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I. Introduction 

Molecular dynamics is a product of today's fast computers. It is the solu­
tion of the classical equations of motion for up to several thousand simulta­
neously interacting particles. Such solutions, far beyond the reach ofanalytic 
methods, are crucial tests for approximate theories and often suggest how 
these theories can be made more nearly correct. Molecular dynamics has 
had a major impact upon statistical mechanics, the discipline that seeks to 
relate the gross macroscopic properties of molecular systems to those of the 
microscopic constituent molecules. 

The constituent particles treated by molecular dynamics need not be 
simple point masses; polyatomic molecules, ions, or even stars can be 
treated. In any case the gross overall view of thermodynamics, hydrodyna­
mics, plasma physics, or cosmology is replaced by a complete, detailed, 
particulate view-this detailed view is essential to any explanation ofmacro­
scopic behavior in terms of the properties of constituent particles. 

Molecular dynamics can be applied to both equilibrium and nonequili­
brium systems. How can we distinguish nonequilibrium from equilibrium? 
According to thermodynamics, equilibrium is characterized by uniform 
chemical potentials, pressure, and temperature. All other properties of the 
system (specific heat, pair distribution functions, etc.) are then functions of ... 
the thermodynamic state specified by fJ, F, and T. Nonequilibrium is charac­
terized by gradients in the state variables or by values of these variables lying 
off the equilibrium pFT surface. Gradients lead to responding mass, 
momentum, and energy fluxe$ which eventually destroy the gradients unless 
these are maintained by external work. Thus macroscopic nonequilibrium , 
systems are characterized by mixing and dissipation. On the microscopic 
level of molecular dynamics the difference between equilibrium and non­
equilibrium is less clear-cut. Indeed, the entire concept ofmicroscopic equili­
brium itself is elusive because chemical potential, pressure, and temperature 
have meaning only as averages, and all such averages fluctuate locally, even 
in isolated and undisturbed systems. A useful operational test for microsco­
pic equilibrium is to see whether or not each average property of the in­
vest~gated ~ystem lies within the range of equilibrium fluctuations. Thus, 
except near phase transitions, energy and momentum in a region with N 
particles should lie within ranges of order N 1/

2 centered about the average 
energy and momentum. Any deviation much larger than this identifies a 
nonequilibrium system as such. 

Nonequilibrium molecular dynamics often requires external force con­
tributions in addition to the interparticle forces. These extra forces play the 
role of sources or sinks of work and heat and serve to link the N particles 
being studied to external boundaries or fields. The extra forces are required 
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because nonequilibrium systems imply dissipation, which is the conversion 
of work into heat. 

Equilibrium systems are simpler. For a system of fixed composition, two 
independent .. state variables" characterize equilibrium; average values in 
such a state are expected to be independent of the initial conditions for long 
enough computer runs. For a dynamic equilibrium system of fixed composi­
tion, the pressure and the kinetic energy (proportional to temperature) can 
be calculated and averaged as functions of volume and energy. For such 
equilibrium averages the dynamical method is unnecessarily complicated. 
The independent thermodynamic variables (N, V, and T, for instance) can 
be used to define an appropriate statistical partition function, and any of the 
dependent thermodynamic properties can then be determined from the par~ 
tition function using the simpler Monte Carlo method (Ree, 1971; Wood, 
1968). 

Although characterizing a system as "equilibrium" or "nonequilibrium " 
presents a little difficulty, tracing the history of either sort of system is 
straightforward with molecular dynamics. The underlying principle is a 
simple one. We solve, with sufficient accuracy, the classical equations of 
motion 

i = 1,2, ... , N, (1) 

if the system contains N structureless particles. If the particles are composite 
(polyatomic for example), then N would represent the total number ofatoms 
comprising these particles. Each trajectory ri(t) is then traced forward in 
time from the given initial conditions. In the equilibrium case, or the case of 
an isolated nonequilibrium system, all of the forces can be derived from a 
potential function F j = -Viet>, but that simplification is not essential. 

Should the potential et> be simple or complicated? Results and conclusions 
are most easily understood and generalized for simple potentials, such as the 
inverse powers; on the other hand it is certainly true that the ultimate theory 
has for its goal precise quantitative agreement with experiment. Potentials 
with as many as 11 constants have been used in order to describe real 
materials "realistically." When,ever calculations are primarily intended to 
aid the intuition, by suggesting or testing new approximations or correla­
tions, Occam's razor should be used to simplify the forces. 

Both the thermodynamic equilibrium view and the hydrodynamic non­
equilibrium view reduce the number of degrees of freedom from those of the 
microscopic view. Molecular dynamics directly involves variables (the par­
ticle coordinates and momenta) hidden from macroscopic view. On a micro­
scopic scale molecular dynamics is inherently a nonequilibrium method in 
which time and spatial averages always deviate somewhat from equilibrium 
values. Time averaging reduces the 6N variables of molecular dynamics to 
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the three thermodynamic state variables. The reduction in the number of 
variables achieved by hydrodynamics is more obscure. Hydrodynamic var­
iables (number density, momentum density, and energy density, for instance) 
are defined at all points in space, implying at first glance an infinite number 
of degrees of freedom, not Just 3N. However, hydrodynamic quantities can 
be interpreted physically only in space-time intervals large enough to con­
tain many particles. Otherwise fluctuations make the averages poor approxi­
mations. The number of hydrodynamic regions is ordina-rily much smaller 
than the number of particles. 

It is not easy to decide which variables and averages in a molecular 
dynamics problem are significant and worth saving, and which should be 
discarded. In nonequilibrium systems, just as in equilibrium ones, we want 
to concentrate our attention on properties that characterize well-defined 
nonequilibrium .. states." Variables that fluctuate wildly or vary widely over 
a set of histories derived from similar sets of initial conditions are of less 
interest. (The N -particle distribution function is the extreme example of a 
function containing excessive information, exhibiting large fluctuations, and 
taking a long time-a Poincare cycle-for its average value to converge.) 
Judicious choices of space and time meshes suitable for nonequilibrium 
problems have to be made. The space mesh has to be fine enough to describe 
significant gradients in composition, momentum, and energy; the time mesh 
has to be fine enough to describe significant relaxation processes. Because 
the relaxations are ordinarily achieved through dynamical particle interac­
tions, the time mesh is ordinarily of order one collision time. 

A. EARLY EFFORTS 

Much of the pioneer molecular dynamics work was devoted to approach­
ing and characterizing equilibrium. The characterization of equilibrium 
provided a check on the met,hod because equilibrium results could be 
compared with those derived from the Monte Carlo method. Equilibrium 
systems were characterized by measuring long-time average values (for times 
long enough to dissipate the influence of the initial conditions) of pressure 
and temperature and functions of the fixed composition, volume, and 
energy. 

The approach to equilibrium was examined in detail using molecular 
dynamics by observing the decay of some unlikely initial condition, such as 
all particles traveling with identical speeds or a single particle having ini­
tially all of the kinetic energy. 

During the period from 1940 to 1970 the computer calculations estab­
lished that (1) many systems do approach equilibrium in reasonably short 
times and (2) most thermodynamic properties of gases, liquids, and solids at 
equilibrium can be understood in terms of relatively simple theoretical 
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models. Perturbation treatments of the nearly ideal imperfect gas (Mayer 
and Mayer, 1940) and the nearly harmonic solid date back to the 1930s 
(Born and Huang, 1954). The semiquantitative theory of the liquid phase 
(Mansoori and Canfield, 1969; Rasaiah and Stell, 1970; Barker and Hender~ 
son, 1967; Henderson and Barker, 1970; Andersen et a!., 1971) developed 
much later. At present, interest has slackened in computer calculations of 
equilibrium properties for simple central force laws because the current 
nearly quantitative theoretical models make these largely unnecessary. 
Instead, most eqUilibrium calculations are exploring more specialized fields: 
mixtures (Rahman et al., 1972), polyatomic molecules (Gibbons and Klein, 
1974), quantum systems (Hansen and Weis, 1969), and relativistic systems 
(Guichelaar et al., 1973). 

How did the early molecular dynamic equilibrium calculations contribute 
to our understanding of the microscopic basis of thermodynamics? Simul~ 
taneous Monte Carlo statistical calculations showed that, within the numer­
ical fluctuations common to computer calculations of practical length, the 
two computer methods \\::ere in agreement. This quantitative agreement be­
tween two independent calculations provided not only a welcome check of 
the numerical work but also an experimental proof that time and phase­
space averages agree, within statistical fluctuations. This famous "quasi­
ergodic hypothesis" can be used as a formal basis for statistical mechanics. 
It states that equilibrium properties can be obtained either by time averaging 
or by averaging with equal weights over all accessible states: 

(f) = 'LJi <= ~ J' t f(t) dt, for large enough r. (2)'L 1 r 0 

Such a statement is fine for a relatively simple function!, such as pressure or 
potential energy, but not for very complicated functions. If, for example, one 
were to attempt the evaluation ofthe N-particle equilibrium spatial distribu~ 
tion function [known to be proportional to exp( - ct>/kT) at temperature T, 
where ct> is the total potential energy function] through a time average, the 
time average would have to cover a period long relative to a Poincare cycle 
time. A Poincare cycle is the time required to traverse all states of interest at 
least once. These times are incredibly large, exceeding the age of the universe 
for N of order 10, 

In the 1960s calculations showed that potentials incorporating a repulsion 
at short range and an attraction at longer range result in realistic phase 
diagrams with gas, liquid, and solid phases (Hansen and Verlet, 1969). See 
Fig. 1 for an example. The earlier hard-sphere work (Wood et aI., 1958; 
Wainwright and Alder, 1958) had shown that repulsive forces alone are 
sufficient to account for both the structure of the liquid phase and the 
melting transition linking the liquid and the solid phases. For two fluid 
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Fig. 1. Temperature-density phase diagram for particles interacting with the Lennard-lones 
potential. Between the critical temperature, kTle = 1.36, and the triplepoint temperature, 
kTIe = 0.68, two fluid phases, the gas and the liquid, can coexist. The phase diagram for the 
purely repulsive soft-sphere part of the Lennard-lones potential 4e(O'lr)ll is also shown. The 
shaded band of two-phase states separates the soft-sphere fluid phase from the face-centered­
cubic solid phase. 

phases to coexist, either attractive forces or very anisotropic forces (as in a 
liquid crystal) are necessary too. 

B. SCOPE OF PRESENT-DAY WORK 

What nonequilibrium problems should be solved, now that the approach 
to equilibrium and equilibrium itself have been characterized? The theoreti­
cal basis of nonequilibrium work is the Boltzmann equation (Chapman and 
Cowling, 1960); after decades in which experimentalists believed the equa­
tion to be established theoretically while theoreticians believed its founda­
tion to be experimental (Barker et al., 1971) a careful comparison of the two 
has established its validity at low density with small gradients. Within these 
density and gradient limitations, even nonequilibrium systems are under­
stood quantitatively. At higher density and with larger gradients the theo­
retical predictions are only semiquantitative and lie on empirical 
foundations. The traditional mission of the .. kinetic" theory, the study of 
microscopic nonequilibrium systems, is threefold: 

(i) to reveal the microscopic basis of the linear laws governing the diffu­
. sion of mass, momentum, and energy: 

j = -DVp Fick's law for diffusion; (3) 

p = [Po - A(V • v)]1 - '1(Vv + Vvt) Newtonian viscosity; (4) 

q = -KVT Fourier's law for heat conduction (5) 
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(ii) to express the coefficient of diffusion D, the coefficients of viscosity A.. 

and 11, and the coefficient of thermal conductivity K in terms of the microsco­
pic force law; and 
. (iii) to determine the limits of (or corrections to) the linear relations 
linking the flux of particles j, the flux of momentum P, and the flux of energy 
q with the number density gradient V p, the velocity divergence V . v, the 
strain-rate tensor Vv and its transpose Vvt, and the temperature gradient 
VT. 

