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ABSTRACT 

A Fourier·tran3iorm technique is presented for obtaining the di"placement field 
of an edge (u"location that is moving in a. finite-width strip having cla.mped 
boundaries. Kuo\vn results are reproduced by thi" technique, and new solutions 
are obtained, which can be compared mth those from atomistic models. 

§ 1. I;:;TRODt:TCTlOX 

Because plastic flow occurs through the motion of dislocations, a detailed 
knowledge of dislocation structure and propagation is desirable (N aba,rro 
1967). Recent work in molecular dynamics, solving equations of motion for 
crystals containing a few thousand particles, makes it pm;sible to treat individual 
atomic displacements fot' dislocations in motion (:.YIoss, Hoover, Hoover and 
Ashurst 1977). In comparing these numerical calculations lviththe present 
preclictions of continuum elasticity theory, it is necessary to use identical 
boundary conditions. Boundary conditions are significant in dislocation 
problems, because the displacement field diverges at large R in the absence of 
boundary constraints (Nabarro 1967, p. 57). 

In this paper, we use a Fourier-transform technique to obtain the displace
ment field of an edge dislocation that is moving uniformly in a finite-width 

The dislocation is centred between the strip boundaries, whioh are 
clamped. This technique can also be used to treat dislocations positioned 
asymmetrically between the strip bOlmclaries and/or "ith other boundary 
conditions, e.g., traction·free. 

§ 2. ~IETHoD 

In the absence of body forces, the fundamental equation of motion in linear 
elasticity theory is : 

where 
R= U~+ Fj+ Wk, (1) 

and U, V and Ware the x, y, z displacement-vector components, respectively, 
and Aand 7J are the Lame constants. Equation (1) says that the net force on a 
volume element of material is zero. Love (1920) showed that a superposition 
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of \va,ves moving ..Yith a common velocity c would satisfy eqn. (1). 'Ve write 

F 	
:c 

J exp ( -- yk Iy I) sin lex' + B(k)rp exp ( - rpk Iy I) sin dk, (2) 
o 

c:t; 

V= 	J (y}A(k)yexp (- yklyj) cos kx' +sgn (y)B(k) 

o 


xexp(-rpk!yl)coskx']dk, (3) 

w 0, 

'where .p={l c2i<';T2)1!2, y=(1_c2!eI,~)li2, x'=x-et, and lei <eT; (YJ!p)1/2GT 
and cL = (;\ + 27!!P)1/2 are the velocities of transverse and longitudinal waves in a 
medium of density p. If b = Burgers vector and 

2-lJf;T2 sgn (y) +bcT 0:2 sgn (y)
A(k) = k 2 ,B(le)

'17' 'C 	 '17'c2krp 

0:2 1 - c2f2cT 
2, and one adds to U the function b/4 sgn (y), the exact solution 

(Eshelby 1949) for a moving edge dislocation in the infinite x-v plane is obtained. 
In the limit of zero velocity, the solution reduces to the well-knmffi static 
result, 

x' x'l btan-1 +::t2 tan-I - + sgn (y) 
~! ¢YJ 4 

b [ IX xy ] b-tan- -+ 	 (4)v)(x:l+y2) +4 sgn (y),y 2(1 

b r2v 1 2 > y2 ] (5)L-4(-:-C1--'-v) In (X +Y~)+-2(-1-v~)(-x"""2+'y2) , 

w=o, 

where C(::r; < 0, 0) = ±b!2, U(x> 0, 0) = 0, and v = Poisson's ratio. 
The important physical feature of eqns. (2) and (3) is that an edge dislocation 

is eompo:!ed of a unique admixture of wave-equation solutions, Furthermore, 
any convergent admixture of these solutions will satisfy eqn. (1). This 
property of the Fourier-transform solution allows one to consider yarious 
boundary \alue problems in a finite or semi-finite region of space. Consider 
the relaxation of an imposed shear displacement b by the passing of an edge 
dislocation centred in a finite-width strip. The boundary oonditions are 
U(x'<O, ±O)=±b/2, F(x'>O, 0)=0, U(x', ±A)=±b/2, Vex', ±A)=O,where 
A = the strip half-"width. We construct the displacement field by using an 
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) met.hod (:VIoss and Hoover 1978) and write 

co sin k.r;' [ , " " ,[ elle - sgn (y ) exp ( - yK iY I) +sgn (y )::x2 exp ( rPkly'lf 

co co 

+ l: An exp [yk(y' -2n)J+ L Bn¢ exp [¢k(y' 2n)] 
n=1 R=1 

co ro ]
+ ~1 Cn exp [ - yk(y' + 2n)] + )1~1 Dn¢ exp [ - ¢k(y' + 2n)] 

+ [~Sgn (y') +~'] (6) 

CD 0:cos kx' [ 2 

[dk -yexp(-ykly'!)+ ¢ exp(-¢kly'l) 

