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The quantitative thermodynamic effect of adding a weak, long-range attraction to inverse-power repUlsive 
potentials is studied. The resulting phase diagrams exhibit two fluid phases and a solid phase. a critical 
point, a triple point, and, for sufficiently soft repulsions, an additional solid phase with an additional triple 
point. The effects of attractions other than van der Waals' are studied too by using a simple analytic model 
for the canonical partition function. Although such models exhibit a wide variety of thermodynamic 
behavior, they are still not general enough to reproduce the results of high-temperature measurements on 
liquid metals. 

I. INTRODUCTION 

Van der Waals gave the qualitative explanation of the 
liquid-gas equilibrium over 100 years ago. Repulsive 
forces impose a maximum density on the condensed liq­
uid phase, and the attractive forces provide the liquid 
with a well-defined binding energy. At low tempera­
tures this dense, energetically favored liquid phase can 
coexist with a much more dilute gas in which entropy 
compensates for the missing binding energy. The dis­
tinction between the liquid and the gas disappears above 
the critical temperature, the lowest temperature at 
which the thermal energy overcomes the binding energy 
of the condensed phase. 

Van der Waals considered the pressure as a sum of 
two terms: 

(1) 

P, V, and T are the pressure (momentum flux), volume, 
and temperature of the N-particle fluid; k is the Boltz­
mann constant; Nb represents the volume excluded by 
the particles' repulsive forces and adds to the flow of 
momentum; a represents the effect of attractive forces 
in slowing the momentum flow. The temperature-den­
sity phase diagram resulting from the van der Waals 
equation is shown in Fig. 1. 

In the past 20 years extensive use has been made of 
fast computersi in order to obtain and understand the 
thermodynamic and hydrodynamic properties of model 
systems with specified simple Hamiltonians.. The domi­
nant motivation for this relatively costly work was to 
augment our Understanding of real materials. The 
greatest success in correlating the computer experi­
ments with real experiments has been achieved with 
rare gases2

; progress has also been made in simulating 
metals3 and alkali halides. 4 The computer experiments 
have led to an intuitive appreciation of the physics of 
melting,5 the mechanisms of radiation damage8 and 
fracture,7 and hydrodynamic transport processes. 8,9 -

In particular, the thermodynamic properties10- 12 for 

and some of the transport properties8
,9 are now known. 

10•13 nThe hard-sphere limiting case "", is the ideal­
ized repulsion van der Waals originally had in mind. 
Real materials correspond to lower repulsive expo­
nents,14 with n ranging from about six for metals to 
about 12 for rare gases. Figure 2 illustrates the vari­
ation of pressure with repulsive potential. The figure 
emphasizes that the thermodynamic properties for very 
large repulsive exponents (n - 00) diffe r qualitatively 
from those found for smaller and more realistic values 
of n. ThUS, one way in which the van der Waals model 
can be generalized is to replace the simple, but crude, 
hard-sphere model with the more realistic computer 
results for finite no 14 Alder and Young have recently 
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FIG. 1. The van der Waals phase diagram. Within the tem­
perature-density region bounded by the heavy line, the "co­
existence curve," two fluid phases with different densities, the 
gas and the liquid, coexist. Unless the system is permitted to 
separate into regions of differing density, the equation of 
state exhibits two different types of macroscopic instability;the class of pair potentials, 
negative pressure (within the dashed-boundary region) and 

(2) negative modulus (within the dotted-boundary region). 
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FIG. 2. Excess compressibility factor (relative to that for an 
ideal gas with the potential energy of a static face-centered 
cubic solid lattice at the same density) for various inverse 
power potentials along the isotherm E =kT. The maxima in the 
n=6, 9, and 12 curves occur at the freezing denSity. The 
freezing densities for the n = 4 and cases lie outside the re­00 

gion shown. The variable pis Nc?/(..f2V). 

studied the result of replacing the repulsive part of the 
van der Waals equation (1) with the correct hard-sphere 
equation of state. 15 Hiwatari and Matsuda have given a 
semiquantitative treatment of the effect of adding the 
van der Waals attraction to the soft-sphere fluid equa­
tion of state. 14 We treat this latter problem quantita­
tively and go beyond the work of Hiwatari and Matsuda 
to include also the solid-phase properties, including 
solid-solid equilibriums. 

The simple form of the van der Waals attractive term, 
quadratic in the density, is questionable too. Although 
this form can be derived rigorously for very-long­
range, very-weak potentials, 16 true intermolecular 
forces are relatively short-ranged, and it is known that 
electronic contributions to the pressure varying with the
4and ~ powers of the density are to be expected too. 

