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In order to understand the static and dynamic bases of macroscopic fracture mechanics, we study flawed 
microscopic crystals obeying Newton's equations of motion. The particles in these crystals interact with 
truncated Hooke's-law forces. The static results for energy, entropy, stress concentration, and crack structure 
are all consistent with expectations from macroscopic elasticity theory. Dynamic theory is less well developed. 
Our dynamic results illustrate the importance of surface energy and nonlinear terms in the interparticle forces 
in influencing crack morphology and propagation velocity. The propagating cracks, except in crystals 
preloaded nearly to the theoretical tensile strength, travel at speeds somewhat less than the long-wavelength 
Rayleigh surface-wave speed. 

INTRODUCTION 

The economic importance of fracture is sufficient 
to explain the widespread interest in this classical 
field among engineers. The integrity of aircraft 
and pressurized nuclear reactors, together with 
the interest in subterranean fracture for hydro
carbon recovery, are problems of current in
terest. At the same time fracture has not yet 
attracted much interest from physicistsl who 
could contribute a sound microscopic understanding 
of the mechanisms underlying the macroscopic 
phenomena of fracture. Several microscopic 
"models" of fracture have been described2 but 
these models typically incorporate the artificial 
features of noncentral forces and preassigned 
fracture loci or very complicated force laws.3 

Before introducing these inessential complexities, 
we prefer to understand the consequences of sim
ple central forces in a classical crystal undergoing 
fracture. 

Because we wish to incorporate fracture into the 
broadening range of subjects clarified by statistical 
mechanics and molecular dynamiCS, we study the 
simplest possible atomic model which can illus
trate the fracture phenomena, mass points inter
acting with linear-force Hooke's-law springs in a 
two-dimensional triangular lattice. The thermo
dynamic and lattice-dynamic properties for this 
crystal are already well known.4 This model bears 
a close resemblance to the simplest "finite-ele
ment" model used by structural engineers in 
macroscopic stress analysis. The equivalence 
is demonstrated in Appendix A. 

Recent progress in simulating mass, momentum, 
and energy transfer with nonequilibrium molecular 
dynamics5 makes us optimistic that fracture, 
another nonequilibrium problem, can be treated 
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successfully too. Here we summarize results of 
equilibrium and nonequilibrium fracture studies 
which demonstrate the wealth of new information 
readily available with today's fast computers. 

MODEL 

All of our crystals have the triangular (sixfold 
coordination) structure shown in Fig. 1. The par
ticles in these crystals interact with a truncated 
parabola, or with a double-parabola potential/ 
or with a parabola-linear potential, as shown in 
Fig. 2. The microscopic variables characterizing 
such a system are the particle mass m, the inter
particle spacing d, the spring constant k, and the 
well width w. 

If we write the macroscopic stress tensor for 
such a crystal in terms of the Lame constants A 

and 71 

(1) 

then the two constants are equal: A= 71 =-13 k/4. 
(Detailed calculation shows that the two shear 
moduli for the triangular lattice are equal. Thus, 
for elastic properties, the isotropic form of the 
stress tensor can be used. The equivalence is 
demonstrated in the paper by Hoover, Ashurst, 
and Olness. 4 

) The two-dimensional calculations 
correspond to three-dimensional plane-strain cal
culations with the same Lame constants or to 
three-dimensional plane-stress calculations with 
A' = 271 replacing A. 

