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I. INTRODUCTION 

Systems far from equilibrium often involve shock\-Javes--regions only 

a few free paths in width with large gradients in density, velocity. and 

stress.
l 

The research describe.d here is not directly concerneo with 

shockvlaves, but developed in a roundabout .,ay from attempts to describe 

dense-fluid shockwaves 2 with Navier-Stokes continuum mechanics.
3 

The 

Navier-Stokes approach to shockwave structure requires a complete 

knowledge of fluid properties in all of the thermodynanic states through 

which the material is driven by the shock process. In addition to the 

equation of state relating density, pressure, and energy! one must also 

know the state-dependent bulk and shear viscosities and the thermal 

conductivity_ Because little was known about the state oependenc(= of 

the bulk viscosity I set out to develop a computational method for 

measuring that viscosity in computer experiments incorporating adiabatic 

deformation. 

The resulting computational scheme for bulk viscosity has led to a 

Jeneral Hamiltonian formulation for adiabatic deformations! useful for 

solids as well as fluids. A Hamiltonian formulation is. desirable for 

any dynamical problem. It provides not only microscopic equations of 

notion, but also access to a well-developed time-dependent perturbation 

theory. Here I describe, in turn, the way the new Hamiltonian appeared, 

the consequences of applying linear-response perturbation theory to the 

':i1miltonian description of adiabatic deformation, and finally, the 

n'sults of m'h'.erical calculations based on the corresponding Hamiltonian 

~quations of motion. 

The numerical calculations strongly suggest that dense-fluid trans­

CC:rt coefficients exhibit frequency dependence large enough to detect in 

~"al laboratory experiments. 
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II. HAMILTONIAN DESCRIPTION OF ADIABATIC DEFORHATION 

Consider a macroscopic continuum undergoing a hODogeneous deforma­

tion described by a strain-rate tensor guo If we choose for the origin 

a location where gu vanishes, then the local velocity q is q.gu. For 

illustrative purposes we chose a simple shear deformation, with the x 

displacement proportional to the y coordinate: 

x Ey • (1) 

If this continuum deformation \vere suddenly appl ied I for a short time 

dt, to every particle in an atomistic many-body system, then the energy 

would change in a way dependent upon the initial uarticle coordinates. 

h'ith il paindse-additive potential energy, <!J L<p, the (potential) 

energy change could be written in terms of the pair-force contributions 

to the pressure-tensor cOI:!ponent p!y 

dE L(d¢/dr) (dr/dx)~x L¢' (xy/r) Edt ( 2 ) 

ThermodynaI:!ics suggests, on the other hand, that in a shear defor­

mation the kinetic part of P would also do work, causing a 
xy 

correspond change in the kinetic energy I: 

k
dK - d'mvxv P 

xy 
VE. ( 3)t.. y 

If the Hamiltonian H(q,p) describing the system included a term 

L then the kinetic-energy change (3) 'ltlould arise naturally. Thp 

Hamiltonian equations of motion (q dH/ap;p = -81I/aq) would provide 

additional accelerations, 

~p
y ( 4 ) 

The resulting kinetic-energy change would "agree with (3). 

The nEed for momentUI:! scaling, not just coordinate scaling, in 

adiabatic deformation, can most easily be appreciated in the ideal-gas 

case. Consider the honogeneous expansion of a monatomic ideal gas, 

with a linear strain rate :{fx = y/y = z/z EO: = (1/3 )V-/V. In this case 

the inclusion of a term Iq . P E " in tbe liaIail tonian would not only 

reproduce the macroscopic deformation, but would also provide 

accelerations, p = - , leading to adiabatic cooling. The reSUlting 
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rate of change of the kinetic energy with strain rate, 


. 
E; -(2/3)E(V/V), (5) 

gives exactly the thermodynamic ideal-gas energy-volume relation for 

adiabatic expansion I leading to a pressure varying as the 5/3 power of 

the number density. 

