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The mathematical analogy between the elastic stress due to particle displacements in Hooke's law 

solids and the viscous stress due to velocity gradients in incompressible fluids correlates two 

interesting phenomena. In a two-dimensional crystal the elastic restoring force opposing particle 

displacements approaches zero with increasing crystal size, leading to a logarithmically diverging rms 

displacement in the large-system limit. The vanishing of the solid-phase force is mathematically 

analogous to the lack of viscous damping for a particle moving slowly through a two-dimensional 

incompressible fluid. These two continuum results are compared with discrete-particle computer 

simulations of two-dimensional solids and fluids. The divergence predicted by macroscopic elasticity 

theory agrees quantitatively with computer results for two-dimensional harmonic crystals. These same 

results can also be correlated with White's experimental study of the viscous resistance to a cylinder 

(a falling wire) moving slowly through a viscous fluid. The agreement is good. Finally, we carried 

out a computer study of a two-dimensional fluid confined between two moving walls (plane 

Couette flow). Despite theoretical predictions that transport coefficients in two-dimensional sys
tems diverge, no viscosity anomalies were observed under the conditions of the computer simulation . 


.-
I. INTRODUCTION 	 two crystal methods agree quantitatively on the precise 

nature of the divergence for large crystals. The crystal 
Surprising things can happen when three-dimensional calculations can also be used to predict the frictional 

physical ideas are applied to hypothetical two-dimension force on a cylinder drawn through a viscous fluid. We 
al systems. Here we consider a closely related pair of show that the force according to this viscous analogy is 
these surprises or paradoxes: consistent with White's experimental data. The mathe

matical analogy between elasticity and viscosity sug
(i) the rms displacement of a typical particle in a two gests, in accord with theoretical predictions, 4 that two

dimensional crystal diverges1 as [lnN]1/2 as the size of 
dimensional viscous fluids might exhibit corresponding

the N-particle crystal increases; 
viscosity anomalies. In Section IV we use molecular 

(ii) the viscous resistance to a typical particle being dynamiCS to study such a fluid in order to investigate 
slowly pushed through a two-dimensional viscous fluid is the possibility of anomalous behavior. 
also anomalous,2,3 approaching zero as l/lnN as the size 
of the system increases. II. LINEAR ELASTICITY AND SLOW VISCOUS FLOW 

These surprises contrast qualitatively with three-di In this section we recall the "well-known" mathema
mensional behavior. In three-dimensional solids the tical (as opposed to physical) Similarity of two different 
rms displacement of an atom approaches a finite limit physical systems: the idealized isotropic Hookean solid 
(a fraction of a lattice spacing) in the large crystal limit, with reversible elastic forces proportional to displace
and the viscous resistance of a three-dimensional fluid ments, and the idealized Newtonian fluid with irreversi 
to a sphere of diameter (J is given by Stokes' drag for ble viscous damping forces proportional to velocity gra
mula: dients. The similarity breaks down if displacements in 

the solid are large enough for Hooke's law to fail or if 
F - 3rrr/O"v , the velocities in the fluid are large enough for inertial 

where 1'/ is the shear viscosity and v is the (slow) veloc terms of order v2 to be significant. 
ity of the sphere. The elastic solid is described by the phenomenological 

In Sec. II we point out that the macroscopic mathema- pressure tensor 
_ tics of these two problems, elastic and viSCOUS, is the (2) 

same. In Sec. III we study the diverging rms displace
ment in the crystal from two different pOints of view: where Po is the pressure when the elastic displacement 
the microscopiC view of lattice dynamics and the macro V is zero, A and 1'/ are the Lame elastic constants, and I 
scopic view of continuum elasticity. We show that these is the diagonal unit tensor. The transpose of the dis
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placement gradient tensor 'IV is written vvt. The mini
mum energy principle' asserts that the displacement 
field actually found as a response to a set of specified 
displacements (boundary conditions) is that which mini
mizes the stored elastic energy: 

q,O' f 1> dr , 

where the energy density 1> is quadratic in the displace
ment gradients: 