Several kinds of boundary conditions can be im
posed on the crystal. The simplest of these, con
stant-stress, periodic, and constant-displacement 
boundaries, will be discussed here. Boundaries 
which correspond to linearly increasing stress and 
strain are also of interest in fracture problems. 6 
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FIG. 1. A 512-particle close-packed triangular lattice 
of mass points joined by Hooke's-law springs. The par
ticles interact with 32 additional boundary particles 
which in turn interact with a constant external force, 
+ad on the upper-boundary particles and -ad on the low
er-boundary particles. The effects of cracks on energy, 
entropy, and structure are studied by breaking some of 
the bonds linking neighboring particles. Periodic bound
aries link the left and the right sides of the crystallite, 
maintaining an average horizontal spacing equal to that 
found in a stress-free crystal. 
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FIG. 2. Interparticle potentials </>(r) and forces! (r) 
=-¢' (r). All of these potentials have the same curvature 
at the minimum, k =q,"(rmin =d), and hence the same 
linear elastic properties. The tensile strength of cry
stals composed of particles interacting with these poten
tials depends on the potential width LV. The single-para
bola potential (1) corresponds to linear elasticity theory 
in the limit that d and wid both approach zero. 

STATIC RESULTS 

We began by studying the static properties of 
crystals with several contiguous broken bonds. 
The horizontal boundaries were maintained at a 
constant stress and the vertical boundaries were 
joined periodically as shown in Fig. 1. For such 
cracks, in an elastic continuum, the stress field 
and stored elastic energy are well known. 7 

In Table I and Figs. 3 and 4 we show the varia
tion of stored energy and crack structure with 
crack length L in 512-particle crystals. These 
results are consistent with elasticity-theory pre
dictions: The energy varies as the square of the 
crack length, and the crack shape resembles an 
eUipse.7 

In these static calculations the interparticle 
forces were taken as linear functions of the par
ticle displacements up to a maximum stretch w 
« d at which the force discontinuously drops to 
zero (as in the type-l potential shown in Fig. 2). 

Macroscopic elasticity theory predicts that the 
stress and strain fields in the vicinity of the crack 
tip vary as r -1/2, where r is the distance from the 
tip, diverging at the tip itselI.ll The coefficient of 
the r -1/2 divergence is proportional to the"stress
intensity factor," the value of which, at failure, is 
tabulated as a material property K,t;' From 
macroscopic elasticity theory8 Klc is (rr/2)1/2(JfV/2 
=1.253(J,Ll/2

, where (J, is the perpendicular ten
sile stress at failure for a large plate containing 
a crack of length L far from the plate boundary. 
Analysis of our results (based on extrapolating the 
stretch in the spring next to the crack to the large
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FIG. 3. Energy increase, relative to an uncracked 
crystal, for stressed 512-particle crystals with '.!LId 

broken bonds. The prediction of macroscopic fracture 
mechanics, for a crack small relative to crystal dimen
sions, is the intercept, marked with an x . 
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FIG. 4. Displacements in the neighborhood of cracks 
with 2, 4, 6, and 8 broken bonds. The particles have 
been drawn as filled circles, which touch one another in 
the stress-free crystal. The displacements in the 
stressed crystal slightly exceed the predictions of mac
roscopic linear elasticity theory. The predicted shape 
for a small crack in a large crystal is elliptical, with 
a major-to-minor-axis ratio of (k/rr)/l3. The more 
complicated expression for a crack length equal to one
fourth the system width predicts a crack opening about 
3% wider than the large-crystal ellipse. The crack 
openings predicted by linear elasticity theory are shown 
as shaded areas in the figure. It should be emphasized 
that the scale of the displacements is arbitrary (but in
finitcsimal) in linear elasticity, and has thus been 
greatly exaggerated here for clarity.-
L limit) identifies the failure stress af for our 
structure as 0.89(d/LY 12 times the ideal crack
free failure stress of (3 k(w/d). If, for example, 
the springs break at a 10% extension (w/d:=0.1), 

is 0.154k(d/L)i 12 and the critical stress-inaf 
tensity factor is 0.19kti1/2. 