In this work we first describe the quantitative effect 
of adding the van der Waals quadratic attractive term to 
the soft-sphere pressure. We then consider a simple 
semiquantitative analytic model for the partition func­
tion in which the attractive power is varied as well. 
The results of this model show a wide range of thermo­
dynamic behavior but are still not general enough to de­
scribe the experimental data becoming available for liq­
uid metals in the vicinity of the critical point. 17 

II. QUALITATIVE RESULTS 

For any system composed of particles interacting 
with the purely soft-sphere potential, E:(a/r)", the di­
mensionless thermodynamic and hydrodynamic proper­
ties can be economically expressed in terms of a vari­
able combining the microscopic and macroscopic length 
and energy scales: 

(3) 

This dimensionless ratio increases monotonically as 
potential energy increases relative to kinetic energy. 
For any fixed value of n, two soft-sphere systems with 
identical values of x share the same equilibrium mac­
roscopic values of PV/NkT, E/NkT (where E is the en­
ergy), 17(V/N)2/3(mkTrl 

/ 
2 (where 17 is the shear vis­

cosity and m is the particle mass), and D(N/V)I/s 
x(m/kT)I/2 (where D is the self-diffusion coefficient). 
If corresponding dynamical boundary conditions are 
chosen, the detailed dynamical nonequilibrium histories 
for two different systems with identical values of x (but 
different densities and temperatures) can be made to 
coincide. Another way to express the unique simplicity 
of the soft-sphere system is to point out that only a sin­
gle isotherm (or isochore or isobar) needs to be studied 
in order to completely characterize the thermodynamics 
of the system. 

The excess (relative to a static face-centered cubic 
lattice) compressibility factors for all the cases studied 
in computer experiments lO

-
12 appear in Fig. 2. The 

softest of these (n =4) exhibits a fluid phase and also two 
different solid phases (body-centered cubic and face­
centered cubic). 18 The stiffer case (n = 12) has only the 
close-packed, face-centered phase and the fluid phase. 11 

For all of the purely repulsive potentials no gas-liquid 
equilibrium exists. 

How do these simple thermodynamic properties 
change when an attractive term is added to the poten­
tial? Suppose, as van der Waals did, that the effect of 
the attraction were to decrease the energy per particle 
by Na/V in the absence of phase separation-where a is 
the van der Waals a. The corresponding contribution to 
PV/NkT is 

(4) 

Because this attractive contribution to the compressi­
bility factor depends separately on x and T, the simple 
soft-sphere scaling relations are modified. For any 
fixed x, corresponding to either a fluid state or to a 
solid state for pure soft spheres, the pressure pertur­
bation is always sufficiently great, at low temperatures, 
to produce negative compressibility factors (and nega­
tive pressures). This effect is illustrated, for van der 
Waals equation, in Fig. 1. Within most of the two­
phase coexistence region a homogeneous one-phase sys­
tem would exhibit both a negative pressure and a nega­
tive bulk modulus. Any such state is, of course, ther­
modynamically unstable relative to a mixed-phase state. 
The corresponding stable mixed-phase state is a posi­
tive-pressure, zero modulus state in which two or three 
macroscopic phases coexist at different densities. 
When the phase separation occurs at large x (low tem­
perature) there is a wide density range over which no 
positive pressures can exist-the two coexisting phases 
are a solid and a dilute, nearly-ideal gas. If the sepa­
ration occurs at a smaller x (higher temperature) then 
two fluid phases can be involved, the gas and the liquid. 
If the temperature is higher still, above the critical~, 
temperature, then no unstable region exists and the ef­
fect of the attraction is only a small perturbation of the 
soft-sphere equation of state. Note that the qualitative 
changes in the equation of state, the phase changes, oc-
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cur at characteristic values of x alone only in the soft ­
sphere case. When the attraction is added, these char­
acteristic values depend also on the other dimension­
less variable appearing in Eq. (4): 

(a/w 3)(e:/kT)l-sln. 

We see that the gross features induced by attraction 
are (1) an additional fluid phase (the liquid) and (2) char­
acteristic triple-point and critical-point temperatures. 
It is easy to see too, that in the region of the phase dia­
gram where the perturbation is small, the effect of at ­
traction is to broaden the density gap between coexisting 
phases. In the next section we study these thermody­
namic features quantitatively. 

III. QUANTITATIVE RESULTS 

In order to make quantitative calculations, we need 
accurate representations of the soft-sphere reference 
system solid and fluid phases. For the softest case 
n =4 the fluid-phase computer results12 are relatively 
sparse; these, augmented by the lattice-dynamics 
SOlid-phase calculations, 18 can be summarized by the 
following approximate partition functions: 

Zfcc =(kT/e:)S/2(O/pA)S exp( - 2. 8165 - 12. 6692x4/S ) , 

Zbcc =(kT /e:)S/2(O/pA)3 exp( - 2. 7197 - 12. 6769x4/3) , 
(5) 

znuid =(a/!\.)3p" I exp( + O. 616 

- (1. 224+ O. 15541nx)5 - 12. 6692x4/S ] , 

where the lower-case z's indicate Mh roots of N-parti ­
cle canonical partition functions, Z =e"AI N.T, where A 
is the Helmholtz free energy, A is the de Broglie wave­
length, and p is Na 3/((2V). 