(3) 

The Newtonian viscous fluid is described by the same 
phenomenological pressure tensor 

(2') 

but now X and 1) are viscosity coefficients (X 1)v - 1) in 
three dimensions and X 1)v - 1) in two dimensions where 
7)v is the "bulk" viscosity), and v is the hydrodynamic 
velocity. The minimum entropy production principle6 

asserts that the velocity field actually found subject to 
certain specified velocities (boundary conditions) is that 
which minimizes the prodUction of entropy in the fluid: 

SO' f Sdr , 

where the density of entropy production s is quadratic in 
the velocity gradients: 

S (X/T) (V. v)2+1(1)/T) (vv+vvt): (vv+vvt) (3') 

T is the temperature. 

The similarity of the two sets of equations is note
worthy, but also a little deceptive. In the elastic case 
the response of stress to volume and shape changes is 
described by the Lame constants and Po is constant (usually 
zero). In the viscous case Po is interpreted differently. 
It varies with r and is the local equilibrium pressure, a 
function of density and temperature. The compressibil
ity of the fluid is not explicitly displayed. In the special 
case of an i:ncompressible fluid the elastic and viscous 
formulations coincide. Then the solution of an elastic 
(viscous) problem can be used to generate the corre
sponding viscous (elastic) solution. As an example, 
consider the Stokes drag exerted by a viscous incom
pressible fluid on a slowly moving sphere of diameter 
0-: 

F = - 27T7)O-V (slipping boundary condition); (I') 

F - 37T1)O-V (sticking boundary condition). (1) 

The velocity field set up by the moving sphere corre
sponds exactly to the displacement field obtained in an 
elastic solid by displacing a rigid sphere of material a 
distance v. 

In the following section we exploit the analogy between 
the viscous and elastic problems in two rather than three 
dimensions in order to demonstrate that two apparently 
dissimilar and interesting phenomena are mathematically 
one and the same. 

III. ELASTICITY AND VISCOUS FLOW IN TWO 
DIMENSIONS 

Consider the slow steady motion of a two-dimensional 
disk through a two-dimensional incompressible viscous 

fluid. Over 100 years ago, Stokes found paradoxical re
sults ("Stokes' Paradox") for this system. 7 We will see 
that, with a particular choice of boundary conditions, 
the larger the system in which the disk moves, the ~. 

smaller the restoring force, with the force disappearing 
in the large-system limit. This surprising two-dimen
sional result has a simple three-dimensional analog-
the slow steady motion of a very long cylinder through 
a three-dimensional viscous fluid. The motion is per
pendicular to the axis of the cylinder. 

Long after Stokes' work on viscous drag, Peierls, 
Frenkel, and others pointed out that the restoring force 
on a displaced particle in a two-dimensional elastic 
solid disappears in the large.-system limit, with the 
formal result that the rms displacement diverges. The 
lack of dependence of the restoring force on details of 
order the atomic size is common to both the elastic and 
viscous problems. As we will see, the macroscopic 
nature of these two-dimensional displacement and veloc
ity fields furnishes an exact conn~ction between the mac
roscopic elastic constants and the microscopic rms dis
placement. 

The displacement created by a force F applied at the 
origin along the x axis can be used to express the stored 
elastic energy in a two-dimensional continuum. If we 
conSider a system of size R (i. e., with the volume pro
portional to R2 with proportionality constant determined 
by the crystal's shape), with interatomic spacing ro , the 
stored energy turns out to be (see Appendix A) 

q, ={(X + 37) /[ (X + 27))(S7T7))]} p2 [In(R!ro) + 0(1)] , (4) 

proportional to InN, with N the number of particles in 
the crystal. Because the crystal obeys Hooke's law, 
the energy is of the form q, .~ k::?- t p2 /k, where k is 
the force constant for the motion. The large-system 
value of the force constant k then follows from (4): 

(5) 

Thus the finite-crystal force constant is given in terms 
of crystal size and the macroscopic elastic constants. 
We can verify the expreSSion (5) in two ways: by a com
parison with exact results for small crystals calculated 
with lattice dynamics, and (for the special case X» 7) 

by comparison with the analogous hydrodynamic prob
lem of the Stokes drag on a cylinder. 

