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I. INTRODUCTION

Systems far from equilibrium often involve shockwaves--regions only
a few free paths in width with large gradients in density, velocity, and
stressﬁ’ The research described here is not directly concerned with
shockwaves, but developed in a rcoundabout way from attempts to describe
dense~fluid shockwav952 with Navier-Stokes continuum m@chanics,3 The
Navier~Stokes approach to shockwave structure requires a complete
knowledge of fluid properties in all of the thermodynamic states through
which the material is driven by the shock process. In addition to the
equation of state relating density, pressure, and energy, one nust also
know the state-dependent bulk and shear viscosities and the thermal
conductivity. Because little was known about the state dependernce of
the bulk viscosity I set out to develop a computational method for
neasuring that viscosity in computer experimente incorporating adiabatic
deformation.

The resulting computational =scheme for bulk viscosity has led to a
seneral Hamiltonian formulation for adiabatic deformations, useful for
solids as well as fluids. A Hamiltonian formulation is desirable for
any dynamical problem. It provides not only microscopic eguations of
notion, but also access to a well-developed time—dependent perturbation
theory. Here I describe, in turn, the way the new Hamiltonian appeared,
the consequences of applying linear-response perturbation theory to the
Hamiltonian description of adiabatic deformation, and finally, the
esults of numerical calculations based on the corresponding Hamiltonian
*quations of motion.

The numerical calculations strongly suggest that dense—fluid trans-
Wt coefficients exhibit frequency dependence large enough to detect in

“*al laboratory experiments.
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IT. HAMILTONIAN DESCRIPTION OF ADIABATIC DEFORMATION

Consider a macroscopic continuum undergoing a homogeneous deforma-
tion described by a strain-rate tensor yu. If we choose for the origin
a location where vu vanishes, then the local velocity é is g-Vu. For
illustrative purposes we chose a simple shear deformation, with the x
displacement proportional to the y coordinate: ’

x = £Y . ‘ {1)

If this continuum deformation were suddenly applied, for a short time
dt, to every particle in an atomistic many-body system, then the energy
would change in a way dependent upon the ipitial particle coordinates.
With a pairwise-additive potential energy, 9% = Z¢, the (potential}
energy change could be written in terms of the pair-force contributions

to the pressure-tensor component Piys

Py
3]
—

dE = 4% = ] (ds/dr) (@r/dx)Ax = [¢' (xy/r)édt = -piyvg.

Thermodynamics suggests, on the other hand, that in a real shear defor-
mation the kinetic part of ny would also do work, causing a

corresponding change in the kinetic energy K:

k

dk = - djmv_v_ = - P
XY xy

Ve, (33
If the Hamiltonian H{q,p) describing the system included a term

Zygxé ; then the kinetic-energy change {3} would arise naturally. The

Hamiltonian equations of motion (é = 3H/3p;p = -8H/3q) would provide

additional accelerations,

(S

Apy = —pr. (4)
The resulting kinetic-energy change would "agree with (3).

The need for momentum scaling, not Jjust coordinate scaling, in
adiabatic deformation, can most easily be appreciated in the ideal-gas
case. Consider the homogeneous expansion of a monatomic ideal gas,
with a linear strain rate 2/x = y/y = 2/z = ¢ = {1/3)V/V. In this case
the inclusion of a term Xq .pe " in the Hamiltonian would not only
reproduce the macroscopic deformation, but would also provide

»

accelerations, p = ~¢p, leading to adiabatic cooling. The resulting

:
:
|
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rate of change of the kinetic energy with strain rate,

Lrmas ‘:; E o= Zp'é/m = -(EXB)E(%/V), A (5}
rigin

e 1o

for gives exactly the thermodynamic ideal-gas energy-volume relation for

the X - adiabatic expansion, leading to a pressure varying as the 5/3 power of
- the number density.

The two kinds of deformation just described, shear and dilatational,
{1 as well as longitudinal or mixed ones, can all be systematically and

compactly described. Each corresponds to the addition of a perturbation

time e to the usual eqguilibrium Hamiltonian,
nerqgy ;
\ates. ¥ H=H,+ Jap:vu ; )
wbial) ] =
g = 1pop/2m 4 To .
wionsg -
The perturbing term is the double-dot product of Dollfs Tensor4 Jap and
the strain rate tensor vu. The double-dot notation in (6) indicates
(2} . that all nine terms of the form §q p .y u, are included in the product.

