table 1. 

N 1Jvw/ (mE)1/2 Type Source 

108 1.13 GK Levesque 
256 0.89 GK Levesque 
864 1.04 GK Levesque 
864 1.05 GK Ref. 9 

54 1.55 Present work 

Experimental estimate: 2.0 Ref. 25 
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for the Lennard-Jones potential. It is interesting 
to point out that for the simpler inverse-power po­
tentials, the virial-theorem relation between the 
pressure and the energy, 

3PV=2K+n<f> , (22) 

allows us to calculate separately the strain-rate 
dependence of the potential and kinetic energies 
and to relate these two terms to the strain-rate 
dependence of the pressure, which is still given 
by (22). In general the potential contribution to 
the bulk viscosity is -~n times the kinetic con­
tribution for an inverse-nth-power pair potential. 

The link between the potential and kinetic parts 
of the (constant-energy) pressure fluctuations 
leads to interesting conclusions. For the inverse­
nth-power potential, the ratio of the 'potential" 
to "cross" to "kinetic' terms in the Green-Kubo 
bulk viscosity integrand is exactly tn 2 to -n to 1. 

For a general force law, linear-response theory, 
applied to the many-body Hamiltonian (10), can 
be used to show directly that exactly half the 
cross term contributes to the kinetic part of the 
bUlk (or shear) viscosity; the remaining half con­
tributes to the potential part. Thus, in the in­
verse-12th-power "soft-sphere" case, the poten­
tial "long-time tail" for bulk viscosity is 36 times 
larger than the kinetic one. The simple relation­
shlps between the potential and kinetic parts of the 
pressure fluctuations have been verified numeri­
cally for the inverse-12th-power soft-sphere po­
tential in a series of bulk-viscosity calcUlations. 6 

A numerical analysis for the Lennard-Jones poten­
tial should be carried out. 

The numerical results of our Lennard-Jones 
triple-point calculations are given in Table IV 

TABLE IV. Perturbed-Hamiltonian bulk viscosity 
for the nearest-image I,ennard-Jones potential at 
Ndl/V=0.8442 andkT/E =0.722. The amplitude g, 
frequency w, and number of dilation-compression 

are listed. 

N g W<T(m/E)lh TJ"O</ (mE)l/2 Cycles 

54 0.02 1 1.10±0.06 800 
54 0.02 2 0.82 ± 0.04 500 
54 0.02 3 0.71""0.02 1000 
54 0.02 4 0.61±0.02 1000 
54 0.02 5 0.52±0.02 200 
54 0.02 6 0.51±O.01 1000 
54 0.02 7 0.50 ± 0.02 500 
54 0.02 8 0.45±0.02 500 
54 0.02 9 o,48± 0.02 500 
54 0.02 10 0,45±O.02 200 
54 0.01 10 0.48± 0.03 1000 

128 0.02 10 0,45± 0.02 200 
250 0.02 10 0.45±0.01 200 

(see also Fig. 1). Each calculation depends upon 
three separate parameters; the number of parti­
cles N, the strain amplitude ~, and the frequency 
w. The data show that the number dependence is 
small, at least at high frequency. The dependence 
on strain amplitude is harder to assess. Small 
amplitudes give large fluctuations in the hysteresiS 
per cycle, whlle large strain amplitudes include 
a wider range of densities. For the most part our 
calculations were limited to a Single maximum 
amplitude ~ =O. 02. 

The bulk and shear viscosities vary similarly 
with frequency. The homogeneous -shear data 
(see Fig. 1) were calcUlated with both the tempera­
ture and the frequency held constant. These shear­
viscosity resUlts, for the range of frequencies and 
strain rates corresponding to our own bUlk-vis­
cosity calculations, can be described by the em­
pirical relation 

7'/a 2 /(m€)1/2 -3. 18 - O. 65(m/d1/ 4(aw)1/2 • (23) 

If this dependence actually holds in the MHz to 
GHz range of laboratory experiments, it should be 

LENNARD-JONES 
TRIPLE~ POINT 
VISCOSITIES 

p*=O.8442 T*=O.722 

1)(108)I'"S. 
0<'" 
2 
!" 
d5 

" £' 

• 
/ 
/L+ TA'L 

o~__~____~__~____~__~__~ 
o 8 10 12 

FIG. 1. Computer-generated homogeneous-shear 
isothermal shear viscosities and perturbed-Hamiltonian 
bulk viscosities are shown as filled circles. Experi­
mental estimates of the low-frequency viscosities for 
liquid argon are indicated by the horizontal arrows. The 
phenomenological fit (23) is shown for the shear viscos­
ity. In the bulk-viscosity case the L line gives the fre­
quency-dependent viscosity from a numerical integration 
of Levesque's data as shown in Fig. 2. The L+tailline 
indicates the effeet of an enhanced long-time tail con'e­
sponding to Eq. (24) of the text. The intercepts for both 
the shear and bulk fits are show'll as open circles. 
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possible to observe noticeable frequency-dependent 
effects. 