The lattice dynamics results for small two-dimension
al crystals were generated several years ag;o in a study 
of the thermodynamic properties of one-, two-, and 
three-dimensional crystals. 6 The two-dimensional 
crystal is periodic, composed of N particles linked to 
their six nearest neighbors (hexagonal lattice} by Hook
ean springs of energy 1l1C(or)2. For such a crystal we 
can compare the actual mean squared displacement to 
that calculated in the Einstein approximation in which a 
Single particle moves in the field of its fixed neighbors. 
The results from the lattice-dynamics calculations are 
given in Table I and plotted in Fig. 1. The results can 
be fitted by the following empirical relation: 

(6) 

If we calculate the elastic constants for the same har-
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TABLE 1. Mean squared displacement relativc to the Einstein 
approximation for N-particle harmonic crystals with nearest
neighbor interactions. These crystals are periodic, with fixed 

-" canter of mass, and rectangular, with height/width= vJ, as 
shown in 1. 

N Ratio N Ratio N Ratio 

2 0.50000 72 1. 86604 242 2.31056 
8 1. 07500 98 1. 97888 288 2.37447 
18 1.36438 128 2.07679 338 2.43327 
32 1.57104 162 2.16321 392 2.48772 
50 73296 200 24056 450 2.53841 

monic crystal (see Appendix B) we find 

A=17=t-[3K (7) 

which provides a theoretical estimate for the coefficient 
of InN, namely 2/(-[311) = 0.367553, reproducing the re
sults from lattice dynamics. Thus the lattice dynamics 
results agree exactly (for large N) with the results of 
the continuum theory. This unexpected agreement oc
curs because the displacements are large (of order 
[lnN]1/2) with respect to the interparticle spacing so that 
the discrete nature of the lattice can be ignored. In a 
three-dimensional crystal one expects that lattice dy

_ namics and elasticity theory will differ by a factor of 
order 1. The agreement found in the two-dimensional 
case is an indirect check of both the elastic and the lat
tice-dynamics calculations. 

As a second verification of Eq. (5) for the effective 
force constant, we exploit the analogy with incompressi
ble hydrodynamics. Consider the drag force on an in
finitely long cylinder moving perpendicular to its axis 
through an incompressible viscous fluid. The force per 
unit length of cylinder corresponds to the drag force for 
a two-dimensional disk moving through a two-dimension
al fluid. It is a "well-known" result, "Stokes' Paradox", 
that Eqs. (2') and (3') have no solution satisfying the 
boundary conditions of velocity v at the disk surface and 
velocity 0 at infinity. Physically, as Stokes pointed out,7 
the difficulty is that a slowly moving cylinder in an in
finite fluid gradually carries more and more fluid with 
it as time goes on so that a steady state is never 
reached. Actually, neglected nonlinear terms propor
tional to v2 eventually (at a distance> 7)/Po v, where Po 
is the mass density) dominate the terms retained and, 
as Lamb showed, the resistance on a disk is finite, pro
portional to v/ln{1/v) for small v. 

Our own result (5) predicts a force varying as v/lnN 
instead. The crucial difference between Lamb's result 
and ours is the extent of the flow region. The linearized 
equation of Stokes is only appropriate for small dis
tances (<<7)/Pav). Lamb's calculation is correct for a 
puid infinite in extent. Because Lamb included nonlin
ear inertial terms, his resistance calculation has no 

.-.. simple elastic analog. 