Once these three tasks have been successfully carried out, macroscopic 
hydrodynamics, together with any extensions suggested by (iii) above, can 
then be used to solve particular problems of interest. This theoretical pro­
gram has been successfully carried out only at low density (via the Boltz­
mann equation). So far, kinetic theory has failed to make quantitative 
predictions. This theoretical shortcoming leads to the present interest in the 
computer method of molecular dynamics. 

In addition to these general kinetic-theory goals devoted to supplying the 
foundations for the macroscopic description of nonequilibrium systems, 
there are several additional areas in which the macroscopic approach is itself 
not particularly useful. In these areas the microscopic approach ofmolecular 
dynamics can contribute. If a system is either very small, or very far from 
equilibrium, the microscopic approach may well provide the only adequate 
understanding of .... macroscopic" properties. Examples include strong 
shockwaves (Bird, 1970), plastic flow of solids, the damage caused in solids 
by radiation (Gibson et al., 1960; Erginsoy et al., 1964); surface structure 
(Lee et al., 1974), and the propagation of cracks (Gehlen et al., 1972). We will 
assess the progress and the prospects for both kinds of calculations, those 
which support hydrodynamics, and those which lie outside its scope. 

. II. Molecular Dynamics 

A physical system to be studied by molecular dynamics involves interact­
ing particles, boundaries which contain these particles, and external forces 
which interact with the particles. The simplest problem in molecular dyna­
mics eliminates two of these three components and follows the motion of an 
isolated system of particles in a periodic box. A periodic box is one in which 
a particle .... leaving,. the system simultaneously reenters on the opposite side. 
The periodicity eliminates surface effects so that only particle-particle inter­
actions need be included. If the interparticle forces are conservative, then 
mass, momentum, and energy are all constants of the motion. In the usual 
case the forces are taken to be sums of pair contributions: 

Fi = -Vi L ¢(rij)' (6) 
j;:f-i 
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Fig. 2. The hard~sphere mean free path, for spheres of diameter (1, as a function of density. 
The close-packed density is Po. 

If the density is low enough (comparable to atmospheric density or less), 
then the dynamical problem can be simplified, treating the collisions statis­
tically, from the low-density Boltzmann equation viewpoint. The Boltzmann 
equation is based on the assumption that particle collisions involve isolated 
pairs of uncorrelated particles. This assumption should hold when the time 
between collisions corresponds to a path much longer than the range of 
interparticle forces. Figure 2 shows how the mean free path for hard spheres 
depends upon density. In order for this path to reach 100 hard-sphere 
diameters the density has to be reduced to about one thousandth of the 
close-packed density. At high density particles become correlated with their 
neighbors; near the freezing point a particle spends most of its time in strong 
interaction with several neighbors, not just one. Thus a dense-fluid particle 
trajectory (Fig. 3) is more complicated than the series of straight line seg­
ments between infrequent collisions visualized by the Boltzmann equation. 
In dense fluids no quantitative statistical simplication is possible, and the 
equations of motion have to be solved exactly. 

A. GENERATING TRAJECTORIES 

At least five separate schemes for solving the equations of motion have 
been used (Gibson et aI., 1960; Rahman, 1964; Harp and Berne, 1968; 
Verlet, 1967; Aarseth, 1972). Because all of these schemes appear to produce 



9 N onequilibrium Molecular Dynamics 

0.60 3.0 I 

0.30 1.5 o 
500 o 

c.cI>c. 

c. 0 c. c.
0 c. 

c. 
0 c. c. 

0c. c.o c. 0 0 0 0.0 C.
C. 

~o »J'c. 0 
c. C. 

t> t> 0.0. 
c. A 

t> c. 

'-F1i 
0 

A AlPA ;l).a::J 

~ -0.60 -a '1000 

6 0.2~ 0.48 0.72 do 
~ (~)1/2 

Fig. 3. Portion of a typical particle trajectory in a Lennard·Jones simulation of liquid 
argon at its triple point. The components x, X, and xare shown for a time interval of approxi­
mately 1 psec (10- 12 sec). Individual values are shown for the 100 time steps of 10- 14 sec each. 

results of similar accuracy with similar investments of computer time, we 
describe only the simplest, Verlet's: 

(7) 

If a record is kept of the coordinates at the current time t [from which Fi(t) 
can be calculated] and at the previous time t - dt, then new coordinates, at 
time t + dt, can be calculated by solving this equation for ri(t + dt). The 
time interval has to be chosen large enough (otherwise the particle trajec­
tories traced out in the available computer time will be too short) and also 
small enough (if dt is too large, then the difference equation fails to conserve 
energy and is a poor approximation to the differential equation of motion). 
In a dilute gas dt would have to be small enough so that the duration of a 
single collision (of order one picosecond at room temperature, 10- 12 sec) 
spans several time steps. For a dense fluid, or solid, dt should be chosen so 
that a typical particle's vibrational period takes of order ten time steps 
(Fig. 3). 

Notice that the velocities of the particles never explicitly enter Verlet's 
formulation of the equations of motion. These can be calculated, with errors 
of order (dt)4, from the centered difference equations 

vj(t) [rj(t - 2 dt) - 8ri{t - dt) + 8rj(t + dt) - ri(t + 2 dt)]j{12 dt). (8) 
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If the force law has a complicated functional form such as the ll-constant 
one used by Lee et al. (1974) to represent argon, a time-saving alternative to 
the calculation of the interparticle forces becomes attractive: the forces can 
be tabulated as numerical functions ofthe interparticle separation. Six-figure 
accuracy can be obtained easily. The process just outlined, in which the 
forces are either calculated or tabulated, can be used to generate trajectories 
with up to several million time steps. The number of time steps is limited 
primarily by the cycle times of the fast computers used. At present these 
times are of order 10 nsec (10- 8 sec). When the trajectories have been con­
structed the "molecular dynamics" problem has been solved. What then 
remains to be done is to interpret the data, deciding which variables or 
averages best represent the results. 

B. REVERSIBILITY OF TRAJECTORIES 

To be strictly correct we have to qualify the claim that we can "solve" the 
equations of motion. It is worth noticing that our solution of the difference 
equations of motion is qualitatively different from the true solution of the 
differential equations of motion. The reason is that any slight error in a 
particle trajectory (such as the apparently minor error induced by keeping 
only 14 significant figures!) grows exponentially large with time. Ultimately 
the particle's collision sequence differs qualitatively from that characterizing 
the true solution (with an infinite number of significant figures). This same 
exponential growth in the trajectory error is responsible for the surprisingly 
small number of times an elastic sphere can bounce on a similar sphere 
initially two diameters below it, taking into account the momentum uncer­
tainty implied by the uncertainty principle of quantum mechanics. In any 
computer simulation the reversibility of the equations of motion is ulti­
mately destroyed by the error produced in the last significant figure kept in 
the particle coordinates. This is true even with Verlet's scheme which is in 
principle reversible (symmetric in the time) if roundoff error is ignored. 
Despite the irreversible character of computer simulations there is no 
evidence that the "solutions" obtained differ in any thermodynamically or 
hydrodynamically important way from true solutions of Newton's differen­
tial equations of motion. 

It is true in principle that more nearly accurate difference schemes, with 
error terms of higher order in dt, can be derived by combining coordinate 
values at ever greater numbers of discrete times. The actual gain in accuracy 
does not seem to justify the extra programming effort involved. From the 
physical point of view it is clear that eventually, usually in a few time steps 
(see Fig. 3), a particle has forgotten its past history. Information along its 
traiectory at even earlier times therefore is of little value and may even be 
misleading in trying to predict the future. Thus the smooth, analytic nature 
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of the trajectories should not be taken too seriously. Even for the relatively 
simple trajectory ofan harmonic oscillator, with frequency (.0, 27 terms in the 
expansion of r(t + de) would be needed to calculate r(t + (.0-1) with six­
figure accuracy. The most efficient use of computer time appears to lie with 
low-order difference schemes such as Verlefs coupled with a relatively small 
time step. 

C. IMPULSIVE FORCES 

The pioneering calculations of the 1950s (Alder and Wainwright, 1958, 
1959) used impulsive forces (infinite, but acting over zero time to produce 
instantaneous momentum changes) derived from the hard-sphere and 
square-well potentials. In these cases the particles do travel along straight 
line segments between isolated binary collisions, even at high density. In 
order to avoid making trajectory errors of order dt, it is necessary to use a 
different dynamical method for hard spheres and square wells: the precise 
times associated with each collision are calculated accurately and the par­
ticles are advanced in time to their next collision; thus dt varies with time. 
Figure 4 illustrates the hard-sphere and square-well potentials along with 
the four kinds of collisions which are possible with the square-well interac­
tion. These simple potentials played valuable roles in establishing the 
approach to equilibrium (Alder and Wainwright, 1958) and the number­
dependence of thermodynamic properties (Hoover and Alder, 1967). Pair 
distribution and free-energy functions derived from the hard-sphere work 
made it possible to develop the successful perturbation treatment of equili­
brium liquids. Now that these problems have been solved and present com­
puters are able to handle continuous potentials efficiently, interest in the 
hard-sphere and square-well problems has abated somewhat. 

HARD SPHERE SQUARE WELL LENNARD -JONES 

.t. 0 
E 

-I 

CORE 

-.ESCAPE 
.-CAPTURE 

BOUNCE 

Fig. 4. Hard·sphere, square·well, and Lennard·lones pair potentials. Each has been used 
extensively in molecular dynamics calculations. 
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D. LIMITATIONS 

Molecular dynamics calculations are limited in scope, accuracy, and 
trajectory length by the computer time req uired to calculate the interparticle 
forces. If all of the N(N - 1)/2 force components are explicitly calculated, 
then the maximum time interval that could be studied in 104 sec of com­
puter time would be of order 

if we make the optimistic assumption that 107 force components per second 
can be calculated. For argon at its triple point, dt is 10- 14 sec-larger values 
lead to excessive energy-conservation errors. Thus 864 argon atoms could be 
(and have been) followed in time for about one nanosecond. A slight im­
provement over such estimates results if a table of near neighbors, revised 
occasionally, is maintained while carrying out the calculation. The force 
contributions between faraway pairs of particles can then be ignored. This 
improvement can increase the maximum trajectory lengths by roughly one 
order of magnitude. 

A second possibility for studying longer trajectories is applicable to 
plasmas or to astrophysical systems. In either case the pair potential is long 
range (ex:: l/r), and the particle motion is influenced primarily by faraway 
neighbors rather than close ones. The effect of the far neighbors can be 
approximated by dividing space into a number of zones and calculating a 
field by counting the number of particles per zone ignoring the precise 
locations. This simplification makes it possible to study some tens of thou­
sands of particles in astrophysical problems (Hohl, 1972). 