Bonds using a 6-12 Lennard-Jones interaction 
"break" at a 10.9% extension, in the sense that 
the force required to stretch the bond beyond that 
extension is a decreaSing function of r. Because 
our static calculations use linear forces, with the 
assumption w« ti, our use of those results to esti
mate critical streSS-intensity factors for finite w 
is only approximate. Nevertheless, detailed cal
culation shows that the calculated stress-intensity 
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FIG. 5. Entropy increase, relative to an uncracked 

crystal, for crystals with 2L/d broken bonds. These 
broken bonds correspond to a horizontal crack of length 
L lying between the 17th and 18th rows of particles shown 
in Fig. 1. For large L most of the entropy increase 
corresponds to the surface entropy for a surface of 
length 2L (indicated by the straight line "macroscopic 
theory" in the figure). 

factor, uSing the linear forces, lies within 2% of 
that calculated exactly for w=0.1ti. 

Because the fracture process is irreversible, 
the stress must drop below 0.89(d/L)1 12af in order 
for the crack to shrink. Analysis of our static re
sults shows that open cracks heal again at a stress 
0.24 (ti/L) 1 12 times the theoretical strength. Thus 
there is a wide range of stresses within which a 
crack of length L neither grows nor shrinks. This 
phenomenon is called "lattice-trapping" by Thom
son and co-workers.2 

Some new features are present in our calcula
tions. We have calculated the entropy contribution 
of a crack to the crystal by comparing the traces 
of the dynamical matrix before and after the crack 
is introduced.4 The entropy calculation could in 
prinCiple be carried out for an elastic continuum, 

TABLE 1. Energy and entropy changes induced in a 32-row, 512-particle crystal (see Fig. 
1) by introducing a crack of length L. The increase in energy corresponds to constant stress 
rr applied at the upper and lower boundaries of the crystal. The energy data are of the form 
kA¢/rr2L2 O.68+0.6d/L. The entropy data lie within 0.01 of the expression AS/k (Boltzmann) 
=1.354(L/d) 0.363(L/d}1/2 0.127. The large-L limiting energy agrees with the known result 
from elasticity theori and the large-L entropy agrees with the surface-entropy calculations 
of Ref. 4. The entropy calculations here are based on the method used in that reference. 

4Crack length/d 1 2 212 3 

k A¢/ (J2d 2 0.5024 1.2127 2.4871 3.8585 5.8711 7.9476 10.7882 13.5652 
AS/k (Boltzmann) 0.5488 1.1124 1.7157 2.3195 2.9391 8,5588 4.1866 4.8145 -
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though only with difficulty. In Fig. 5 we show the 
obtained as is indicated in Table I. The 

entropy contains not only the expected linear de
pendence on crack length, identical to the surface 
entropy previously calculated for the triangular 
lattice,4 but also a term of order L 1 

/ 2 , the con
tribution of the crack tips. The fact that energy 
varies as L2 and entropy as L suggests that the 
usual practice in fracture mechaniCS, ignoring 
entropy, can be justified in macroscopic calcula
tions where L is large. 

The static results also show that the next bond to 
break has nearly the same stretch as do three 
other bonds in the crystal. Figure 6 indicates 
that in many cases the static-lattice calCulations 
suggest that cracks will propagate by leapfrog 
propagation, in which springs once-removed 
from the crack tip break before the adjacent 
springs. These static considerations also sug
gest, in accord with experiment, that as fracture 
propagates through a crystal a relatively wide
spread damaged region can result, with a surface 
energy exceeding that of a clean cleavage crack. 

DYNAMIC RESULTS 

We study dynamic properties of fracturing crys
tals by using Verlet's solution of the equations of 
motion,5 replacing the particle accelerations by 
centered second-difference approximations: 

A choice of dt O.1(m/k)1/2 typically conserves en
ergy with four-figure accuracy. Some calculations 
were carried out with smaller time steps to con
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FIG. 6. Predicted quasi static fracture direction for 
a stressed 512-particIe crystaL The initially broken 
bonds (1, 2, ... , 8) are indicated by heavy lines. The 
most-highly-strained bonds are indicated by dashed 
lines-by symmetry there are two such bonds in each 
case. The next-most-highly-strained bonds are indicat
ed by dots. Only in the cases that 6 or 8 bonds are initi
ally broken does the crack "propagate" directly from its 
tip. Dynamic and nonlinear effects both inhibit the leap
frog propagation. 