The two kinds of deformation just described, shear and dilatational, 

as well as longitudinal or mixed ones, can 

compactly described. Each corresponds to the 

to the usual equilibrium Hamiltonian, 

H H + Lqp:Vueq 

The perturbing term is the double-dot product 

the strain rate tensor vu. The d0uble-dot 

that all nine terms of the form rq . p . u are 

Adiabatic deformations could lbe? ca~ried 
ments, by interjecting occasional sudden 

scalings such as (1) and (4) into otherwise 

all be systematically and 

addition of a perturbation 

( 6) 

of Doll's Tensor4 Lqp and 

notation in (6) indicates 

included in the product. 

out, in computer experi­

coordinate and momentum 

conventional solutions of 

Newton's equations of motion. It is preferable to incorporate 

deformation smoothly in the equations of motion, as suggested by the 

HalCliltonian (6), Then the equations of lClotion, 

(7)q (p/m) + q'YU 

p F - YU'P I 

describe a continuous adiabatic process. 

Just as in the equilibrium case, the equations of motion (7) 

derived from the Hamiltonian (6} are dynamically reversible, provided 

only that the macroscopic strain rate V u is reversed along with thE; 

particle velocities. The mOlClenta from (6) have a simple interpre­

tation--they are the product of mass with velocity in a frame moving 

with the local macroscopic velocity: 

p - m (q - q • l7u) • (7a) 
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The equations of motion are also in exact agreel<lent with the thermo­

dynamic relation for an adiabatic deformation, 

E .g + L(p/m)'p = -VP:Vu, ( 8) 

where we use the microscopic global definition of the pressure tensor P: 

PV = LFg + I (pp/m) (9 ) 

This pressure tensor is exactly the average momentum flux within the 

periodic volume V. It is not a surface interaction, measured across a 

system boundary, so that our global adiabatic deformation sd;f;,me does 

not apply accurately to deformations with very large pressure gradients, 

such as those found in strong shockwaves. 

Hans C. Andersen 5 independently and simultaneously discov(:red a 

hy;:lrostatic form of the Hamiltonian (6). His ail:l was 1::0 develop a 

formulation for constant-pressure molecular dyn?r.ics, fixing the mean 

pressure by allowing volume fluctuations. In our work the strain rate 

is prescribed and produces fluctuations in the pressure tensor. In 

either case the equations of motion can readily be solved numerically. 

The velocity must be adj usted whenever a particle crosses a mov lng 

periodic boundary. The is unchanged in such a crossing, but 

the momentum is measured relative to a local velocity, and the local 

velocity is generally different on two opposite sides of the periodic 

volume V. 
The Hamiltonian for~ulation just described for adiabatic mechanical 

,,"ork has no known analog describing isochoric heat flow. The micro­

scopic analog of the thermodynamic relation dE = TdS has not been found. 

Despite considerable effort, this challenge remains. 

III. LINEAR RESPONSE THEORY 

Por small strain rates the adiabatic deformation described by 'V u 

can be treated as a small perturbation to the Hamiltonian Beq • Linear­

response theory can then be used to calculate the resulting (viscous) 
6

nonequilibrium properties. Zwanzig's review is the classical reference 

to the fundamental work of Green, Kubo, and Mori. A useful detailed 
7 

account appears in McQuarrie's recent text. 
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If ,ve imagine that a shear perturbation Lqp: VU is added to the 

Hamil tonian at time zero, then, at time t, the internal energy has 

changed by e,Er and the N-particle distribution function, from linear 

(8 ) response theory, reflects that change: 

sor P: I (l/kTljtvu:PVds . (10)o 

(9 ) The averages of dynamical phase functions, such as the energy and the 

pressure tensor, as well as the few-body distribution functions, can be 
;n the obtained from (10).8 As an example, consider the kinetic part of P V~ 

xy 

does <pxpy/m>no~.er. = -sV2 (I/kTljoo<p (olP kIt»~ dt (11 ) 
. ~ 0 xy xy eq

Hents, 

In the usual Green-Rubo autocorrelation expression for p the integrand:r;.y
::red a cont&ins a kinetic term pk (O)pk (t), a potential term pGl (0 1p¢ (t), and 

xy xy Xl' xy 
a If cross-term" [P< (0 1p¢ (t) + p¢ (0) p k (t) J • '\le find that the 

xy xy xy Xl' 
mean kinetic part of P contains the kinetic term and half tte cross term. 

xy 
'0 rate Thus, just as in the approximate Enskog theory, the cross term makes 

In equal contributions to the kinetic and potential parts of the momentum 

icall y. fl ux. 

cwving 
 The analogous calculation for bulk viscosity is particularly 

interesting for an inverse nth pO'vler repulsive potential, <j> := E (o/r)n. 
:: local III that case the contributions of \:.11'" Fotential-enerLj.1 allU kinetic­
:::riodic energy fluctuations can be directly related to the correspond ins 

fluctuations in the mean pressure: 
hanical 

nicro­ -n/2. (12) 
found. 