Because the computer simulation is limited to short times, functions 
whose relaxation time is of order 1 nsec or more cannot be accurately 
determined in computer ~lculations. It is for this reason that the only 
thermodynamic functions normally measured are the pressure, potential and 
kinetic energies, and their fluctuations. Higher order fluctuations require 
prohibitively large computer runs. The time required to dissipate a tempera­
ture fluct,l,lation in an 864-atom simulation of argon at its triple point can be 
estimated from the thermal diffusivity, 8 x 10- 4 cm2/sec, and the system 
half-width, 3.4 x 10- 7 cm: (3.4 x 10- 7 )2/(8 x 10- 4 ) = 10- 10 sec, close to 
the maximum time such a system can be studied. The decay of higher fluctu­
ations (specific heat fluctuations, for instance) is driven much more weakly 
and requires longer times. 

Both the study of particle trajectories and the study of thermodynamic 
fu~ctions suggest that in numerical work it is better to estimate several 
values of low-order derivatives than fewer values of high-order derivatives. It 
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would be interesting to have a quantitative study analyzing the time­
dependence of the high-order d~rivatives for a simple system (such as a 
Boltzmann-limit gas) in order to make these statements more precise. 
. In addition to limitations imposed by relaxation times, the finite size of 
systems limits the length scale of the phenomena to be studied. A very 
"large" computer system of 16,384 particles, is, for triple-point argon, only 
87 A in width. Many interesting problems with "small" characteristic 
lengths are still too large for efficient computer study. Turbulence, for exam­
ple, has characteristic lengths of the order of 1 mm. Fracture, which is 
dominated by dislocations, voids, and grain boundaries, is another example 
of a small-scale phenomenon too large for effective study on the atomic 
scale. Although these two problems are too large-scale for comprehensive 
simulation, their salient features-viscosity, dislocation motion, void 
growth, and grain boundary structure-can be individually treated. 

Fortunately many thermodynamic and hydrodynamic properties are rela- . 
tively insensitive to long-wavelength phenomena. When periodic boundaries 
are used, errors in equilibrium properties due to the finite size of computer 
systems are typically of order liN or In NIN. The insensitivity of transport 
properties to system size is not so well characterized. As we will see, errors of 
order N- 1/3 can occur. 

E. NONEQUILIBRIUM BoUNDARY CONDITIONS 

Nonequilibrium conditions can be established, or maintained, in three 
distinct ways: (i) initial conditions deviating from the normal equilibrium 

.; range, allowing the approach to equilibrium to be studied; (ii) interaction 
with an external field that acts upon all of the particles in the system; or (iii) 
interaction with an external field that acts only on some of the particles, such 
as those sufficiently close to a boundary of the system. All three kinds of 
nonequilibrium systems have been studied. The first kind involves the decay 
of an isolated system rather than a steady process such as heat flow between 
boundaries of different temperatures. The other two kinds of system can be 
used to study either steady or nonsteady nonequiHbrium problems. 

Because nonequilibrium systems dissipate work (or available work, such 
as chemical potential) into heat (or entropy, such as the entropy of mixing) 
any steady state problem must include a means for removing thermal energy 
(or particles) from the system. This is most easily achieved by the approach 
in which thermal reservoirs are maintained along the boundary (Ashurst, 
1974). It would be possible to use a complicated external field (analogous to 
Maxwell's demon) to extract heat throughout a system, not just at the 
boundary. Although this method would have the advantage of reducing 
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boundary effects, it has the very real disadvantage of altering the nonlinear 
properties of the "bulk" system being studied. 

If the third approach is adopted, in which only some of the particles 
interact with external forces, the exact form of these forces has to be chosen 
judiciously to minimize the effects ofthe boundary on the bulk material. It is 
well known from equilibrium work that boundary effects produce changes in 
the intensive bulk properties of order N- 1{3 (the surface-to-volume ratio). 
Even for a large 1000-particle system these effects are of order 10%. To 
minimize boundary effects a boundary region, such as that shown in Fig. 5, 

1+1/N L ...--____-+---4-----, 

L 
L 

---Nw Ntl2 
r-~~~~~~~-~ 

X or YPLANE 

Fig. S. Boundary conditions used in computer simulation of momentum or energy flow. 
The upper and lower regions contain N .. particles each, confined by reflecting elastic walls 
(the other two directions have periodic boundaries). The central region, within which fluxes 
are measured, contains N particles. The velocity and temperature of the upper and lower 
regions are maintained by the use of external momentum and energy reservoirs. 

can be used. Provided that this region has a thickness comparable to the 
range of the interparticle forces, particles near the boundary will behave very 
much like those in the bulk, surrounded in all directions by homogeneous 
fluid. From the operational viewpoint, the boundaries should be adjusted to 
simulate an infinite half-space of material as closely as possible. 

An unfortunate aspect of most useful boundary conditions is that it is not 
yet clear how to treat their effects theoretically. The conventional Fourier 
analysis (in both space and time) of the mass density, momentum density, 
and energy density fields seems not to be closely related to the boundary­
value problems found in physical simulations. 

In the next two sections we consider some of the specific results that have 
been obtained using the three kinds of nonequilibrium methods just 
described. 
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III. N onsteady Problems 

A. ApPROACH TO EQUILIBRIUM 

What is a nonequilibrium system? This question is not easily answered in 
general because it depends upon both the scale of observation and on the 
number of variables used to describe the system of interest. Nonequilibrium 
systems must have at least one measurable property that lies outside a 
"reasonable n equilibrium range. The property in question could be an ele­
ment of the pressure tensor, a Fourier component of the density or tempera­
ture, in fact any of the variables that are free to fluctuate at equilibrium. In 
an isolated system if any such variable somehow attains, or is given, an 
initial value outside the normal range, this variable will relax toward its 
equilibrium value, and, to the extent that this relaxation can be reproducibly 
characterized, a nonequilibrium description of that relaxation is both pos­
sible and interesting. On the other hand, if the deviation from equilibrium is 
small, then a reproducible approach to equilibrium is not exhibited. Such 
fluctuations are themselves not normally of much interest in a macroscopic 
description. We want to describe and characterize the predictable similari­
ties, rather than the randomly fluctuating differences among nonequilibrium 
systems. Despite the lack of intrinsic interest in small fluctuations, we will see 
that these do play an important role in the Green-Kubo formulation of the 
transport coefficients discussed later in this section. 

B. HARD SPHERES 

In 1955 Alder and Wainwright studied the relaxation ofa nonequilibrium 
system of hard spheres from an unlikely initial condition-all of the spheres 
had identical speeds but the velocity directions were chosen randomly so 
that the initial velocity distribution was a single spherical shell in V,; Vy Vz 
space (Alder and Wainwright, 1958). The study was carried out with period­
ic boundaries, to eliminate surface effects, and at low density, to eliminate 
particle correlations. Under these conditions the Boltzmann equation 
should provide a nearly correct description of the change in the velocity 
distribution!( Iv I) with time: 

dfldt = (oflot)coJlisions (9) 

where! dr dv is the.number ofparticles in dr (the total volume V in this case) 
and dv (a spherical shell of volume 4nv2 dv in this case). The collision term, 
not written explicitly, is an integral, quadratic in! because two particles 
participate in each collision. The collision integral is formulated as a two­
body integral rather than an N-body integral by ignoring all interparticle 
correlations. 
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Within the statistical accuracy of the results (ignoring the fluctuations 
present due to the smaU size of the system studied, N = 1(0) the Boltzmann 
equation predicted quantitatively the initial decay toward a Maxwell­
Boltzmann (gaussian) velocity distribution. This instructive example showed 
that, apart from fluctuations, the Boltzmann equation does describe the 
low-density approach to equilibrium. Because no diffusion processes were 
involved, the approach to equilibrium was very rapid, taking on the order of 
three collisions per particle to reproduce the low- and m-oderate-velocity 
parts of the equilibrium velocity distribution. 

As equilibrium was approached, Boltzmann's H function «In!), which is 
the velocity average of In!) was approximated by histogram integration as a 
function of time. Boltzmann's analog of the second law of thermodynamics, 
the H theorem, states that <In!) will decay monotonically to its equilibrium 
value. The theorem is consistent with the idea that H, apart from known 
additive and mUltiplicative constants, is the negative of the thermodynamic 
entropy. In Alder and Wainwright's calculation H did decay monotonically 
until it reached the level of equilibrium fluctuations. 

The example points out the usefulness of hydrodynamics in following 
decays, and also shows that a different theory, eqUilibrium fluctuation 
theory, has to be used once the decay is complete. 

C. NEARLY HARMONIC OSCILLATORS 

Because an isolated system of coupled harmonic oscillators cannot ever 
reach equilibrium (because the energy in each mode of the system remains 
constant), it is plausible that even when coupled oscillator systems are 
slightly anharmonic they still cannot reach equilibrium. At the same time, an 
optimist might hope that small anharmonic perturbations (cubic or quartic 
terms in the lattice potential, expanded in powers of the particle displace­
ments) would eventually drive the oscillators to equilibrium. Tests of one­
dimensional coupled particles joined by anharmonic springs were run on 
Los Alamos' Maniac computer by Fermi et al. (1955). The results were quite 
interesting. The top portion of Fig. 6 is a time-history of the energy residing 
in the first four excited modes ofa 16-particle chain. Initially all of the energy 
was in the lowest-frequency mode 1. After about 13,000 time steps the ampli­
tude of that mode had recovered from a substantial decay into modes 2, 3, 
and 4, and the initial conditions were nearly (but not quite!) reproduced. 
Fermi et al. could conclude at least that equilibrium is not achieved rapidly. 
The results certainly suggest that equilibrium might never be achieved. The 
problem aroused interest and considerable discussion. After several years 
had passed Tuck and Menzel (1972), armed with a faster and more accurate 
computer, reinvestigated the problem. A portion of their investigation, 



17 N onequilibrium Molecular Dynamics 

,..:....c-:.....,;.o~r--,--..,..----,---.----;.--r----r'---r----,--r--.---,--, 

0.18 

0.16 

0.14 

0.12 

~ 0.\0 

0.08 

0.06 

0.04 

0.02 

0 

0.18 

0.16 

0.14 

0.12 

0.\0 

0.08 

0.06 

0.04 

0.02 

\ 
\. 

\ 

\\ CD , 
\ 
\, 

\ 

\ 

60,000 

TIME STEPS )( 3 T 

F-P-U 
PERIOD 

120,000 180,000 .240,000 

M-T 
SUPER PERIOD 0 

2 

1 

t 

Fig. 6. The upper figure recalculates the Fermi-Pasta-U1am result 

x= (XI +1 - XI) - (Xl - Xi - d + a(xj+ 1 - Xj)2 - a(XI - XI_ d2 

o. 20 

>­

ffi 
w 

>­
t') 

0:: 
w 
'2 
w 

1.00 

N:t6 NONLINEAR STRING QUADRATIC: 1/4, DEL T: 1/8, INTIAL HALF SINE WAVE 4/30/10 

for 16 particles with a =!. (1) = fundamental; (2) = second harmonic, etc. The fundamental 
period To is 32 (= 256dt). The Fermi-Pasta-U1am period is 51.69To. The lower figure con­
tinues the calculation for longer times to reveal the superperiod 84OTo. Fraction of initial 
total energy returnirig to the fundamental: 0.993 at the Fermi-Pasta-U1am period; 0.99993 
at the Tuck-Menzel period. From Tuck and Menzel (1972). 

covering 22 near repetitions of the initial condition, is shown at the bottom 
of Fig. 6. The long calculation showed that the energy amplitude in mode 1 
at first gradually decreased, from maximum to maximum, perhaps illustrat­
ing a lethargic approach to equilibrium. Tuck and Menzel, however, soon 
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discovered a "superperiod." After the eighth decreasing near-repetition of 
the initial condition, each time with a slightly lower energy peak, the energy 
peaks in mode 1 began to rise again, approaching very near (within 0.007%) 
the initial value at the fifteenth near-repetition. This example illustrates that 
it is possible to find systems which really are pathological (Le., contrary to 
ordinary experience). 