firm that the results are insensitive to this choice. 
We began by exploring the propagation of cracks 

in crystals with the constant-stress boundaries 
shown in Fig. 1. The boundaries soon became 
grossly deformed (as shown in Fig. 7). This de
formation could be controlled by boundary damp
ing/ but the growing stress concentration (in
creasing as the square root of the crack lengthS) 
produced nonsteady hard-to-interpret results. Ac
cordingly we adopted instead horizontal-strip 
boundary conditions with fixed vertical and hori
zontal boundaries. The horizontal boundaries im
pose a tensile stress on the crystal. The vertical 
boundaries are fixed with the horizontal spaCing 
corresponding to a stress-free crystal. These 
conditions, together with related variants in which 
the vertical stress increases or decreases linearly 
along the strip, have been considered previously.6 
They make it possible to observe steady-state 
fracture and, for this reason, are of fundamental 
importance. 

Using the constant-displacement fixed boundaries 
we were able to achieve steady propagation, al
though only with some care. The calculations were 
carried out in three steps: initialization, relaxa
tion, and propagation. First, several contiguous 
bonds were "broken" near the crystal's left bound
ary. These broken bonds are in calculat
ing the accelerations used in Eq. (2). Second, the 
crystal was partially relaxed, building up stress 
concentration at the crack tip, by following the 
time development for a time 10(m/k)1/2. During 
this relaxation phase a critically damped dashpot 
was introduced in parallel with each of the un
broken Hookean springs. At the end of the relaxa
tion phase the breaking of the springs was 
set, by choosing w such that the adjacent to 
the inCipient crack would break. Then the dashpots 
were removed and the crack was allowed to propa
gate. It was verified that the velocities found for 
finite strips n-rows high and 5n-particles long pro
vide velocities which are not Significantly different 
from the long-strip case. The results are also in-

FIG. 7. Typical appearance, at long times, for a 
crystal undergoing fracture with constant-stress boun
daries in the abs ence of boundary damping. The bulging 
of the boundaries can be inhibited by viscous damping. 
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sensitive to the number of bonds initially broken. 
This was typically chosen to equal twice the num
ber of rows n so that the initial crack was of 
length indo 

Figure 8 shows a typical fracture pattern found 
with purely linear springs, in which w is treated 
as infinitesimal relative tQ d in solving the equa
tions of motion. The nearly isolated row of parti
cles is typical of the purely linear system and is 
due to the fact that the springs do not sense rota
tion of the interatomic force directions. The tip 
of the crack in these perfectly linear crystals also 
has a relatively artificial appearance. 

In order to test the dependence of propagation 
velocity on w we considered a range of widths from 
nearly zero to about four-tenths of d. In order that 
a regular close-packed lattice be the least-energy 
state of the system, the repulsive forces need to 
be sufficiently strong. Otherwise the crystal could 
in principle exhibit thermodynamic instability and 
collapse. For the single-parabola Hooke's-law 
potential to avoid this hazard of collapse, w can be 
no greater than d/131/2 = O.277d in two dimensions 
and d/25 1/2 O.200d in three dimensions. (The lim
its are a.196d and a.14Id for the double-parabola 
potential.) Results, for cracks just able to propa
gate, are plotted in Fig. 9 for both the single
parabola and double-parabola potentials. See Ta
ble II. These show that, as might be expected, the 
additional binding energy of the double-parabola 
well retards the crack, although by somewhat less 
than the factor a simple energy-balance theory 
such as Griffith's might suggest. 7 Our results 
show that only 38% of the initial strain energy in the 
crystal ends up as surface energy in the single
parabola case. Because Griffith's theory is based 
on the equivalence of the strain energy and the sur
face energy it can be expected to provide only 
semiquantitative estimates. 