. R X 1312 . . .
Adiabatic deformations could beé catried out, in computer experi-

ments, by interjecting occasional sudden coordinate and momentum

scalings such as (1} and (4) into otherwise conventional solutions of

| Newton's equations of motion. It is preferable to incorporate
deformation smoothly in the eguations of motion, as suggested by the
| (3} k Hamiltonian {6). Then the eguations of motion,
term C}“ (p/m) + q'?u ; {7)
The é = F - Vuwp ,
rovide
describe a continuocus adiabatic process.
Just as in the equilibrium cass, the eguations of wmotion (7)
(4) derived from the Hanmiltonian (6} ave dynamically reversible, provided
only that the macroscopic strain rate vu is reversed along with the
particle velocities. The momenta from (6} have a simple interpre-
g, in : tation--they are the product of mass with velocity in a frame moving
al-gas : with the local macroscopic velocity:
. yas, 2
- case p=mlq-q-vu . (7a)
only
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The equations of motion are also in exact agreement with the thermo-

dynanic relation for an adiabatic deformation,

E= J-F-q + J(p/m)+p = -VP:Vu, (8)

where we use the microscopic global definition of the pressure tengor P

<

PV = [Fq + (pp/m) . ‘ (9)

This pressure tensor is exactly the average momentum flux within the
periodic volume V. It is not a surface interaction, measured across a
system boundary, so that our global adiabatic deformation scheme does
not apply accurately to deformations with very large pressure gradients,
such as those found in strong shockwaves.

flans C. Andersens independently and simultaneously discovered a
hydrostatic form of the Hamiltonian (6). His aim was to develop a
formulation for constant-pressure molecular dynarics, fixing the mean
pressure by allowing velume fluctuations. In cur work the strain rate
is prescribed and produces fluctuations in the pressure tensor, in
either case the eguations of motion can readily be solved numerically.
The velocity must be adjusted whenever a particle crosses a moving
periodic boundary. The momentum is unchanged in such a crossing, but
the momentum is measured relative to a local velocity, and the local
velocity is generally different on two opposite sides of the pericdic
volume V.

The Hamiltonian formulation Jjust described for adiabatic mechanical
work has no known analog describing isochoric heat flow. The micro=-
scopic analog of the thermodynamic relation 4dE = TdS has not been found.

Despite considerable effort, this challenge remains.

TII. LINEAR RESPONSE THEORY

For small strain rates the adiabatic deformation described by ¢ u
can be treated as a small perturbation to the Hamiltonian Hgy. Linecar-
response theory can then be used +o calculate the resulting {viscous)

sq ey s . ] .6, ; )
nonequilibrium properties, Zwanzig's review  1is the classical reference
to the fundamental work of Green, Rubo, and Mori, A useful detailed

, ; 7
account appears in McQuarrie's recent text.
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If we imaagine that a shear perturbation ZCﬁn gu is added to the
then, at time t, the
changed by AE, and the WN-particle distribution function,

Hamiltonian at time zero, internal energy has
from linear

respense theory, reflects that change:
£lq,pst)/E = exp(BE/KT) = 1 - (1/kT) [CVu:pvds . (10)

The averages of dynamical phase functions, such as the energy and the
pressure tensor, as well as the few-body distribution functions, can be

obtained from (lc)ag As an example, consider the kinetic part of nyV:

2 = 13
~pxpy/m>noneq = —£V (leT)IQ<PXy(o)ny(t)>eth . {(11)

In the usual Green-Kuboc autocorrelation expression for P
k

the integrand

(G)pk’(t), a potential term Piv(a)?iy(t), and

a "cross—-term” [§< (0)PE (t) + jge (G)Pk (til. fiere we find that the
Xy Xy Xy Xy ;

contains a kinetic term P
kinetic part of ny contains the kinetic term and half the cross term.
Thus, 3ust as 1in the approximate Enskog theory, the cross term makes
equal contributions to the kinetic and potential parts of the momentum
flux.