In a mathematical sense, the pathology is now understood. Subsequent 
theoretical work showed that there is a threshold for irreversible behavior. 
Unless the anharmonic part of the energy is sufficiently large, a nearly 
harmonic system will undergo the quasi-periodic motions illustrated by the 
nearly harmonic Fermi-Pasta-Ulam problem. It has also been shown that 
the completely anharmonic hard-sphere system does achieve equilibrium. 
The crucial physical property underlying this behavior is the instability to 
small trajectory perturbations-the same phenomenon that destroys rever­
sibility in the computer experiments. For a recent discussion of work on the 
approach to equilibrium, which is still being actively pursued for two­
dimensional anharmonic systems, the interested reader should consult 
Ford's review (1973). 

D. GREEN-KuHO RELATIONS 

The Green-Kubo relations link the phenomenological linear transport 
coefficients of hydrodynamics to the decay of equilibrium fluctuations-in 
this sense the Green-Kubo relations are based upon an ensemble-averaged 
approach to equilibrium. The several derivations summarized in Zwanzig's 
excellent review (1965), together with the more physical treatments of Hel­
fand (1960) and Gass (1969), all lead to the same conclusion: the diffusion of 
mass, momentum, and energy can be described by linear laws with 
coefficients of diffusion, viscosity, and thermal conductivity which are pro­
portional to autocorrelation integrals of the mass, momentum, and energy 
fluxes. Shear viscosity, for example, describes the way in which x momentum 
diffuses in the y direction. The shear viscosity coefficient 11 can be determined 
by evaluating the ensemble-averaged decay of the xy component of the 
pressure tensor (the ij component of the pressure tensor is the flux of i 
momentum in the j direction): 

(10) 

The compact representations of transport coefficients in terms of equili­
brium fluctuations owe their origin primarily to Green (1952) and Kub6 
(1957). With fast computers it is possible to measure the averaged decay of 
equilibrium fluctuations and thereby to determine the transport coefficients. 



19 N onequilibrium Molecular Dynamics 

Before discussing the results obtained from the Green-Kubo relations it is 
important to emphasize that their use involves the usual assumption that 
finite-system computer calculations, carried out for a short time, give results 
sufficiently close to the large-system long-time limits of thermodynamics and 
hydrodynamics. We expect, for example, that local anomalies in mass, 
momentum, or energy will eventually diffuse away according to the laws of 
hydrodynamics, at least on the average (i.e., ignoring fluctuations). Thus an 
initial perturbation is smeared out by diffusion over a half-width of order 
time1/2 ; the amplitude of the perturbation is thus of order time- D/2 in a 
D-dimensional system. The suggestion that the Green-Kubo integrands 
decay in this way has been predicted theoretically and is supported by 
computer studies (Alder, 1973; Levesque and Ashurst, 1974). For two 
dimensions, heuristic arguments suggest that the long-time decay may be of 
order (t2 In tr 1/2 rather than lit, but the presence of a (In tr 1/2 correction 
would be difficult to confirm numerically (Visscher, 1973). 

The long-time hydrodynamic analysis of the Green-Kubo integrands sug­
gests that transport coefficients diverge in two-dimensional systems. It is 
essential, if transport theory is to be understood, to uncover the size- and 
time-dependence of this divergence and its physical meaning, if any. It seems 
likely (Hoover et ai., 1974) that two-dimensional transport coefficients 
depend weakly on system size and are not otherwise anomalous. 

For three-dimensional systems, the convergence of the Green-Kubo inte­
grals is slow but sure. The hard-sphere transport coefficients were 
determined over the whole fluid density range by Alder et al. (1970). The 
results showed that the SImple Enskog model (Hirschfelder et al., 1954), 
which takes into account the density enhancement oflhe collision and trans­
port rates at high density, but ignores,the effect of collision correlations, 
reproduces the density dependence of the transport coefficients fairly well. 
At the freezing point the measured diffusion coefficient from mass-flux decay 
is about half the Enskog-model prediction and the shear viscosity is twice 
the Enskog prediction. At lower densities the errors are smaller. The hard­
sphere results have proved useful in predicting transport coefficients for 
other, more complicated potentials (Levesque et al., 1973). 

Green-Kubo calculations of the transport coefficients for the more real­
istic Lennard·Jones potential 

(11) 

were carried out by Levesque et al. (1973) using 864 particles chosen to 
simulate liquid argon near its triple point. For argon, the run duration 
corresponds to 1 nsec. The resulting shear viscosity is 30% larger than the 
experimental argon value (this disagreement is three times the uncertainty in 
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the calculated value). The calculated thermal conductivity is about twice the 
experimental value and the calculated bulk viscosity is half the experimental 
value. How can these disagreements be understood? Ofcourse, the Lennard­
Jones potential is not a perfect representation of the interparticle interaction 
in liquid argon. However, this effective potential does reproduce the energy 
and the pressure for argon quite well. Thus, it is hard to understand a 
factor-of-two discrepancy in the energy transport. A study of the number­
dependence of these results, using systems ofsmaller size (larger ones are too 
expensive at present), might be useful, as is the comparison of these results 
with those obtained more directly, without the use of the Green-Kubo 
theory, as is discussed in Section IV. 

E. RADIATION DAMAGE SIMULATION 

The first large-scale computer experiments using realistic potentials were 
the solid-phase studies of Vineyard and his collaborators (Gibson et al., 
1960). This work sought to understand the interaction of fast neutrons with 
metals, an important problem underlying reactor design. Because neutron 
free paths are long, of macroscopic length, their slowing down can be treated 
as a series of infrequent collisions with metal atoms. Each collision leads to 
localized regions of"damage" (vacancies and interstitial atoms) around the 
initial collision site. These damaged regions, for energies up to a few hundred 
electron volts, are small enough to be studied with nonequilibrium molecu­
lar dynamics. 

The atoms are treated as point masses interacting with simple pairwise­
additive potentials. These potentials are chosen to reproduce macroscopic 
parameters such as the molar volume, binding energy, and elastic constants. 
Electrons are not explicitly treated-this is probably the only serious 
approximation made in the calculations. 

Initially a finite three-dimensional lattice of atoms is excited by giving an 
impulse to a single atom, simulating a neutron collision; then the equations 
of motion are solved to generate the resulting" cascade" of mass, momen­
tum, and energy redistribution. 

The crystal boundary conditions are important in these calculations be­
cause lattice relaxation times exceed the sound-traversal time for these small 
crystals. Simple periodic boundaries would distort the results by allowing an 
outgoing sound wave, produced at the collision site, to reenter on the oppo­
site side rather than dissipating in fresh material surrounding the damaged 
region. To avoid this reentry and make it possible to follow these systems for 
longer times in a realistic way, Vineyard's group developed a set of boundary 
conditions designed to simulate an infinite surrounding elastic continuum 
with 500 or 1000 discrete particles inside. The outermost discrete particles 
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interact with external viscoelastic forces in such a way as to simulate the 
response of an infinite crystal. The elastic constants restoring displaced par~ 
ticles toward their lattice sites are chosen to match the displacement charac­
teristics of a macroscopic region within an infinite elastic continuum. The 
spring constants acting on the boundary particles turn out to be much 
smaller than interparticle spring constants. This is a consequence of 
the lattice relaxation which occurs in the vicinity of a displaced region in a 
macroscopic continuum. 

Since a perfectly elastic boundary has no kinetic energy, elastic bound­
aries would reflect any incident waves, leading to the same interference 
problems as in the periodic case. The unwanted reflection can be minimized 
by adding viscous damping forces to the boundary particles with longitu­
dinal and transverse viscosities chosen to absorb, rather than reflect, inci­
dent waves as well as possible. Even with the optimal choices of viscosity, 
some of the energy is reflected and incident energies have to be limited to a 
few hundred e V. 

The calculations have recently been summarized by Vineyard (1972). 
Some of the interesting phenomena studied are: 

(i) Determination of the threshold energy, as a function of direction, for 
permanent radiation damage and correlation of the number of interstitial­
vacancy pairs created as a function of energy. 

(ii) Stability of the defects formed. Certain kinds of defects, including 
some predicted to exist in theoretical studies, were found to be unstable. In 
Fig. 7 the region within which an interstitial and a void can recombine in 
irradiated copper is indicated. The figure shows that in the 110 direction the 
distance between the defects must exceed three lattice spacings in order to 
avoid self-annealing annihilation of the two defects. 

(iii) Focusing, in which mass, momentum, and energy are transferred 
through the lattice in highly preferred directions, was studied. An unex­
pected result of the pioneering calculations on copper (Gibson et al., 1960) 
was the strong focusing occurring in the 100 direction, in which the nearest­
neighbor spacing is relatively large. The mechanism involves the cooperative 
motion of particles in four neighboring parallel rows. 

One of the major problems encountered with fast computers able to solve 
problems in three space dimensions, not just one or two, is displaying the 
results. It is not unusual for the programming time and ingenuity devoted to 
the display aspect of the problem results to exceed the effort of generating 
the original data. Portraying the radiation damage just discussed is one 
example of a challenging programming task. Figure 8, based on a 5-kV 
collision in iron (Beeler, 1966), gives a graphic portrayal of the extent of 
damage to the crystal. 
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Fig. 7. Stability of vacancy-interstitial pairs in a computer simulation of radiation damage 
to copper. The line separates sites at which a vacancy is stable from sites at which a 
vacancy will spontaneously combine with the interstitial atom shown at the center of the 
figure. From Gibson et al. (1960). 

The radiation damage is important historically as an early use of contin­
uous potentials in nonequilibrium molecular dynamics. Vineyard's work 
also sets a high standard in clarity and breadth and suggests a useful treat­
ment of nonequilibrium boundaries. We anticipate that related calculations, 
for even more complicated defect structures, will appear with increasing 
frequency in the future. 

F. STAR-CLUSTER EVOLUTION 

An isothermal classical system with purely attractive pairwise-additive 
forces can have no extensive thermodynamic properties. The energy, for 
example, if it does not diverge, is at least proportional to N 2 rather than to 
N. This unusual behavior makes it interesting to speculate on the peculiar 
physical characteristics of a system with attractive forces only. Stellar dynam­
ics furnishes many examples. Astronomical bodies attract one another 
with inverse-square gravitational forces. Thus a system of. stars, in "equili­
brium" with a heat reservoir, should eventually collapse into. a compact 
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Fig. 8. Perspective view of a damaged region in a computer simulation of radiation 
damage in (X-iron. The initial energy responsible for the damage was 5 keV. From work 
by J. R. Beeler, Jr., cited by Vineyard (1972). 

cluster of particles with an energy approaching minus infinity. If no heat 
reservoir were present, to absorb the gravitational energy, what would 
happen? The answer is not known for certain, but recent simulations of star 
clusters strongly suggest (Aarseth, 1972) tha,t a cluster ofstars will gradually 
contract, lowering the potential energy. This energy drop is compensated for 
by an increase in kinetic energy, with an occasional spectacular high-speed 
escape of a star that has acquired, through collisions with its neighbors, 
enough kinetic energy to escape the gravitational field of the other stars. 