The bulk-viscosity results have a form similar 
to the shear data. If we use the same square-root 
dependence of viscosity on frequency, the extra­
polated hydrodynamic bulk viscosity lies close to 
current experimental estimates. 25 At the same 
time, this extrapolation 

11vu2/(mE)1/2 -1. 55 - O. 55(m/tY/4(crw)1/2, (24) 

lies considerably above the Green-Kubo (zero­
frequency) estimates. It is difficult to settle the 
question of the long-time or low-frequency de­
pendence of the viscosities by numerical calcula­
tion. Levesque's and Pollock's Green-Kubo data 
indicate considerable number dependence at long 
times and our own results cannot be pushed to 
lower frequencies without substantial improve­
ments in the efficiency of numerical simulations. 

Nevertheless, a self -consistent picture of the 
long-time and low-frequency behavior does emerge 
if we combine Levesque's bulk-viscosity inte,. 
grand-his data are shown for 108 and 864 parti­
cles in Fig. 2-with the long-time tail consistent 
with the low-frequency relation (24). The coef­
ficient required, 0.55/(2/T)1/2=0.22 in the units 
of Fig. 2, is only slightly less than the 0.65/(21T}1/2 

0.26 required by Evans's shear-viscosity data. 
The result of adding the tail correction to the 

Green-Kubo data is shown in Fig. 1. The tail 
changes the overall curvature of the plot from 
negative to positive and brings about excellent 
agreement between the equilibrium and nonequi­
librium data. The calculated bulk viscosity, 1. 55 
in the units of Fig. 1, is not too far below the ex­

12 

10 

8 

'. 

x' 

GREEN-KUBO 
VISCOSITY INTEGRANDS 

FROM LEVESQUE 
x--N=I08 
.-N=864 

FIG. 2. Equilibrium fluctuation correlation functions 
calculated by Levesque. The nonequilibrium calculations 
described in the text suggest a long-time tail at about 
the level indicated by the arrow (0.26 for shear, 0.22 
for bulk). 
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perimental estimate25 for liquid argon 2. O. The 
good agreement linking the Green-Kubo correla­
tion function to our nonequilibrium simulations and 
to experiment is gratifying. It suggests that the 
present methods can be used with confidence for 
other thermodynamic states and for other force 
laws. 

The shear-viscosity results are less consistent. 
Integration of the large -system (N = 864) Green­
Kubo integrand, with or without an appended long­
time tail, gives viscosities substantially higher 
than either the small-system or experimental esti­
mates. 

V. DISCUSSION 

The perturbed-Hamiltonian approach to nonequi­
librium deformation is aesthetically pleasing be­
cause it is so closely related to thermodynamics 
and eqUilibrium fluctuation theory. This same 
Hamiltonian should prove to be useful in attempts 
to understand theoretically the frequency and am­
plitude dependence of the viscosities. 

It would be useful to find an analogous formula­
tion for diffusion and heat conduction, but our at­
tempts to do this for conduction have failed. It is 
easy to use an extra force proportional to each 
particle's energy fluctuation to drive a homogen­
eous isothermal heat current with nonequilibrium 
molecular dynamiCS. It is not so easy to find a 
simple isochoric (as opposed to adiabatic) analog 
of the first law of thermodynamics. Nevertheless, 
we expect that the heat current resulting from the 
perturbation just described, will provide a perfect­
ly useful approach to thermal conductivity. We 
expect to carry out such calculations for compari­
son with the earlier reservoir and Green-Kubo 
work. 9,15 

The present bulk-viscosity results show once 
again5 that the Enskog theory is a poor approxima­
tion for potentials as soft as r- 12 • The hard­
sphere prediction, underlying that theory, that the 
frequency changes in the bulk and shear moduli 
are similar at high density fails for soft potentials. 
For soft forces the high- and low-frequency bulk 
moduli are similar, so that the bulk viscosity is 
relatively small. The present data underscore 
the need for theoretical understanding of dense­
fluid transport. In particular, the mode -coupling 
predictions/8 even if they turn out to be correct 
for frequencies below those which can be studied 
in computer Simulations, are grossly in error for 
the frequencies studied here. Because even a 
relatively crude theory would be welcome, it 
seems possible that models based on cell theories 
incorporating perturbed equations of motion will 
turn out to be useful. 

l 

http:0.55/(2/T)1/2=0.22
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Notes added in proof. (i) The Doll's-tensor Ham­
iltonian can also be used to obtain equilibrium 
fluctuation expressions for nonequilibrium dis­
tribution functions. See D. J. Evans, W. G. Hoo­
ver, and A. J. C. Ladd, Phys. Rev. Lett. 45, 124 
(1980). (ii) Bill Wood and Bob Dorfman kindly 
pointed out to us that in Ernst, Hauge, and van 
Leeuwen's work [J. stat. Phys. 15, 7 (1975)], the 
kinetic part of the pressure fluctuation is defined 
to be zero. We alert the reader that this peculiar 
choice is different from ours, as described fol­
lowing Eq. (22). 
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