The phase transitions linking the face-centered, body­
centered, and fluid phases correspond to narrow density 
intervals at x = 6. 68 (where zrcc = ZbCC) and at x = 3. 93 
(where ZbcC = ZUuid). In both cases the density changes 
by less than a percent across the transition. (xrcc 

'" 6.677 and Xbcc 6.676 for the solid-solid transition; 
Xbcc'" 3. 94 and X/ luld = 3. 92 for the melting transition. ) 

It should be noted that the fluid-phase partition func­
tion in (5) does not reproduce the known vi rial form at

l low density. We justify this logical inconsistency by 
. noting that the radius of convergence of this series mustI 	 be very small in the inverse fourth power case. .. 	 Throughout most of the fluid range the energy is domi­
nated by the..mean-field lattice sum (proportional to the 
1 power of the density), 

For the stiffer 12th-power case a more-extensive set 
of computer investigationsll has produced the following 
results: 

Zfcc =(a/A)3 X"Sp-1 exp[ - 6. 0659x4 

- 6. 3145 - O. 0875x-4+ O. 009x-8
]; 

(6) 
Zfluid (a/A)3p"1 exp[ 0.65343 - 3, 629x 

- 3. 632x2 -	 3. 497x3 - 2. 865x4 
- O. 2176x10] , 

These two partition functions are equal at x 0.82 and 
give a two-phase region from x;;, 0.805 to 0.835; the 
actual fluid-solid transition spans the range from 

TABLE I. Phase transition parameters for the inverse 4th­
power potential with the van der Waals attraction. The parame­
ters characterizing the coexisting phases, x and y, are de­
fined by Eqs. (3) and (7) of the text. Z is PV/NkT. 

x=0.194, Y =4. 03 xIO-5, Z",O.307critical point: 

Gas...,Liquid-bcc XL = 3.85, YL = 1. 83 xIO-4, ZL"'O.OOO 
triple point: xs=4.01, Ys =1.91 x 10'4, Zs=O.OOO 

Gas-bee-fcc xs=6.67, Ys= 1. 99x10-4, Zs "0. 000 
triple point: xF =6.68, YF = 1.99 x 10'4, ZF '" 0. 000 

x'" 0.813 to 0.844. 11 

The effect of adding on a long-range weak van der 
Waals attraction, the Kac tail, 16 is simply to multiply 
the pure-phase partition functions just given by exp[Na/ 
VkT], where the van der Waals a is proportional to the 
strength of the assumed attraction. Now new featUres 
occur in the phase diagrams derived from (5) and (6) 
with the Kac tail. At characteristic values of x and 
(a/e:a 3)(e:/kT)(n-3>1n two or three phases can coexist with 
equal pressures, temperatures, and Gibbs free ener­
gies. For any particular choice of a the transition tem­
perature can be determined; then, knowing x, the cor­
responding denSity or transition volume can be found for 
each phase. At each phase transition the combination 

y p(w 3 /l2a)SI <....S) 	 (7) 

has a characteristic value for each phase. These num­
bers appear in Table I for the inverse fourth power re­
pulsion and in Table II for the inverse 12th power re­
pulsion. 

We have augmented the 4th- and 12th-power results 
by using the approximate virial coefficients found by 
Hutchinson and Conkie l9 to estimate the locations of the 
gas-liquid critical points for the inverse 6th and 9th 
power potentials. Several ways of fitting Monte Carlo 
and integral-equation data suggest Wlcertainties of 
O. 002 in P V /NkT and O. 001 in x at the critical point. 
In the 9th power case we estimated virial coefffcients 
from the graphs given in Ref. 19 and verified that those 
estimates reproduce PV/NkT within 0.001 at the criti ­
cal density and temperature. The critical-point param­
eters, given in Table III, show that the inverse-power 
repulsive potentials, combined with a van der Waals at ­
traction, all yield critical compressibility factors close 
to that given by a truncated three-term virial series 
(for which PV/NkTc is t). The densities estimated from 
such a truncated series are less accurate for the larger 

TABLE II. Phase transition parameters for the inverse 12th­
power potential with the van der Waals attraction. The parame­
ters characterizing the coexisting phases, x and y, are de­
fined by Eqs. (3) and (7) of the text. Z is PV/NkT. 