Computer simulation of astrophysical systems began over 10 years ago 
(Contopoulos, 1966) and is still a rapidly expanding field (Lecar, 1972). 
Simulations of star clusters reveal the ubiquitous appearance and persist­
ence of a tight binary double star near the center of the cluster. It appears 
that this binary cluster approaches minus infinity in energy while supplying 
sufficient energy to the other stars to make their escapes possible. The rather 
interesting spectacle of a gradual explosion of the cluster, as opposed to a 
collapse, ending up with N - 2 high-speed isolated stars and a tightly bound 
binary star, would probably not have been postulated without the help of 
nonequilibrium molecular dynamics. 
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IV. Steady State Problems 

The simplest possible nonequilibrium systems are macroscopically steady, 
not changing with time. To obtain more accurate steady state values (at ­
fixed size) simply means extending the observation time of the computer 
experiment. In nonsteady problems several repetitions of a calculation, with 
slightly different initial conditions, would have to be carried out to reduce 
the fluctuations in the hydrodynamic variables. In the nonsteady case the 
significance of this averaging over different initial conditions is not clear. 

These nonequilibrium systems must dissipate work into heat, which dis­
tinguishes them from equilibrium systems. Thus, external forces either do 
work and extract heat or replenish chemical potential and extract entropy in 
order to maintain fixed hydrodynamic boundary conditions. The external 
forces may act throughout the system or be restricted to special boundary 
regions. The .shear viscosity coefficient for dense fluids has been recently 
calculated by both methods and the thermal conductivity coefficient by the 
latter method. We will present the details of our calculations in this section. 

A different type of nonequilibrium system is a sound or shock wave, 
which, when viewed in a coordinate system fixed with respect to the wave 
front, becomes a steady state system connecting two equilibrium systems at 
different conditions. The shockwave problem has been studied (Paskin and 
Dienes, 1972; Tsai and Beckett, 1966), but due to constraints implied by the 
finite width of the systems treated, it is premature to draw firm conclusions 
from this work. Some solutions of the shockwave problem at zero density 
are available from the statistical viewpoint of the Boltzmann equation (Bird, 
1970). Another type of nonequilibrium system could be one created by the/ 
notorious Maxwell demon (i.e., a nonzero steady state flux is maintained b{ 
labeling mass, momentum, or energy without affecting the equilibrium 
system). This approach was recently used by Holian for calculating self­
diffusion and will be described next. We expect that in the near future a 
growing variety of steady state problems will be solved. 

A. DIFFUSION 

Diffusion in a periodic equilibrium system of hard spheres has recently 
been studied by Holian et al. (1973, private communication of BLH to 
WGH) using the artifice of coloring particles according to their most recent 
crossing of a plane (i.e., the Maxwell demon has a paint brush). The use of 
periodic boundaries minimizes the surface effects inherent in most nonequi­
librium problems. All particles crossing the plane z = L/2 in the upward 
(downward) direction, for example, could be colored red (white). After a 
time the result of this coloring process is to produce two opposing concen­
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tration gradients, one white and one red, which result in, or coexist with, 
opposing fluxes of the colored particles. It is not particularly obvious just 
how linear the concentration profile will be. In fact, the numerical work 
indicates a profile linear within 1 %fluctuations, except very near the con­
centration discontinuity induced by the coloring plane. 

To improve the accuracy of the results, Holian et al. (1973, private 
communication) colored the particles independently for each of the three 
directions x, y, and z. They also confirmed that the diffusion coefficients 
found from Fick's law, D = - jz (dz/dp), were independent of the fraction of 
particles colored, for fractions 0.2, 0.4,0.6, 0.8, and 1.0. The results found by 
this direct method are shown in Table I along with those derived from the 
Green-Kubo relation at the same density and temperature and for the same 
number of particles by Alder et al. (1970).: 

Table I 

DIFFUSION COEFFICIENTS FOR 108, 500, AND 4000 THREE-DIMENSIONAL 


CLASSICAL HARD SPHERES IN FINITE PERIODIC SYSTEMS" 


N Alder et al. Holian et al. 

108 1.16 1.17 
500 1.22 1.23 

4000 1.29 

"The density is one-third the close-packed density. The diffusion 
coefficients have been divided by the prediction of the Enskog model, 
DE == 0.219cr(kT/m)112. The uncertainty in the computed coefficients is 
about 1 %. The calculations involve on the order of a million collisions 
each. 

An importarlt problem waiting to be solved is the generalization of the 
work of Holian et al. to the transport of momentum and energy. In either of 
these cases, the labeled flows of conserved quantities, divided by the appro­
priate gradient, would determine the corresponding viscosity or conducti­
vity coefficient. The attractive aspect of such a method would be that an 
undisturbed equilibrium system becomes the" nonequilibrium " system with 
the entropy of mixing acting as the driving force to maintain the steady state 
flux. 
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B. SHEAR VISCOSITY 

Viscosity describes the momentum diffusion responsible for broadening a 
propagating pressure pulse. For example, an initial localized pulse of x 
momentum spreads out in the y and z directions with a half-width of order 
("tjmp )1/2 for long times, where" is the shear viscosity and p is the number 
density. Eventually viscosity annihilates velocity gradients and converts 
their kinetic energy into heat. The local rate of heat production, or "power 
density," is proportional to the viscosity coefficient and the square of the 
gradient, for small gradients: 

l(V . V)2 + !,,(Vv + Vvt): (Vv + Vvt), 

where land" are the Newtonian viscosity coefficients: 

p = [Po - l(V . v)]1 - ,,(Vv + Vvt). (12) 

The heat produced by viscous dissipation has to be conducted away or 
absorbed in any" steady" calculation, so that any such viscosity study must 
also include a mechanism for heat absorption. 

For shear viscosity determination, a possible homogeneous system can be 
created by using external forces to shear a periodic system, each particle 
being given, at every time step, an additional x displacement proportional to 
its y coordinate. These displacements can actually be added in at every time 
step or, alternatively, a coordinate system with changing oblique coordinate 
axes can be used. For the former method, a particle's periodic image above 
(below) the basic cell is shifted in the positive (negative) x direction by yLt; 
where y is the shear rate, L is the y distance between images, and t is the 
current time (see Fig. 9). Hence for this special periodic boundary, when a 
particle leaves a y face it enters the opposite face with a shifted x coordinate. 
The heat generated by this external shear force can be eliminated by a 
thermostat which rescales the particle velocities at each time step. Earlier 
exploratory work along these lines was carried out by Lees and Edwards 
(1972). Some recent more-accurate results we have obtained using this 
method are shown in Figs. 12 and 18. 

The method just described resembles a novel shear viscosity determina­
tion carried out by imposing an external sinusoidal force field on a periodic 
fluid system, with the x field component proportional to sin(21tyjL). The 
amplitude of the resulting sinusoidal velocity profile can be related to the 
viscosity coefficient (Gosling et ai., 1973). Because these sinusoidal-force 
calculations contained no provision for extracting heat, the dynamical his.t­
ory was not actually steady, but increased gradually in temperature as 
the runs continued. The homogeneous shear discussed above has the advan­
tage of eliminating the relatively short wavelength character of the velocity 
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Fig. 9. Steady homogeneous shear system at time t with shear rate y. The particle's periodic 
image is displaced by yLt from the conventional periodic image (shown by dash line). 

field, producing results closer to the large-system hydrodynamic limit. 
However, since the external force field acts upon all the particles, the nonlin­
ear properties are somewhat altered from those in a nonequilibrium system 
free of external forces; see Fig. 18. 

In order to create a nonequilibrium system with a bulk region free of 
external forces, special boundary regions have been developed to maintain 
the desired hydrodynamic values (e.g., density, flow velocity, and tempera­
ture) which will produce a steady state flux of mo~entum or energy (see 
Section II and Fig. 5). The time-dependent external force in the boundary 
region is the negative of the force interaction between the bulk fluid and that 
boundary region. This total external force is divided equally among the 
boundary region particles and thus constrains only the region's mean flow 
velocity; i.e., the external force acts as a momentum reservoir. Velocity 
scaling, adjusting the second moment with respect to the mean at each time 
step, plays the role of a heat reservoir. To maintain the number density, the 
planes separating the boundary regions from the bulk fluid reflect the occa­
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sional particles that attempt to leave either region. This method based on 
special boundary regions has been used to simulate shear flow of relatively 
dense nonideal two- and three-dimensional fluids (Ashurst, 1974; Hoover et 
al., 1974; Ashurst and Hoover, 1973). 

From the resulting simulation of nonequilibrium flow, the shear viscosity 
can be determined from either a microscopic or a macroscopic viewpoint. 
The microscopic pressure tensor component P xy depends on particle veloci­
ties and coordinates: 

PXy V = 1::mvXvy + 1:: - xy<jJ'/r; (13) 

a time-average of Pxy together with the average shear rate dvx /dy determines 
the linear or newtonian shear viscosity YJ. Alternatively the macroscopic 
hydrodynamic work done (or heat extracted) can be set equal to the product 
of the viscosity coefficient, the velocity gradient, the surface area, and the 
relative displacement of the two boundary planes. Agreement of the two 
methods serves as a consistency check on the calculation. However it is 
necessary to determine the velocity gradient within the system since the 
boundary region is not perfectly coupled and there is some velocity slip. 
Thus local values of the velocity and temperature gradient have to be 
determined and related to the hydrodynamic flow solution. These difficulties 
can be avoided by using a homogeneous shear system without special bound­
ary regtons. 

How does one generalize small-system results to systems of macroscopic 
size? When periodic boundaries are used, finite size equilibrium systems 
have errors of order liN or In NIN. For nonequilibrium systems, several 
kinds of extrapolation have to be carried out. The number of particles 
should be large; the gradient should be small, and the boundary influence 
should be minimized and corrected for. An immediate problem in the com­
puter experiments is that the large-system and small-gradient limits cannot 
be realized. Computer speed limits the size and statistical fluctuations can 
mask small-gradient effects. 

In addition to the size and gradient limits, three other criteria should be 
considered. The flow should be laminar, not turbulent; steady, not fluctuat­
ing; and isotherma~ so that a well-defined thermodynamic state is being 
investigated. The restriction to laminar flow means, macroscopically, that 
fluctuations in the flow are small. Large-scale macroscopic fluctuations in 
flow, called" turbulence," occur whenever the viscous forces are too small to 
damp out naturally occurring velocity gradients. On the microscopic level it 
seems more natural to consider the flow of momentum as being well defined 
in the event that it exceeds the natural fluctuations in the flow. In either case 
a steady nonequiIibrium system can be studied only if the steady behavior 
can be distinguished over the nonsteady perturbations. 
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Fig. to. Limitations on the side length L and relative velocity v for a cube of triplepoint 
argon undergoing plane Couette flow. Line 1 indicates that the volume element size must 
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line 3 separates the regions of large and small temperature gradients resulting from tbe 
shear flow; line 4 separates the regions in which the shear stress is large or small relative to 
pressure fluctuations. In the central quadrilateral the motion of the volume element can be 
usefully described by macroscopic hydrodynamics. 

In Fig. 10 we plot, for argon at its triple point, the region in velocity-size 
space to which viscosity measurements are limited. The four different boun­
dary lines shown in that plane separate qualitatively different regions for a 
cubical volume element with sidelength L and a velocity difference v between 
its upper and lower waHs. The lines shown are as foHows: 

Line 1 indicates that L must exceed atomic dimensions. 
Line 2 indicates that the flow must be laminar rather than turbulent. The 

Reynolds number criterion for turbulent flow is Re vLmp/ll > 3000 
(Schlich ting, 1960). 