-tiKi VeP 

The exact result, valid at all times, that the potential part of the 

(constant-energy) pressure fluctuation is -n/2 times the kinetic part is 

a useful check of correlation functions. Por instance, consider the 

inverse 12th power soft-sphere potential. Equation (12), valid at anyby v u 

Linear- time, shows that for the fluctuations giving bulk viscosity the ratio 

'i seous) kinetic:cross:potential is 1:(-12):36, so that the potential 

ference contribution dominates, even at the lov/est density. The extension of 

:etailed the simple soft-sphere relations between the potential and kinetic 

pressure fluctuations to more general force laws remains a challenge. 

http:pxpy/m>no~.er
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IV. 	 NUMERICAL CALCULATIONS 

9A series of calculations was carried out for the inverse 12th powe~ 
soft-sphere potential. In that work the hysteresis associated with 

cyclic compression and dilation (with \j u varying sinusoidally in the 

time) was used to find the densi ty dependence of the soft-sphere bulk 

viscosity. The results from that investigation were surprising. The 

bulk viscosities found were less than the predictions of Enskog's theory 

by as much as a factor of seven. Altbough the calculations could not be 

pursued at very low densities, the moderate-density results varied 

approximately as the 3/2 power of density. A it is possible 

to "understand" the marked disagreement between the numerical 

viscosities and the Enskog predictions, based on the relative size of 

normal-stress and shear-stress fluctuations in inverse nth-power fluids. 

The results point out lhe need for a replacement theory; hopefully it 

will appear in time for Enskog's 1984 Cencennial. 

In the more realistic Lennard-Jones caseS a series of calculations 

near the tri~le i'oint p:coduced frequency-dependent bulk viscosities 

reasonably close to those obtained by integrating the ~ppropriate Green­

Kubo integrands, as measured by Levesque and Pollock. There is consid­

erable reproducible number dependence in the small-system long-time 

behavior of the Green-Kubo integrands, so that the actual large-system 

"long-time-tail" behavior of these functions is still in doubt. The 

agreement between the non-equilibrium frequency-dependent bulk 

viscosities and the Green-Kubo integrals could be noticeably improved by 
. 	 , 'I ' -3/2 had dl.ng a reasonable long-tl.me tal. I varyIng as t , to t e Levesque-

Pollock data. The corresponding IOvl-frequency v iacosi ty exhibi ts a 

s t rong varlatl.On Wl.t "requency, -w , arge enoug to e 0 serve 1n,., h f 1/2 1 h b b d' 

careful laboratory measurements reaching frequencies of order 108 or 109 

hertz, Evans has found a similar strong frequency-dependence in the 

Lennard-Jones viscosity near the triple point. 

It remains a puzzle that the shockwave simulations which originally 

motivated this work do not seem to show analogous frequency or wave­

length effects. Comparisons of shockwave profiles fro13 mo12culat" 

dynamics 2 ,3 with those from Navier-Stokes continuum mechanics indicate 

that the effective transport coefficients in strong shockwaves are not 

very different from those of ordinary long-wavelength low-frequency 

hydrodynamics. A theoretical understanding of the profile similarity is 

desirable. 

http:varlatl.On
http:long-tl.me
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V. CONCLUSION 

Although Hamiltonians of various kinds have previously been used to 

derive Green-Kubo relations for the transport coefficients 6 , the 

particular choice described here is uniquely related to thermodynamics. 

This nonequilibrium Hamiltonian fornulation of fluid flow provides 

pedagogically simple routes to nonequillbrium fluxes and distribution 

functions, to theoretical understanding of long-time effects, and to new 

numerical methods for simulating systems far from equilibrium. 
IOThe same methods are now being applied to solid-phase problems. At 

the relatively high frequencies used in the viscous fluid calculations 

described here, solids typically behave elastically. Lower frequencies 

lead to the formation of dislocations and other defects, making it 

possible to study plastic flow. 

A property of the nonequilibrium equations of motion which might be 

profitably explored is their effective irreversibility. Because only a 

few particles are necessary to generate irreversible behavior, simula­

tions using adiabatic deformations of the kind described here could 

perhaps elucidate the instability in the equations of motion responsible 

for irreversibility. 
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