Our two-dimensional results should be approximated 
by the resistance to a cylinder moving between two chan
nel walls separated by a distance of order N l/2 

• WhiteS 
has carried out such an experiment, dropping wires of 

diameter a both in cylinders of diameter D and between 
planar walls a distance D apart. White found a boundary 
influence upon fluid drag for ReD/a < ~ 40, where the 
Reynolds number Re is Po vain. For larger D Lamb's 
formula applied. For finite flow regions with ReD/a 
< ~ 3, White's results are described by the equation 

F -4111)V/[ln(D/a) +011)] , (8) 

where the term of order 1 takes the flow region shape 
into account. White actually found the form (8) empiri
cally, and with a slightly different value for the multipli
cative constant 411. Taking into account the scatter of 
White's data leads to an experimental determination of 
the coefficient in (8), 411±15%. Our own elasticity equa
tion, when specialized to the case of an incompressible 
material (:\» 7)) shows that the large-N force constant is 
indeed 8117)/lnN-4117)/ln(D/a), consistent with White's 
experimental results for both cylindrical and planar ge
ometries. 

The corresponding elastic calculation in three dimen
sions does not seem to be well known. Although the 
Stokes drag on a sphere appears in several texts, with 
both Slipping and sticking boundary conditions, the cor
responding problem has not been studied ex
plicitly. If one simply calculates the displacement of a 
spherical surface in an elastic continuum responding to 
a force applied within it, the force constant found is too 
small. The discrepancy is due to the deformation of the 
spherical region. It would be an interesting exercise to 
verify that the constraint of constant shape on a dis
placed in an elastic continuum does result in the 
force constants calculated for the viscous Stokes drag 
problem, Eqs. (1) and (1 'L 
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FIG. 1. Ratio of the mean squared displacement to the Ein
stein approximation, <,v2)E where kB is Boltzmann's 
constant and Ii: is the nearest-neighbor spring constant. The 
empirical slope of the Ctlrve is 0.368, in good agreemcnt with 
the value derived in the text, (4/3)1/2/11"=0.367553. The inset 
shows the crystal stnwture. The crystals were built up using 
an n by n array of rectangles like that heavily outlined in the 
figure. The data cover values of N from 2 to 450. 
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FIG. 2. Typical movie framc showing 98 soft disks undergoing 
plane Couette flow. Five particles are marked with crosses to 
make the motion easier to follow in the movie. 28 particles, 
not shown in the figure, drive those shown and are in tnrn 
interacting collectively with external momentum and heat res
ervoirs. At the right side of the figure the instantaneous 
velocity profile (solid line) and its long-time average (small 
squares) [for a time 190a(nz/('")1/2] are shown. The particles 
have mass m and interact with a pair potential E(a/r)12. The 
circles are drawn with diameter a, and the'boundary tempera
ture is E/k. The upward flow of horizontal momentum is re
sponsible for the preponderance of near-particle pairs in the 
direction x =y over the number of pairs in the direction x = - y. 
The viscosity is determined from the cumulative average shear 
stress and the measured velocity gradient, T/ "" -P";UX,y' 

IV. COUETTE FLOW IN TWO DIMENSIONS 

The vanishing of the viscous resistance on a moving 
disk is reminiscent of paradoxical results obtained from 
Kubo's theory of transport when that theory is applied to 
two-dimensional transport coefficients. In Kubo's the
ory the coefficients are expressed as time integrals of 
correlation functions involving particle coordinates and 
velocities. These integrals diverge in the two-dimen
sional case, 4 suggesting that the transport coefficients 
themselves are in some sense divergent (that is, that 
the linear transport equations are invalid for infinite 
two-dimensional systems). The physical significance 
of this divergence is difficult to assess. If it is related 
to the divergence of the rms displacement in two":dimen
sional crystals, then it is certainly possible that trans
port coefficients are both useful and well-defined in fi
nite 1 as opposed to infinite, systems. To indicate that 
there is a very significant difference between large and 
infinite systems, consider a large two-dimensional crys
tal of 3 Adiameter particles. The Einstein prediction for 
the rms displacement would be small, of order 0. 5 A 
at the melting temperature. The actual rms displace
ment would be larger by a factor of only {lnN)1/2; that 
is, about 13, if the crystal were the size of the known 
universe (-1010 light years in radius)! Thus a very 
large two-dimensional crystal would still have an rms 
displacement less than 10 A. 