Line 3 indicates that the boundary temperature should differ from the 
central temperature by no more than 10%. (This restriction effectively forces 
v to be less than typical thermal velocities.) 

Line 4 indicates that the shear stress induced by the velocity gradient v/L 
must exceed the momentum flux fluctuations ("" Nl/2kT/IJ). 

Each of the lines just constructed forms a part of the boundary of the region 
within which viscosity is important in characterizing the pressure tensor. By 
using low velocities a system width of 1 mm can be achieved, large enough 
so that boundary details are unimportant. In nonequilibrium molecular 
dynamic calculations we are restricted to much smaller systems and hence 
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larger velocities. The widest system studied so far is 50 A in width with 
velocity difference of (kT/m)1/2/8. 

1. Soft-Sphere Potential 

In order to test the steady nonequilibrium molecular dynamic method just 
described, the soft-sphere potential 

¢(r) = e(s/r)12 (14) 

was chosen for exploratory work. The equilibrium thermodynamic proper­
ties for systems composed of soft spheres have already been characterized 
(Hoover et ai., 1970). The lack of attractive forces eliminates the complica­
tions caused by gas-liquid density fluctuations. A single fluid phase extends 
from zero density to the freezing point density, which IS 

Ns 3/-12 V = 0.813(kT/e)1/4. 
Because computer time involved in nonequilibrium problems is typically 

a few hours, and increases more rapidly than linearly with the number of 
particles, it is desirable to use the smallest possible system capable ofprovid­
ing accurate results. To identify this minimum size, three different system 
sizes, N = 32, 108, and 256 (plus boundary particles), were investigated at 
three-fourths the freezing density. Each of the three systems was run for the 
time required to displace the upper boundary-region particles 16 system 
lengths relative to the lower boundary-region particles with a velocity differ­
ence between the regions of (kT/m)1/2. The averaged velocity profiles, ob­
tained by dividing each system into ten equal spatial regions, are shown in 
Fig. 11. Despite the relatively long run the 32-particle velocity profile shows 
deviations from the expected linear profile. We conclude that with the pre­
sent choice of boundary regions, 108 particles, or more, are required for 
quantitative work. 

For a given system size at fixed density and boundary temperature, the 
results may depend upon the relative velocity of the two boundary regions, 
Le., shear rate. In order to test this dependence, a range of relative wall 
velocities [all of order of the thermal velocity (kT/m)1/2] was examined at 
four dense-fluid densities. The results are listed in Table II and displayed in 
Fig. 12. The data indicate no significant number-dependence at a reduced 
density of 0.6, where most of the runs were made. There is a definite increase 
in viscosity with decreasing shear rate. Corresponding results from the homo­
geneous shear method (external forces throughout the system maintain the 
shear flow) are also shown in' Fig. 12 (flagged circles). The two methods have 
reasonable agreement. However, it is not certain that the two methods will 
agree for low density. The kinetic or streaming contribution to shear 
momentum appears to be smaller in the homogeneous results. The homo­
geneous shear method could be analyzed exactly at low density (using the 
Boltzmann equation), but that calculation has not yet been carried out. 
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Table II 

SOFT-SPHERE SHEAR VISCOSITY FROM NONEQUILIBRIUM 


MOLECULAR DYNAMICS. DEPENDENCE ON SYSTEM SIZE, 


DENSITY (FOR THE ISOTHERM e = kT), AND SHEAR RATE6 


Ns 3 / '1S2 
N (mf 2 Timews ­

j2V e (me)l/2 

32 0.4 0.19 0.45 ± 0.03 64 
108 0.4 0.16 0.50 ± 0.01 48 

0.05 0.33 ± 0.1 12 
32 0.6 0.29 1.37 ± 0.08 64 

0.22 1.26 ± 0.08 48 
0.15 1.30 ± 0.17 48 
0.08 1.18 ± 0.22 16 

108 0.6 0.21 1.25 ± 0.04 48 
0.16 1.30 ± 0.02 48 
0.10 1.38 ± 0.04 24 
0.05 1.44 ± 0.1 16 

32 0.7 0.16 2.34 ± 0.17 48 
108 0.7 0.11 2.27 ± 0.06 32 

0.05 2.54 ± 0.2 16 
108 0.8 0.17 4.14 ± 0.12 48 

0.12 4.05 ± 0.13 32 
0.05 4.96 ± 0.6 16 
0.05+ 5.7 ± 0.5 16 

216 0.8 0.12 4.7 ± 0.1 64 

a N (= 32 and 108) soft spheres in a cube with N w ( = 8 
and 18) particles in each boundary region (+ indicates 
Nw = 36). The 216 system is two 108-particle cubes wide. 
The shear rate is determined from average flow velocity in 
ten zones of bulk fluid. Apparent shear viscosity from aver­
age wall shear stress and shear rate. The dilute gas value is 
0.17. The total observation time is given in terms of relative 
displacement of the boundary regions (in units of the cube 
edge V l/3 ). 

For liquid argon, the above conditions correspond to gigantic shear rates, 
of order 1010/sec. However, a similar shear rate dependence has been exper­
imentally observed at small shear rates for materials composed of long 
complicated molecules (e.g., grease, shaving cream, and fruit jam) (Sisk~, 
1958). 

The direction of nonlinear effects depends upon the particular flowfield 
being studied. Shear viscosity is sometimes determined from the drag force 
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on a sphere moving through a fluid. For slow motion of a (1 diameter sphere, 
the drag force is 

F = -31l'10(1v(1 + -A Re + ...) (15) 

where the first term is Stokes' linearized solution and the second term is due 
to Oseen who approximat.ed the effect of the inertia terms. If the linear 
drag-velocity relation is used to define an effective viscosity, then an increase 
with sphere velocity is found; see Fig. 13. The abrupt decrease in drag (due 
to a turbulence-induced-wake-flow-pattern change) would limit a velocity 
expansion for the effective viscosity. 

to 

103 4 4
0.1 10 100 10 10' 10

Rt/ = m pva / l1STOKES) 

Fig. 13. Variation of the viscous drag on a sphere with Reynolds number. If the force is 
used to define an effective viscosity 11 == -FI(31tCiV~ the ratio of 11 to the low-velocity value 
11. varies by three orders of magnitude. 

Because no quantitative theory for the dependence of viscosity on shear 
rate exists, apart from the low-density limit series expansion, we have chosen 
to use the semiempirical Ree-Eyring relation (Ree et aI., 1958) 

'1 = '10 sinh-l(un)j(un), (16) 

which expresses. the shear .viscosity as a function of the zero-gradient 
hydrodynamic viscosity '10' the shear rate w, and the relaxation time r. It is 
interesting to note that a fit of the soft-sphere data at a reduced density of 0.8 
leads to a relaxation time of 9.2s(mje)1/2(ejkTf/12, so that most of the 
molecular dynamic data lie beyond the radius of convergence of the series 
expansion of Eq. (16): 

'1 = '10[1 - (wr)2j6 + 3(wr)4j40- ...J for Iwr I < 1. (17) 

http:approximat.ed
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Thus, even if it could be achieved, a theoretical prediction of the expansion 
coefficients in Eq. (17) would not be useful in reproducing the molecular­
dynamic results at shear rates greater than IlL The data could be fitted 
nearly as well with a linear gradient dependence, but we have rejected that 
approach since it leads to a vanishing viscosity at finite strain rates. 

The computer results for the zero-shear-rate shear viscosity at x = 0.4, 
0.6, 0.7, and 0.8 can all be summarized by the empirical relation 

rJs2(e/kT)2/3/(me)1/2 = 0.149 + 0.022 exp(6.83x), (18) 

where x is the reduced density/temperature (Ns3/j2 V)(e/kT)1/4. This rela­
tion, required to have the zero density value of 0.171, produces a first density 
correction (x - 0) that is only 10% larger than the Enskog estimate. Shear 
viscosity predictions from the paradigms of Andrade and Enskog are 
compared with the computer results in Fig. 14. 
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Fig. 14. Soft-sphere shear viscosity. The machine results are compared with two empirical 
power-law fits and with the predictions of two approximate theories of shear viscosity, 
Enskog's and Andrade's. Estimated zero shear rate viScosity from N = 108 results. 

Andrade (1934) suggested that a fluid-phase particle undergoing viscous 
flow oscillates about its temporary location, transferring transverse momen­
tum to its neighbors at its turning points. For soft spheres, this idea leads to 
the relation 

(19) 
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Figure 14 indicates that Andrade's model is an excellent approximation to 
the computed shear viscosity, but somewhat underestimates the density 
dependence. Shown also in Fig. 14 are the predictions of Enskog's approxi­
mate model, which predicts viscosities too low by approximately a factor of 
two near the freezing density. The Enskog model, based on a hard-sphere 
diameter calculated from the equation of state, was found by Alder et al. 
(1970) to give similar deviations from computer measured hard-sphere shear 
viscosities. 

Although the soft-sphere results suggest that the nonequilibrium molecu­
lar dynamic method does produce reliable transport coefficients, the accur­
acy of the method is not likely to be better than 5 %with present computers. 

An approximate model for the structure of a sheared fluid can be 
developed under the assumption that shear strain relaxes with a typical 
relaxation time -r/, Thus a fluid undergoing shear at shear-rate w would have 
the same structure as that obtained by elastic distortion of the fluid with 
strain angle w-r'. This simple model, based on ideas due to Maxwell, predicts 
that the nonequilibrium part of the pair distribution function, which con­
tributes the shear stress PXY ' is proportional to r dg/dr where g is the equili­
brium pair distribution function. Figure 15 indicates that this relation is 
approximately valid. The relaxation time -r' found, however, is somewhat 
different from that of the Ree-Eyring theory -r. For example, at a reduced 
density of 0.8, Maxwell's relaxation time, -r' = 0.11 s(m/B)1 /2(B/kTfI12corre­
sponds to about one-fourth the oscillator period, 0.45s(m/B)1/2(B/kT)1/2, in 
accord with Andrade's model. The Ree-Eyring time -r is much longer, by two 
orders of magnitude, and corresponds to the time required for a particle to 
diffuse the distance separating nearest neighbors. Thus the different relaxa­
tion times show that the mechanism for viscous flow does involve interpar­
ticle vibrations but the rate-dependence of that mechanism involves the 
relaxation of shear stress through the diffusion of particles. 

2. Lennard-} ones Potential 

Ifa sixth-power attraction is added to the twelfth-power soft-sphere repul­
sion, the Lennard-Jones potential results: 

(20) 

The coefficient 4 provides a minimum potential value of B, where 
(j/r)6 = 1. The Lennard-Jones potential produces both kinds of fluid 
phases: gas and liquid. The phase diagram, determined by equilibrium 
molecular dynamics and Monte Carlo calculations (Hansen and Verlet, 
1969), is shown in Fig. 16. The phase diagram for argon corresponds closely 
with the computer generated one if the characteristic energy B and length (j 
are chosen to be 119.8°K and 3.405 A respectively. This correspondence 
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suggests a comparison of calculated transport coefficients for the Lennard­
Jones potential with experimentally determined transport coefficients for 
argon . 

. Along the saturated vapor pressure line the shear viscosity of liquid argon 
has been characterized by three different methods (Boon et aI., 1967; 
DeBock et aI., 1967; Hellemans et al., 1970; Haynes, 1973). The results are 
compared with nonequilibrium molecular dynamics results in Fig. 17. The 
molecular dynamics values have been extrapolated to zero shear rate, using 
the Ree-Eyring theory; see Table III. The agreement with the experimental 
data is good, again indicating that the Lennard-Jones potential is a useful 
representation for liquid argon. 