CD c:c 

+ AnY exp [yk(y' 2n)J + L -Bn exp [¢k(y' -2n)]
n-l 

+ CD Cn yexp[-yk(y'+2n)]+ n~lDneXp[-¢k(Y'+2n)]l (7) 

where x' (x et)/A and y' =yjA. 
The coefficients are most easily represented as power series in exp [k( y ¢)] 

and (1 y¢)-l: 

2" ( )A = L a m, n I,:m-l (8) 
n m-l (1_y¢)n - , 

b{m, n) I,:m-2nBn I (9)
m=l (1_y¢)n - , 

where g=exp [k(y ¢)]. 
The problem is solved by considering the boundary conditions and solving 

the resulting recursion formulae : 

20:
all, 1) = 1 +y¢, a(2, I) b(l, 1)= -2y, b(2, l)=-;J (l+y¢). (10) 

b(m, n+ I) 2ya(m, n) b(m - 2,n)(1 +y¢). (II) 


a(m, n+ I) CaCm, n) +b(n~- 2, n)</>][1- y¢] -bem, n+ I)</>. (12) 


b(m 2, n) 0,. for m:::;;2. (13) 


For this centred Donfiguration with boundaries Cn= -An. and Dn= -Bn· 
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Substituting eqns. (8) and (9) into (6) and (i), ~~, and integrating 

2 
-rrUc 1 ;tC' ? 1;X' ~ ~ ,[ ,arm, 1,1')-tan- -,+(X~tan- -,+ L, -' 

Ylj cpy" 1 "t::\ (l - yeP)" 

1 ( 2x'y'y ).' b(rn, n)¢x tan- -;:-;-::::-----:,;-;-----:-;-~~_ _:_;_:;------- _ 
[(2n-,Y )Y+(¢, -Y)(,m-l)] (l_y¢»n 

\ x L(2n+y )y+(<p y)(1n 1)]+x'2 

Jx tan-1 -9::r'y'FA.. ) ] 

[(2n - y')¢+ (cp - y)(m- 2n)]( 
\ x [(2n +y')¢ + (¢ - y)(In- 2n)] +X'2 

2 
+ rL~ san ('II') -I... bY'l Tr,C , 
, 4 4 J be.i' '0 c • 

. )' 
o:l 

211 [ya(m, n)" , 
J J;...J 1.: 9( "rh"ln(x:'+[(2n-y)y+(cp-y)(m-1)J2) 

n=1 1>1=1 - 1 y.) 

ya(m n) 
+ 'J, In(x'2+[(2n+y')y+(J,-y)(In_I)]2)

2(1-y,)" . 

b(m, n)
+ 2(1 y¢)l1 In {X'2+ [(2n- y')cp + (¢ - Y)(1n - 2n)]2) 

b(m,n) " J+ In (x'2+[(2n+y )¢+(¢-y)(m-2n)]2) .
2(1 y¢)" 

1 

- - - - -  ~ -  ~ -  -  - - - - - -
--------------, ..... ~ 
__________ "'Irrt.. ... _ 

- - - - -  - - - - -~ ~ , 

-------;-------

, '. 

Displacements in a. rigid-boundary strip after summing 40 images. The velocity is 
0-06 CT. The displacements are shown at the sites of a triangular lattice in 
order to visualize the effect of a finite lattice on the field. The tails of the 
aITOWS represent the atoms in an nnstrained lattice; the heads represent 
present atomic sites. 
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All the calculations have been made with Poisson's ration = 0-2.), cT = 

(3/S)1/'!, b I, and C L = (9/8}li2. These same values are appropriate to the 
molecula,r-d:ynamics calculations (Hoover, ~\Shurst and Olnesi:l 1(74) and 
not affeet the geuerality of the solution. 1 shows the displacement 
field throughout the after taking 40 The solution been 

2 

Atomic view of continuum displacements in a rigid.boundary strip. Circles have 
been drawn around the heads of the arrows in fig. 1. 

Fig. 3 
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::'.Iotion of the point (x, y) (0, -1(11) a,s the dislocation passes above it. The 
motion of the point is from right to left, and the y.displacement is plotted 
against the x.displacement. The motion increases with velocity, c=O, 0'56, 
and 0·82 The plot in the upper right is an expanded view of the top of 
the CT curve. 
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checked on the boundaries and is accurate to within 1% for 1:1:') < 2> The 
velocity is 0·56 CT and t = 0 (the is located at (x, y) =(0, 0)). An 
a~0mic representation of the dislocation is shown in fig. 2, where circles have 
be;:H dra\\in around the beads of the arrow;;; in fig. 1. Figure 3 shows the 
motion of the point (x/A, y/A) =(0, -1(11) as the dislocation passes above it. 
The motion of the is from right to left. Alternatively and equivalently, 
onto could plot the displacements of the (x', - 1/11) at a fixed time. 
Velocities of 0, Ctnd 0·82 CT are The motion increases with 
velocity. An new of the top of the c = 0-82 cT cur,s is shmlin in the 
upper right of This same behaviour appears in Eshelby's pl-au8 
solution. ~\ comparison of this solution with the results of the 
molecular dynamics calculations is in progress (W. C. Moss 1978, unpublished). 
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