The analogous bulk

interesting for an inverse nth power repulsive potential, ¢ = ¢ (o/x)n.

caleculation for viscosity is particularly

In that case the contributions of tne potential-eneryy and kinetic-

energy fluctuations can be directly related to the corresponding
fluctuations in the mean pressure:
R . . & k 12
84 = ~8K; V&P = (n/3)6% + (2/3)8K; .. 8P /6P = -n/2. €12)

The exact result, valid at all times, that the potential part of the
{constant-energy) pressure fluctuation is -n/2 times the kinetic part is
a useful check of correlation functions. For instance, consider the
inverse 12th power soft-sphere potential. EBEguation {(12), valid at any
time, shows that for the fluctuations giving bulk wviscosity the ratio
1:(-12):36, s0 that the

contribution dominates, even at the lowest density.

kinetic:cross:potential is potential

The extension of

the simple soft-sphere relations between the potential and kinetic

pressure fluctuations to more general force laws remains a challenge.
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NUMERICAL CALCULATIONS

Iv.

A series of calculations was carried out9 for the inverse 1Zth power
soft-sphere potential. In that work the hysteresis associated with

cyclic compression and dilation (with Vu varying sinusoidally in the

time} was used to find the density dependence of the soft-~sphere bulk

viscosity. The results from that investigation were surprising. The
bulk viscosities found were less than the predictions of Enskog's theory
by as much as a factor of seven. Although the calculations could not be
pursued at very low densities, the moderate-density results varied
approximately as the 3/2 power of density. A posteriori, it is possible
to "understandg" the marked disagreement Dbetween the pumerical
viscosities and the Enskog predictions, based on the relative size of
normal-stress and shear-stress fluctuations in inverse nth-power fluids.
The results point out the need for a replacement theory; hopefully it
will appear in time for Enskogis 1984 Centennial,

In the more realistic Lennard-Jones case8 a series of calculations
near the +tyrinle point produced ({requency-dependent bulkx viscosities
reasonably close to those obtained by integrating the appropriate Green-—
Kubo integrands, as measured by Levesgue and Pollock. There is consid-
erable reproducible number dependence in the small-system Jlong~time
behavior of the Green-Kubo integrands, so that the actual large-system
"long-time~tail" behavior of these functions is still in doubt. The
agreement between the non-equilibrium frequency~dependent bulk
viscosities and the Green-Kubo integrals could be noticeably improved by
adding a reasonable long-time tail, varying as t , to the Levesque-
Pollock data.
strong variation with frequency, -~»

The corresponding low-frequency viscosity exhibits a

172 ., large ernough to be observed in

careful laboratory measurements reaching frequencies of order 108 or 107
hertz. Evans has found a similar strong frequency-dependence in the

Lennard-Jones shear viscosity near the triple point.

e

It remains a puzzle that the shockwave simulations which originall

motivated this work do not seem to show analcgous freguency or wave-
length effects. Comparisons of shockwave profiles from molecular

3 with those from Navier-Stokes continuum mechanics indicate

dynamicsz‘
that the effective transport coefficients in strong shockwaves are not
very different from those of ordinary long-wavelength low-frequency
hydrodynamics. A theoretical understanding of the profile similarity is

desirable.
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V. CONCLUSION

Although Hamiltonians of various kinds have previously been used to
derive Green-Kubo relations for the transport coefficients6, the
particular choice described here is uniquely related to thermodynamics.
This nonequilibrium Hamiltonian formulation of £luid flow provides
pedagogically simple routes to noneguilibrium fluxes and distribution
functions, to theoretical understanding of long~time effects, and to new
numerical methods for simulating systems far from equilibriunm,.

The same methods are now being applied to solid-vhase problems.lo At
the relatively high frequencies used in the viscous fluid calculations
described here, solids typically behave elastically. Lower frequencies
lead to the formation of dislocations and other defects, making it
possible to study plastic flow.

A property of the nonequilibrium equations of motion which might be
profitably explored is their effective irreversibility. Because only a
few particles are necessary to generate irreversible behavior, simula-
tions using adiabatic deformations of the kind described here could
perhaps elucidate the instability in the equations of motion responsihble

for irreversibility.
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