An extrapolation of the single-parabola results 
to zero width (corresponding to linear elasticity 
theory) indicates a limiting fracture veloc ity of 
about 0.3d(k/m)1/2. There are two approaches 

FIG. 8. Typical appearance of a crystal in which the 
forces are calculated as linear functions of particle dis
placements (ignoring the effects of bond rotation). Non
linear terms, of order wid, inhibit the appearance of 
isolated rows of particJ es. 

which provide estimates close to this value. One 
is Mott's, 1 based on analyzing the kinetic-energy 
field in the vicinity of a propagating crack, result
ing in the estimate 0.40d{k/m)1/2. A second esti
mate might be based on the idea that cracks should 
travel at the Rayleigh (surface-wave) velocity be
cause a crack corresponds to newly created sur
face. In this event one might expect that dispersion 
of the surface waves would be instrumental in lim
iting the crack velocity to that of the shortest
wavelength Rayleigh wave. In Appendix B we cal
culate the dispersion relation for Rayleigh waves 
in the triangular crystal, using a method based on 
earlier work for the simple-cubic crystal,10 and 
find a sinusoidal dispersion relation with the slow
est wave phase velocity equal to 0.36d(k/m)l!2. 

The increase in speed from the elastic-theory 
result as w increases, shown in Fig. 9, should 
not be surprising. Two separate effects should 
lead to increased speeds as the well width in
creases. Both can be traced to the loss of crystal 
symmetry (finite-strain effects). First, the vi
brational frequency in the 60 0 direction of the diag
onal bonds increases. Second, larger widths im
ply that after a bond has broken the recoil will 
have a greater projection along the line of the 
next bond to break. Both effects lead to velocity 
increases of order 

The static-lattice analysis just outlined could 
only be strictly valid in a highly strained crystal 
where crack propagation can outrun lattice relax
ation.2 We have investigated this supersonic
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FIG. 9. Steady fracture velocity for a series of poten
tials of types I and 2 (see Fig. 2). All the data corres
pond to crystals just beyond the threshold loading for 
fracture. Except as indicated the data refer to 500-par
ticle strips with initial crack lengths of IOd. The statis
tical uncertainty of the data is indicated by the size of 
the plotting symbols. Portions of the fracture history at 
the beginning and end of the fracture have been omitted 
in determining those speeds. 
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propagation regime [with vI greater than the longi
tudinal sound speed, 1.061d(k/m)1/2], and find that 
the theoretical result, 

(3) 

describes the data quantitatively (Fig. 10). In (3) 

TABLE II. Propagation velocities vf of cracks in sys
tems NR-rows high and NL-particle-diameters long. 
The initial state of the system is achieved by starting 
with a perfect stress-free crystal, fixing the x coordi
nates of left-hand and right-hand boundary particles, 
applying the strain """ = ", fixing the y coordinates of 
the top and bottom rows of particles, "breaking" b 

bonds, [that is, ignoring the forces from these bonds 
in solving Eq. (2)], and allowing the system to relax with 
viscous critically damped dashpots in parallel with the 
unbroken bonds for a time 10(m/k )1/2. Then the dynami
cal evolution of the system is followed with the dashpots 
removed. The potential type (see Fig. 2) and well width 
are also listed. For all of these crystals the longitudinal 
sound speed is (t)1/2~/m)1/2d, the transverse sound 
speed is (-t)1!2~/m)I/2d, and the Rayleigh-wave speed is 
(3 - /3)1/2~/m)1/2d. Uncertainties in v I are generally 
±0.01~/m)I/2d. The time step used was generally 
0.1(m/k)I/2. 

NR NL b E Type wid vf(m/k)l/2/d 

10 50 19 0.05 1 a 0.068 0.34 
10 50 19 0.10 1 0.137 0.39 
10 50 19 0.20 0.277 0.54 
10 50 19 0.30 0.427 0.56 h 

10 50 19 0.01 2 0.0125 0.29 ±0.04 c 
10 50 19 0.05 2 0.066 0.337 d 

10 50 19 0.05 2 0.068 0.315 
6 50 11 0.129 2 0.137 0.34 

10 50 19 0.10 2 0.137 0.345 
10 50 19 0.10 2 0.137 0.347 e 
20 50 40 0.0707 2 0.137 0.34 
10 50 19 0.10 2 0.133 0.32 ±0.03 f 
10 50 19 0.15 2 0.207 0.372 
10 50 19 0.20 2 0.277 0.407 
10 50 19 0.25 2 0.348 0.440 
10 50 19 0.30 2 0.419 0.470 g 

a Fractures in type-1 crystals broke off-center after 
about 12 bonds had broken. 

b The shape of the crack tip resembles a large keyhole 
in this case, so that finite-width boundary effects are 
probably large. 