Near the triple point, the computer results depend strongly upon both the 
number of particles used and the shear rate OJ. Thirteen separate calcula­
tions, for systems of 108,216, and 324 particles sandwiched between bound­
ary regions containing 18 particles each, were carried out, and are 
summarized in Table IV. The results clearly depend upon system width. 
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Table IIi 

SHEAR VISCOSITIES FROM NONEQUILlBRIUM MOLECULAR DYNAMICS ALONG THE SATURATED 


V APOR PRESSURE LINE FOR ARGON° 


11(J2/(me) 112 

Estimated Enskog 
Nu3/V kTo/e kT/e w(J(m/e)112 Calculated for W = 0 estimate 

0.4774 1.228 1.192 0.116 0.554 

1.220 0.079 0.593 0.64 0.53 
0.6920 0.998 0.982 0.135 1.18 

0.972 0.086 1.30 1.39 1.19 
0.7608 0.872 0.840 0.123 1.84 

0.860 0.083 1.82 1.92 1.70 
0.8531 0.701 0.684 0.112 3.5 1 

0.700 0.075 3.96 4.21" 2.87 

(l All of the results shown are for 108 particles with two boundary regions containing 18 
particles each. To is the boundary temperature and T is the temperature measured in the 
bulk fluid over a time period of 64VlI3(m/kTo)1/2. The zero-shear-rate estimates are based 
on (1) an inverse hyperbolic sine dependence of viscosity on strain rate; and, (2) for the two 
lower temperatures, a constant-volume temperature dependence of (0 In 11/0 In T)v = ­
0.65. Also shown are the predictions of the Enskog model using the computer-generated 
equation of state for the Lennard-Jones potential. 

b The width dependence of the triple-point shear viscosity suggested by the data of 
Table IV is 11,,';"0,0 = 1 + 1.4,,', where ,,' is the ratio of (j to the system width in the 
gradient direction. Applying this correction to the 108 particle triple-point viscosity yields 
the estimate "0.0 = 3.29(me)112

/ u2
• 

There are two reasons for expecting an inverse-width correction: 
(i) such a correction correlates experimental results for spheres dropping 

down tubes of finite width (Partington, 1955); 
(ii) such a correction correlated single-particle displacement moduli in 

harmonic crystals; there is a mathematical correspondence between the 
moduli of such crystals and the viscosity for fluids (Hoover et aI., 1974). 

A least-squares fit of all of the triple-point data to the form 

1100. K' = 110,0(1 + CK') sinh -1 (cor )/(an) (21) 

yields the values of 2.95(m£)1/2/(12 for 110. 0, 1.376 for c~the width correction, 
and 8.7(1(m/e)1/2 for r. Figure 18 illustrates the correlation obtained using 
this three-parameter fit. The extrapolated hydrodynamic viscosity 110,0 
agrees, within 2 %, with the experimental triple-point viscosity for argon. 
The homogeneous shear method (external forces are used throughout the 
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Table IV 

SHEAR VISCOSITIES FROM NON EQUILIBRIUM MOLECULAR DYNAM­


ICS NEAR THE LENNARD-JONES TRIPLE POINT. DEPENDENCE ON 


SYSTEM WIDTH (ONE, Two, AND THREE lO8-PARTICLE CUBES 


WIDE) AND SHEAR RATE" 


N (j)(1(m/e) 1/2 

108 	 0.248 
0.156 
0.113 
0.0852+ 
0.0737 
0.0371 

216 	 0.112 
0.0885+ 
0.0825 
0.0399 

324 	 0.0872 
0.0416 
0.0200 

kT/e 

0.672 
0.699 
0.711 
0.713 
0.715 
0.724 
0.681 
0.699 
0.689 
0.721 
0.670 
0.707 
0.717 

'1(12/(me) 1/2 

Calculated Adjusted 

2.85 ± 0.06 2.72 
3.07 ± 0.06 3.01 
3.28 ± 0.06 3.24 
3.41 ± 0.09 3.38 
3.54 ± 0.11 3.52 
3.72 ± 0.22 3.72 
3.08 ± 0.05 2.96 
3.21 ± 0.09 3.14 
3.25 ± 0.15 3.15 
3.38 ± 0.17 3.37 
3.04 ± 0.05 2.90 
3.16 ± 0.06 3.12 
3.23 ± 0.17 3.22 

a There are 18 particles in each boundary region (+ indicates 
36). In each case N(13/V is 0.8442 and the boundary temperature 
is To = 0.722e/k. The observation time is 96, 64, and 
80L(m/kTo)1/2, where L is the 108-particle cube edge. Both the 
measured viscosity and the adjusted value [estimated constant 
volume temperature dependence is (0 In '1/0 In T)v = -0.65] 
are shown as is the average bulk fluid temperature. 

system to maintain the shear flow; see Fig. 9) has also been used for the 
triple point. The dashed line in Fig. 18 represents the results of 108- and 
216-particle systems which indicate no width dependence with a smaller 
relaxation time [S.Scr(mje)1/2]. The extrapolated zero-shear-rate viscosity 
agrees with the nonequilibrium shear flow result and with the experimental 
argon value. 

Although the corrections which have been applied to the nonequilibrium 
results are a bit arbitrary, an overall picture has emerged which is self­
consistent and also consistent with experimental shear viscosities. The one 
puzzling point which remains is the disagreement with the viscosity 
determined from the Green-Kubo relations b~ Verlet's group (Levesque et 
at., 1973). The Green-Kubo triple-point value for 864 Lennard-Jones par­
ticles with periodic boundaries exceeds our hydrodynamic estimated viscos­

",',',', 
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potential under conditions corresponding to the triple point. In addition to the results from 
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are also shown. The large-system results for both methods should agree at low shear rates. 
The width-adjusted Green-Kubo result is also shown. 

ity by about 30 %. The two kinds of calculations could be brought into 
agreement if the number-dependence of the Green-Kubo results at the triple 
point varied as 1 + 2CK', that is with twice the width correction of the direct 
molecular dynamic method. Only a more detailed investigation of smaller 
systems with the Green-Kubo method can establish the Green-Kubo 
number dependence. 

Additional detailed studies of the Lennard-Jones viscosity along the freez­
ing line and at two relatively high temperatures, kT/e = 8.5 and 28 were 
carried out. Figure 19 shows that the calculated excess shear viscosity 
At'/ [== t'/ - t'/o, where t'/o is the dilute gas value], when expressed in the 
soft-sphere scaling variables, has the functional form of X4 or e"Je - 1, where 
x is (Nu3/V)(e/kT)1/4. 

These functional forms reveal two features: (1) weak temperature depen­
dence, and (2) a negative isochoric temperature derivative. While both of 
these features have been experimentally observed in simple fluid shear­
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viscosity data [e.g., argon, helium, hydrogen, oxygen, and carbon dioxide; 
see Hanley et al. (1972)], their cause has not been previously traced to the 
dominance of the repulsive core potential. 

All of the results obtained from nonequilibrium molecular dynamics can 
be summarized by the empirical relation (chosen to reduce to the soft-sphere 
form at high temperatures) 

.1110'2(met 1/2(e/kT)2/3 = 0.0152[1 - !(e/kT)1/2 + 2(e/kT)] 

x {exp[7.02x(1 - !(e/kT)1/2)] - I}. (22) 

The usefulness of the reduced variable x in fitting Lennard-Jones viscosity 
data suggests the use ofa similar fit for experimental data for argon (Michels 
et ai., 1953; Haynes, 1973). The data range from reduced temperatures kT/e 

http:kT/f:=1.15
http:kT/E'-.28
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of 0.7 to 2.9 and from dilute gas to saturated liquid densities. All of these 
data can be expressed economically by the form 

~1[a2(met 1/2(e/kT)2/3 = 0.0324[exp(5.18x) 1]. (23) 

The Lennard-Jones calculations just described indicate that viscosities 
can be measured via nonequilibrium molecular dynamics throughout most 
of the fluid portions of the phase diagrams. The accuracy is not equal to that 
with which equilibrium thermodynamic properties are measured. At the 
same time the results do appear to be just as accurate as those derived from 
the Green-Kubo method and have the added advantages of displaying 
directly nonlinear and structural transport information. The correlation be­
tween the soft-sphere and Lennard-Jones viscosities suggests, in accord with 
Enskog's model, that real fluid properties be expressed in terms of the scaled 
variables appropriate for repulsive forces. 

3. Two-Dimensional Systems 

There is certainly no prospect for finding real two-dimensional systems in 
our three-dimensional world. Nevertheless the transport coefficients are par­
ticularly interesting in two dimensions. This is because theoretical predic­
tions (Keyes and Oppenheim, 1973; Wood, 1973) suggest that the 
coefficients "diverge," without providing a physical interpretation of the .. 
divergence. Because it is physically obvious that any finite system under­
going shear at a finite rate must have a finite shear stress, the divergence can 
only be understood as a limiting process as the size of the system increases 
and the gradient decreases. The theoretical predictions for finite systems 
undergoing steady transport have not yet been worked out. 

To assess the significance of the theoretical predictions, a study of two­
dimensional "soft-disk" systems was carried out (Hoover et ai., 1974). The 
density chosen was about half the freezing density. The interparticle poten­
tial was 

cP{r) = e{s/r)12 (24) 

Figure 20 is from a computer generated movie for 98 soft disks and presents 
both the long-time average and instantaneous velocity profile. The movie 
clearly reveals the increase of collisions in the x = y direction relative to the 
x = - y direction. These collisions generate the potential part of Pxy' The 
flow pattern does not appear anomalous. The results of nine separate calcu­
lations for N = 32, 50, 98, and 392 are shown in Table V. It is interesting to 
see that, within the relatively large 10% statistical uncertainty, there is no 
clear-cut dependence of the two-dimensional viscosity on either system size 
or shear rate. 

Ifwe apply the two approximate models for fluid viscosity, Andrade's and 



43 Nonequilibrium Molecular Dynamics 

Fig. 20. Typical movie frame showing 98 soft disks undergoing plane Couette flow. The 
particles are driven by two boundary regions, of 14 particles each, maintained at constant 
speed. The viscosity is determined from the shear stress and the velocity gradient rJ == -P"y/w. 
The instantaneous velocity profile (solid line) and its long-time average (squares) are also 
shown. 

Enskog's, to this two-dimensional situation both predictions turn out 
,to be consistent with the nonequilibrium molecular dynamic results, 
. YJ = (rm)1/2js, within about 10%. 

What are we to make of these patently nondivergent results? First, we can 
conclude that the hydrodynamic behavior of small two-dimensional dense­
fluid systems can be usefully described by the linear transport laws appli­
cable to three-dimensional systems. In order to reconcile our results with the 
predictions of divergence, the latter phenomenon must lie well outside the 
region in which viscosity is a useful concept. When we try to study the region 
in relative wall v~locity-coordinate space in which it is meaningfuf to char­
acterize the pressure tensor with shear viscosity, we find somewhat different 
results from those characterizing three-dimensional systems. 