/ 

We set out to examine viscosity in noneqhllibrium two
// 

dimensional systems to search for anomalous behavior. 
The only method available for such a study is nonequilib
rium molecular dynamics. A system of particles, such 
as that shown in 2, is followed for tens of thousands ~ 
of time steps (a time step corresponding roughly to one 
tenth of a mean vibration time) by integrating the classi
cal equations of motion. Figure 2 is a Single frame 
from a computer movie of 98 soft-disk particles under
going planar Couette flow. The 98 particles shown are 
driven by 28 additional particles (14 above and 14 below 
the square region shown in the movie frame). External 
forces and thermostats are used to maintain the average 
velocity and temperature of particles in the two boundary ) 
regions. 9 The upward flux of x momentum quickly pro- Jduces a velocity gradient. From the average value of 
the gradient, tt,;,y, the viscosity can be calculated, using 
PXy - T}UX,y, with the momentum flux. 

In order to decide whether or not such a system is 
usefully described by linear hydrodynamic equations we 
must answer the questions: 

(i) is the velocity profile linear"? 

(ii) does the viscosity vary with the size of the sys
tem? 

(iii) does the viscosity vary with the gradient U",y .? 

The answers to these questions cannot be derived from 
numerical data alone. Statistical fluctuations, no mat
ter how small, might mask still smaller effects. The 
fluctuations found in the two-dimensional systems are 
in fact rather large, making it impossible to detect 
anomalous behavior if the anomaly is less than about 
10%. The results from a series of molecular dynamics 
runs with 32, 50, 98, and 392 soft-disk particles {inter
particle potential'" E{o/r)12] are given in Table II. The 
viscosities found all have uncertainties of order 10% and 
show no clearcut dependence on either size or velocity 
gradient. Note that InN varies from 3.5 to 6.0, a 72% 
increase, for the range of N studied. 

In order to see whether the viscosity coefficient found 

TABLE II. Shear viscositi'and compressibility factor of N
particle soft-disk systems with pair potential E(a/r)12 at reduced 
density (3/4) 112 N';/V~ 0.6. The notation N =32 +8 indicates 32 
particles in the central region of the system with 4 particles in 
each of the two boundary regions. The total length of the cal
culation is the time t. Uncertainties in the compressibility 
factor, PV/NkT, are 1% or less. For the 392-disk system we 
estimated tl1e thermal conductivity from the parabolic tempera
ture profile. The result is 5(J~B/a) (E/rn)1/2 with an uncertainty 
of order 50%; the Enskog prediction is about twice as big (see 
Refs. 9 and 11). .,. .6'fz..); act::. 1/ 
======================= v'l"'1f,,)o 
N kT/E wY!(mE )l !1 t(E!mi1f2/rr PV/NkT 

32 +8 0.072 1.'06 1.00",0.10 544 5.18 .69 
32 +16 0.075 1. 00 1. 23 ± 0.08 544 5.51 .,~ 
50 +20 0,043 0.49 1.12±0.O8 1539 7.37 .:t$ 
50 +20 0.033 1.00 0.92 ±,O. 21 408 5.54 
50+20 0.056 0.98 1. 22±O. 09 680 5.55 ._1 
50 +20 0.074 10"17 1. 05 0.11 4.81 .(;.5 
98+28 0.041 0.99 1.14 0.09 1522 5.49 ·G"!J 
98 +28 0.181 0.71 0.94 ±O. 02 571 5.41 ,'f3 
392 +56 kt-O 
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is reasonable we compare the measured result, 
1)= (md/ 2 /a±lO%, with two theoreticalpredic
tions. AndradelO that viscosity can be esti
mated by considering a particle to oscillate at the Ein
stein frequency, transferring transverse momentum to 
its neighbors at each turning point. This argument, ap
plied to our two-dimensional leads to the result: 