C Propagation for this very-narrow-well crystal was 
somewhat erratic. An otherwise identical calculation 
using the type-2 potential produced an erratic crack with 
velocity about 0.8~/m)I/2d. 

d This crack broke off-center after about six bonds had 
broken. 

e For this calculation a time step of 0 .05(m/k)1 /2 was 
used. 

f This crack bifurcated and came to a halt. 
g No second-neighbor interactions are included for any 

of the large-w calculations. 

Ii is the distance necessary for a bond to stretch 
before breaking-the initial stretch is w- Ii. See 
Table III. 

We have studied three different modes of crack 
arrest. The first of these demonstrates that the 
double-parabola potential is less prone to fracture 
than the single parabola (although they have identi 
cal elastic properties). Two crystals, 10-rows 
high and 50-diameters long, were loaded so that 
the diagonal bonds, far from the 19 initially bro
ken, were stretched to 0.597w. In the single-par
abola case, the fracture propagated the additional 
distance 40d across the entire crystal with a vel
ocityof 0.435d(k/m)1/2. In the double-parabola 
case, the fracture propagated only a distance 8d, 
with a velocity of 0.357d(k/m)1/2, then bifurcated 
(starting two cracks), and stopped. The final con
figuration is shown in Fig. 11. A similar compar
ison was carried out between the double-parabola 
and the parabola-linear potentials (potentials 2 
and 3 of Fig. 2). With w =O.ld and an initial strain 
of 0.088 the double-parabola crystal fractured 
completely across, with velocity 0.34d(k/m)1/2, 
while the parabola-linear potential failed to propa
gate. Increase of the initial strain to 0.11 resulted 
in a higher velocity for the double parabola, 0.523d 
x (k/m)112, and to a propagation length of 14.5d for 
the parabola-linear potential, at which point that 
crack stopped. An even greater strain, 0.125, 
was required to see propagation for the deeper 
potential; an unsteady velocity -0.38d(k/m)1/2 was 
recorded. This same loading greatly overdrives 
the double-parabola potential, resulting in a frac
ture velocity 0.82d(k/m)1/2 exceeding the trans
verse sound velocity 0.612d(k/m)1/2. Figure 12 
shows two stages in the fracture of a crystal con
taining a vacancy. The vacancy relieves the 

3.0 
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FIG. 10. Fracture velocity, using linear forces, for 
a series of 500-particle crystals. At very high initial 
loadings (6 approaches zero, where 6 is the stretch at 
failure less the initial stretch in a diagonal bond) the re
sults reproduce Eq. (3) of the text. Even at the greatest 
6 shown the propagation velocity exceeds the long-wave
length Rayleigh velocity 0.56d(k /m)1I2. 
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TABLE III. Propagation velocities vI of cracks in 500-particle crystals with linear forces. 
The well width w is treated as infinitesimal relative to d in these calculations. The crystals 
were initially relaxed, with critically damped dashpots parallel to the unbroken springs and 
with a fixed crack length of iOd. Following a relaxation time of 10(m/k)i/2 the dashpots were 
removed and the crack was allowed to propagate. The velocities found are e:'llressed in terms 
of the well width wand the additional stretch 6 required to break the springs. Results for 
small 6/w obey relation (3) of the text. The subsonic cracks, with smaller O/W ratios, ex
trapolate roughly to a zero-strain velocity of 0.36(k/m)i / 2d . This intercept may be mislead
ing because the morphology of the cracks changes for 6 values larger than those in the Table. 