Gas-Liquid 
critical point: x=0.159, y=0.0761, Z=0.355 

Gas-Liquid-fcc xL=0.785, YL=O.277, ZL=O.OOO 
triple point xF=0.830, YF=0.301, ZF=O.OOO 
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TABLE III. Estimated critical parameters for repulsive pair 
potentials with a van der Waals attraction. The critical values 
of x, PV/NkT, and the attractive contribution to PV/NkT, 
are tabulated. In the last column the critical compressibility 
factor from the approximate model introduced in Sec. IV is 
given. 

n x Z Za Zm 

4 0.194 0.307 -3.27 0.381 
6 0.165 0.335 -1. 85 0.416 
9 0.160 0.348 -1. 55 0.375a 

12 0.159 0.355 -1.46 0.315 

~his value is the same as the van der Waals value because the 
approximate-model thermal energy is linear in density for the 
inverse 9th-power potential. 

values of repulsive power n. 

Because the introduction of the correct repulsive 
equation of state in the van der Waals equation has little 
effect, reducing the critical compre'ssibility factor only 
about half way from van der Waals O. 375 toward the ex­
perimental value of 0.29, we have considered the effect 
of the less-exact but more-flexible models considered 
in the following section. 

IV. SIMPLE MODEL PARTITION FUNCTION 

Motivated by the relatively poor compressibility fac­
tors resulting from the van der Waals form of the at­
tractive potential, as well as the knowledge that real 
systems have more complicated density dependences, 
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FIG. 3. Comparison of computer-generated results for the 
thermal potential energy oil'>, with the approximation given by 
Eq. (8) of the text. Although the straight-line approximation is 
known to fail at low density, where the virial expansion is valid, 
it is useful for exploratory calculations throughout the fluid 
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FIG. 4. Compressibility factors at the critical point, Zc 
=PV/NkTc , for various combinations of the repulsive expo­
nent n and the attractive exponent m. The traditional van der 
Waals attraction, linear in density, corresponds to m = 1. 

we explore the generalization of the attractive contribu­
tion to the thermodynamics. Because the result is only 
a model, not the rigorous consequence of fundamental 
principles, we are justified in using a crude representa­
tion of the repulsive equation of state. For the thermal 
energy (relative to a static face-centered lattice at the 
same density) we use 

(8) 

A comparison of this empirical expression with the 
Monte Carlo data appears in Fig. 3. Recently DeWitt 
has investigated other, more precise fits to these 
data. 20 

Our generalization of the van der Waals mean-field 
attraction, proportional to density, is to chose the at­
tractive potential energy proportional to the mth power 
of the density. Thus the per-particle partition function 
has the form: 

Ve [- <Po 36<p a mJ 
Z = NX3 exp NkT - NkT + kT P • 

This model has actually proved useful in describing ex­
perimental results for metals at high temperatures17 

although later unpublished results for tantalum21 indi­
cate the need for even more flexibility. 

Some of the interesting features of this generalized 
van der Waals partition function are illustrated in Figs. 
4 and 5. In Fig. 4 the variation of the critical com­
pressibility factor, PV/NkT c , with repulsive power n 
and attractive power m, is shown. Over the reasonably 
small range of values shown, the critical value varies 
from O. 1 to 0.7. This enhanced variation shows that 
the critical point is sensitive to the form of the attrac­
tions upon which it depends. This attractive dependence 
is certainly strong enough to explain the discrepancy of 
order 0.05 between experiment and the linear van der 
Waals theory. 

In Fig. 5 we have indicated the extent of the liquid -, 
range. This can be controlled by varying the magnitude 
of the van der Waals a and the calculations were car­
ried out as follows: The two conditions P= 0 andE/NkT 
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FIG. 5. Variation of the extent of the liquid range, T"ITt and 
V,jV/> with strength of the attractive exponent m and reduced 
binding energy E/NkT assuming an inverse 12th-power repul,.. 
sion. Similar results are obtained for other values of n. In 
the figure the results for m =O. 25 to 1.5, with E/NkT varying 
from 10 to 30, are shown. 

const give two conditions· on the zero-pressure den­
sity and temperature. These can then be combined with 
the two critical-point conditions on density and temper­
ature to calculate the ratios TaiTt and vjvt , where 
T t and VI are taken, with negligible error, to be the 
zero-pressure state at which the energy is fixed. Be­
cause, as with the critical compressibility factor, the 
results are more sensitive to m than to n, we show in 
Fig. 5 the variation of the temperature and volume 
ratios only for the inverse 12th-power repulsion. As 
expected, the extent of the liquid range is enhanced by 
increasing the binding energy relative to kTt. Experi­
mental values of this binding energy vary from about 
10 to 40 times kT t • 

Although the present model is still not flexible enough 
to describe the electronic effects present in real liquid 
metals in complete detail, we believe that it does rep­
resent a useful baSis from which to construct quantita­
tive representations of experimental data required for 
calculations with real materials. 
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