Just as in three dimensions, consider a volume element at a temperature 
T with sidelength L and velocity gradient ill = vjL. First, the volume ele­
ment should be more than a few diameters wide, Ljs > 3. Second, the Rey­
nolds number for the volume element should be small enough to suppress 
macroscopic turbulence, Re < 1500, so that the flow will be laminar and 
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Table V 

SofT-DISK SHEAR VISCOSITIES FROM NONEQUIUBRIUM MOLECU~ 


LAR DYNAMICS AT REDUCED DENSITY, NS2(~)112/V OF 0.64 


N ws(m/e) 1/2 kT/e t/s/(me) 112 Time 

32 + 8 0.072 1.06 1.00 ± 0.10 6 
32 + 16 0.075 1.00 1.23 ± 0.08 6 
50 + 20 0.043 0.49 1.12 ± 0.08 8 
50 + 20 0.033 1.00 0.92 ± 0.21 2 
50 + 20 0.056 0.98 1.22 ± 0.09 4 
50 + 20 0.074 1.47 1.05 ± 0.11 8 
98 + 28 0.041 0.99 1.14 ± 0.09 5 
98 + 28 0.181 0.71 0.94 ± 0.02 9 

392 + 56 0.042 0.94 1.02 ± 0.05 1 

a The notation N = 32 + 8 indicates 32 particles in the unit 
square with four particles in each of the two boundary regions. 
The observation time is given in terms of relative displacement 
of the boundary regions (in units of the square edge). 

steady (L/s)v(m/e)1 /2 < 2165. Third, the dissipation of the shear stress 
(energy/time = '1'/02 ), ought to produce less than a 10% temperature differ­
ence between the center and the boundary of the region being studied. 
Hydrodynamics indicates that the temperature difference is 'l'/02/8K. We use 
the estimate 5(k/s)(e/m)1/2 for the conductivity, giving m02 < 4kT. Last, the 
shear stress due to the viscosity ought to be reasonably large, say at least 
10% of the natural fluctuations in the volume element. As an estimate ofthe 
pressure fluctuations we use N l /2kT/13 so that 'l'/o/L > O.08kT/(Ls). 

Each of the four conditions bounding the region of useful two­
dimensional viscosity corresponds to a restriction on the two dimensionless 
variables L/s and v(m/e)1/2

• These conditions, plotted in Fig. 21, differ from 
the three-dimensional conditions appearing in Fig. 10. Notice particularly 
that the last two conditions are independent of the volume element's size L. 
This means that in order for the shear stress to be observably large, v cannot 
be made arbitrarily small. Thus the usual limiting case in three dimensions, 
v -+ 0, does not apply in two dimensions. It seems likely that the source of 
the two-dimensional divergences is simply the greater significance offluctua­
tions in two-dimensional systems, where low-frequency disturbances play an 
enhanced role. These disturbances are presumably responsible for the rela.­
tively low 10% accuracy of the two-dimensional results. 

A related divergence is associated with two-dimensional crystals, in which 
the thermodynamic rms displacement of a particle from its lattice site is 
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Fig. 21. Limitations on the side length L and the relative velocity V for a square of soft 
disks at a reduced density of 0.6 and a temperature e = kT. As in Fig. 10 the four lines 
correspond to the restrictions of (1) size, (2) laminar flow, (3) small temperature gradients, 
and (4) observable shear stress. Macroscopic hydrodynamics is useful for describing flows 
within the central quadrilateral. 

divergent. The divergence occurs very slowly, however, as N is increased, 
varying with N as the square root of In N. In a two-dimensional crystal 
spanning the known universe (1010 ly across) the rms displacement at the 
melting point would still be less than 10 A. (Hoover et aI., 1974). 

We can anticipate further investigations of two-dimensional systems 
which offer a variety of interesting divergences absent in three dimensions. 

C. THERMAL CONDUCTIVITY 

Thermal conduction can also be simulated with nonequilibrium molecu­
lar dynamics. To do so we maintain the two boundary regions surrounding 
the bulk fluid at different temperatures rather than different velocities. Be­
cause the conductivity is measured at mechanical equilibrium it is appro­
priate that the two boundary regions have slightly different densities, chosen 
so that the pressure, as a function of the boundary density and temperature, 
is the same for both regions. Temperature, density, and compressibility 
factor profiles are shown in Fig. 22 for 108 soft spheres at three-fourths the 



46 W. G. Hoover and W. T. Ashurst 

0.75 
..J 

N 
0.50 

1.0 

N =108 

1.0 
@ 

@ @ 

o 
@ 

@ 

@ 

@ 

e 
@ 

1.1 0.5 0.6 0.7 9 10 II 

kT/€ P PV/NkT 

Fig. 22. Profiles of temperature, density, and compressibility factor in a soft-sphere system 
undergoing heat flow at about three-fourths the freezing density. 

,r<'l 
N 1,; 12III ... 
~ 

.:::,.N 

Ej;' \0 
N"":"'; 

"'1-" 
.-< 8 .. 

>­
t: 
> 6 
i= 
u 
:::I 
0 z 4 

~.: I , ... '. ' 0 
u 

..J « 2 
:::e 
a:: 
\oJ 
:::t: 0I­

A=..fi.S:t. 1/ 
Q 

.' 

~(kT/E) 
L 

0.25 

b. .125 

ENSKOG 
THEORY 

P FREEZING0.64 

0 0.2 0.4 0.6 0.8 1.0 

DENSITY-TEMPERATURE,./f( tt (f-r)14 
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freezing density. The soft-sphere calculations, shown in Fig. 23, provide 
thermal conductivities with uncertainties of order 10% throughout the 
dense-fluid portion of the phase diagram. These results suggest a nonlinear 
thermal conductivity dependence which increases with temperature gra­
dient. We know of no experimental evidence for (or opposed to) this effect. 
The gradients involved are quite large, of order 100 ke V fern! 

The soft-sphere results for thermal conductivity differ from shear viscosity 
in that the conductivity is in reasonable agreement with the Enskog estimate 
over the complete fluid. density range (compare Figs. 23 and 14). Smaller 
deviations compared to shear viscosity were also found for the hard-sphere 
thermal conductivity by Alder et al. (1970). McLaughlin and Horrocks 
(1964) suggested an oscillator model for energy transport that is physically 
identical to Andrade's viscosity model. For the dense fluid state, an oscillat­
ing particle exchanges energy (rather than momentum) with its neighbors at 
each turning point. lust as in the case of viscosity, the oscillator model 
provides a better description of dense-fluid transport than does the Enskog 
model (Fig. 23). 

An extensive series of thermal conductivity calculations was carried out 
for the Lennard-lones potential. The effect of the attractive potential was to 
increase somewhat the uncertainty in the conductivity, particularly at low 
temperature, and also, at high density, to change the sign of the nonlinear 

lENNARD-JONES 

.. 

SYM kT/E 
x 1.35 

2.0 

1.0o 0.2 0.4 0.6 0.8 

DENSITY/TEMPERATURE, X=N a; (~T) 1/4 

Fig. 24. Thermal conductivity for the Lennard-Jones potential as a function of the soft­
sphere variable x which combines the density and temperature scales. The vertical lines denote 
± one standard deviation. 
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dependence of conductivity on temperature gradient. Because the Lennard­
Jones excess shear viscosity could be correlated with the soft-sphere scaling 
variables, a similar scaling of the excess thermal conductivity results was 
carried out, as shown in Fig. 24. The difference in thermal conductivity from 
the low-density value can be expressed economically by the relation 

A).(u2jk)(mje)1/2(ejkT)2/3 a[exp(bx) - 1], (25) 

where the constants a and b depend somewhat upon the data temperature 
range. Fitting of experfrnental argon data yields similar coefficients, which 
for densities less than twice critical, provide a positive ischoric temperature 
derivative (the opposite of shear viscosity). This same qualitative difference 
has been found experimentally for hydrogen, helium, and other simple fluids 
(Hanley et al., 1972). 

V. Prospects 

What does the future hold for computer experiments with nonequilibrium 
systems and how will the theoretical interpretation of such experiments 
develop? It has already been demonstrated that computers can provide 
transport coefficients accurate within about 5-10% for simple monatomic 
systems. Because the efficiency of the calculations varies from method to 
method, it seems likely that greater accuracy will be obtained with more 
ingenious approaches to the nonequilibrium problems. Nevertheless the cal­
culations are time-consuming, involving either the decay of equilibrium 
fluctuations or the establishing ofa nonequilibrium steady flux. In the future 
such calculations should be restricted to a few carefully studied and widely 
spaced points. Between these points approximate models such as Andrade's 
and Enskog's can be used as interpolation guides. 

Ingenuity need not be limited to developing new schemes for measuring 
the transport coefficients themselves. The nonequilibrium computer experi­
ments furnish the detailed approach to the nonequilibrium state and can be 
analyzed to obtain the nonequilibrium spatial and velocity distribution 
functions. These functions will certainly prove useful in building more 
detailed models of nonequilibrium structure. Because the computer experi­
ments are limited to small lengths and times, the most potentially useful 
theoretical work is that which predicts the dependence of these small-system 
results on the chosen boundary conditions, size, and observation times. A 
thorough understanding of two-dimensional transport properties, supported, 
by computer experiments, is an essential part of this program. 

Computers naturally lend themselves to the study of transport with ex­
tremely large gradients-if the gradients are not large then the transport is 
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masked by fluctuations-as opposed to the more usual infinitesimal gra­
dients of the Green-Kubo theory. The computer work should stimulate an 
experimental effort to identify higher order and nonlinear transport 
coefficients. The correlation of the nonlinear shear viscosity uncovered by 
the computer experiments with the phenomenological Ree-Eyring theory of 
large-molecule flow suggests that clever experiments could uncover a wide 
range of qualitatively new effects. From the theoretical viewpoint, the fact 
that most of the computer data lie beyond the radius of convergence of 
small-gradients series (if such series exist 1) indicates that nonequilibrium 
series expansions are much less useful than the vinal series expansions 
of equilibrium properties. Although there is no substitute for firmly 
grounded theory, it is clear that empirical models such as Eyring's and 
Andrade's are appropriate starting points for additional theoretical work. 

The connection between the microscopic variables ofmolecular dynamics 
and the macroscopic variables of irreversible thermodynamics deserves criti­
cal study. For example, the many alternative ways of defining local pressure 
tensors ought to be systematically compared, in computer experiments, in 
order to devise recipes which provide the best atomistic analogy for contin­
uum properties. Analysis of the response of systems to nonequilibrium 
boundary conditions should also make it possible to study the entropy and 
energy stored in nonequilibrium systems. 

In addition to the microscopic interpretation of thermodynamics and 
! hydrodynamics, there are many practical problems that can better be under­

... stood, for idealized models, through computer experiments. We expect to see 
many more such calculations in the next few years. To mention a few: 
dislocation motion, plastic flow, crack propagation, and shock propagation. 

, Of these, the shock propagation problem is, in principle, the simplest be­
. cause the boundary conditions are equilibrium ones. 

In conclusion, today's computers make it possible to study a wide variety 
of problems of theoretical and practical interest. The combination of com­
puter techniques with theoretical modeling that has proved so successful in 
providing our current understanding of eqUilibrium statistical thermodynam­
ics should ultimately prevail in the much richer nonequilibrium field. 

Note Added in Proof: D. Levesque (private communication to WGH, 1975) reports that his 
thermal conductivity calculation (pp. 19-20) should be reduced by about a factor of two, 
bringing that result into agreement with our own calculations and with the experimental 
conductivity for argon. Our thermal conductivity calculations have recently been published 
[see W. T. Ashurst and W. G. Hoover (1975). Phys. Rev. A 11, 658; and Am. Inst. Chern. 
Eng. J. 21, 410]. 
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