0/(w-6) 0.675 0.500 0.400 0.300 0.200 0.100 0.05 0.03 0.02 0.01 
vj(m/k)1/2/d 0.67 a 0.733 0.738 0.806 0.926 1.00 b 1.06 1.25 1.67 c 2.50 d 

a This velocity was also reproduced, within about 1% at the same prestrain, in crystals 14
and 20-rows high. 

b In the linear calculations particles can remain connectcd with their neighbors despite a 
large displacement perpendicular to their original bond direction. Thus for the subsonic lin
ear-force "fractures," unrealistic damage, such as that shown in Fig. 8, results. 

C At this relatively high prestrain a nonlinear calculation, with w ~o .137d, gave the same 
fracture velocity. 

dAt or above this prestrain the measured velocities agree with the asymptotic relation (3) 
of the text. 

elastic strain in its neighborhood, first attracting, 
and finally stopping the advancing crack. 

CONCLUSION 

Our results show that even the simplest crystal 
models, with Hooke's-law forces, are sufficiently 
complicated to provide a host of interesting physi
cal phenomena, including varying propagation ve
10cities, widespread damage, while remaining sus
ceptible to exact analysis. We expect that further 
study of these systems will eventually provide as 
complete an understanding of fracture mechanics 
as now exists for the equilibrium and linear trans
port properties of simple systems. 
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APPENDIX A: RELATION TO THE FINITE-ELEME~T 

METHOD 

The finite-element method is often used by 
structural engineers in computer analyses of the 
thermal and mechanical behavior of complicated 
structures. The structure in question is divided 
up into zones ("elements") within which displace
ments, velocities, temperatures, etc., are as
sumed to vary in a Simple way. The transient, or 
steady-state, problem is then solved by matrix 
diagonalization. Systems with thousands of dis
crete elements can be treated. 

Consider now a Simple finite-element descrip-

FIG. 11. Illustration of the effect of the smoother 
double-paraboIa potential (2 in Fig. 2) In inhibiting frac
ture. The crack shown, initially of length lad, grew to 
a length of 18 d, bifurated, and stopped. The lines drawn 
within the particle circles indicate broken bonds. A 
single-parabola potential (1 in Fig. 2) behaves differently 
under identical loading conditions, propagating fracture 
across the entire crystal at a velocity 0.435d (kim )1/2. 

FIG. 12. Illustration of the effect of a vacancy in inhi
biting fracture. Initially the 499-particle crystal con
tained one void and a relaxed crack of length 10d. The 
crack was allowed to run, and did so until stopped by in
teraction with the vacancy. 
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tion of our elastic model crystal. If we use the 
springs joining our Hookean masses as element 
boundaries and if we assume that the displacement 
within each of the equilateral triangular elements 
is a linear function of -;, then the sLx constants in 
the relation 

can all be expressed in terms of the three sets of 
xy coordinates forming the vertices of the ele
ment. These displacements can then be intro
duced into the equations of macroscopic linear 
elasticity to calculate the strain energy of the tri
angular element in question. 

In order to compare the elastic energy according 
to this linear finite-element theory with the en
ergy from the Hooke's-law springs, we first ex
press the Lame constants 1\. and 17 in terms of the 
spring constant k: 

1\.= 1)= ;}v'3k. 

The energy for any triangular finite element is 
then the product of the elastic energy density and 
the element volume d 2 /4, 

¢ = rlJ kd2 
[ Hv· ii)2+ ;}(~ii+ ~iit) : (~ii+ ~iif)] . 

If we instead take the microscopic view of lattice 
dynamics we associate half of the potential energy 
of the three springs bounding a finite element with 
the energy of that element 

where 6' is the change in spring length from the 
least-energy state. 

n is a straightforward and tedious, but reward
ing, task to show that these two dissimilar expres
sions for the energy ¢ are identical.l1 Thus the 
least-energy configuration for a discrete crystal 
described either from the lattice viewpoint or 

1=1 

1=2 

FIG. 13. Crystal geometry used to derive the Rayleigh
wave dispersion relation of Appendix B. The top row of 
particles is a free surface. Rayleigh waves can travel 
along the surface (for wavelengths greater than 8.38d). 
Shorter-wavelength solutions are also found (generalized 
Rayleigh waves). All of the solutions obey the dispersion 
relation mw 2=k (3-y3)sin2 G, where the wavelength is 
rrd/8. 

from the isotropic continuum viewpoint (using lin
ear equilateral finite elements with sidelength 
equal to the interatomic spacing d) is the same. 
Evidently this energy correspondence between a 
simple crystal lattice with nearest-neighbor Hook
ean springs and an isotropiC elastic continuum is 
restricted to two dimensions; neither of the simple 
close-packed three-dimensional lattices (face
centered cubic and hexagonal close-packed) is iso
tropic. 

The equivalence is interesting, not only for ped
agogical reasons, but also because it might sug
gest useful approximations for generalizing finite
element energies in the case of imperfect lattices. 

APPENDIX B: RAYLEIGH-WAVE DISPERSION RELATION 

Begin by labeling the particles in a periodic 
crystal with indices I and J, as shown in Fig. 13. 
We will ultimately discard those particles with 
negative values of I so that then the row 1=0 will 
correspond to the crystal surface. If we assume a 
motion of the form 

(u, vh,.r= (U, iV) exp( -qI +i 8(1 + 2J)+iwt ] , 

then solutions with real U, V, q, and ecorres
~,pond to periodic waves, with wavelength 1Td/8 in 

the x direction, decaying exponentially in the y 
direction. In the long-wavelength limit we expect 
to find the continuum solutions10 

w= 1.12603(k/rn)1/2B for q1 =1.467B9B, 

q2=0.6B125B. 

The calculation proceeds in two steps. First the 
dispersion relation linking w, q, and e, 

rnw2 /k 3 _ 2eC _ e' ± [ (c' CC)2 _ 3s 25 2 ]1/2 ; 

c = cos 8; s = sinB; c' = cos2 B; 

C = coshq; 5 = sinhq, 

is solved for q. These solutions can then be 
checked to see whether or not the x and y forces 
on particles in row 0 due to those in row -1 van
ish. If these forces do vanish, then row -1 can be 
ignored and we have a surface-wave solution. The 
condition for the vanishing surface forces is 

q1!!-1(ceq1 
- 1) - v'3 se ~seq1 + v'3 (ceq1 -1) 

R 2 (ceQ2 -1) - v'3 seQ2 ~ R 2seQ2 ", v'3 (ceQ2 - 1) 

whereR i is the ratio of U to V in the solution cor
responding to qj. An expansion in powers of q and 
B shows that the long-wave limit values of Rl and 

R2 are -1.17996 and -0.39332, reproducing the 
continuum solution. For larger q we had a compu
ter find the solution. For values of the wave num

http:identical.l1
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-. 	 ber 8 less than coS-1(t)1/4:::: 21.47° (corresponding 
to wavelengths greater than 8.38 particle diame
ters) , Rayleigh-wave solutions were found with 
two distinct real positive ql' Particle displace
ments fall off exponentially with penetration into 
the crystal in this case. These solutions for q 
change in form, becoming complex conjugates, at 
8"'21.47" with the particle displacements falling 
off as a damped periodic disturbance for shorter 

"'This work was supported by the United States Atomic 
Energy Commission and by its successor, the Energy 
Research and Development Administration. A summer 
visitor to the Lawrence Livermore Laboratory, Pro
fessor Robert C. Cook of Lafayette College, Easton, 
Pcnnsylvania, participated in the static work. A pre
liminary account of some of these results was pre
sented at the Fifth Atlas Computer Symposium "Com
putational Physics of Liquids and Solids" at the Queen's 
College, Oxford, 12-14 April 1975. 
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