1)(Andrade) ;;2mvEinatein 6.6l8(mE)1/2 p7 (9) 

which is 1.l(mE)1/2/a at the density, p (3/4)1/2Na2 /V 
= O. 6, of the computer runs. A second approximate es
timate can be obtained from Enskog's theory, 11 a 
corrected hard-disk viscosity coefficient to estimate the 
low-density viscosity coefficient for our soft disks. The 
Enskog estimate, 1. 0(mE)1/2/0" at E kT, is not very dif
ferent from Andrade's. If Enskog's theory is used to 
predict the temperature dependence of 1), the increase 
is marginally greater than that consistent with the few 
computer results in Table II. This same defect of the 
Enskog theory appears when the theory is used to pre
dict the temperature dependence of viscosities for real 
three-dimensional fluids. 

Although the uncertainty in the computer experiments 
is relatively large, our results do rule out the possibility 
that the viscosity varies as strongly with N as InN. The 
velocity profiles associated with the calculations are 
also linear within the statistical fluctuations. We con
clude that the average flow patterns found in small two
dimensional systems can be described (with at least 10% 
accuracy) using the equations of ordinary hydrodynamics. 
The relation between equilibrium and nonequilibrium 
molecular dynamics still needs clarification. Atequilib
rium the correlation functions contributing to Kubo's 
formulation of the transport coefficients have "long-time 
tails" so that the coefficients diverge. The nature of 
this divergence, particularly its dependence on system 
size and boundary conditions, deserves thorough inves
tigation. (See "Noted added in proof," Ref. 13.) 

APPENDIX A 

In this Appendix we outline the derivation of Eq. (4) of 
the text, the elastic energy stored in a two-dimensional 
Hookean solid of sidelength R with a force F applied at 
the origin. Timoshenko and Goodier12 furnish our start
ing point, the stress field in an infinite plate subject to 
a force applied at the origin. The stress is converted 
to strain using the phenomenological pressure tensor of 
the text. The energy stored is then expressed in polar 
coordinates. After the angular integration, we find 

.p [r(3 - v)/(l61T1)] f dlnr , (A1) 
where v is Poisson's ratio, v ='>'/(A + 21) in two dimen
sions. If we arbitrarily cut off the integration, at an 
atomic diameter for small r, and at a distance of order 
N 1/2 for large r, we obtain Eq. (4) of the text. The most 
direct justification for the cutoffs is the comparison with 
the lattice dynamics results given in the text. 

APPENDIX B 

In this Appendix we calculate the Lame constants for 
a two-dimensional harmonic hexagonal crystal in which 
particles interact with nearest- neighbo r Hookean springs. 

The spacing between atoms is d, related to the volume 
per atom by V/N = (3/4)1/Z dZ. Consider first a uniform 
expansion of the crystal in which all lengths undergo a 
relative extension 15L / L "'.:1. The macroscopic energy 
calculated from Eq. (3) of the text is 

.p aA(2.:1)Z + h{(2.:1)2 + (2.:1)2}] V= 2.:12(A.+ 1) V . (Bl) 

The microscopic approach, in which we notice that each 
spring is stretched by an amount d.:1, gives an alterna
tive expression for the energy: 

(Bl/) 

Combining the two relations (Bl) and (Bl/) gives the re
sult 

A+ 1) (3/4)1/2 K • (B2) 

We obtain the shear modulus 1) by conSidering the de
formation 

, (0 .:1)vv 0 0 . 

The macroscopic energy for this deformation is ~.:121)V. 
The microscopic energy is (3/l6)N/(d2.:12

, leading to the 
identification 

K . (B3) 

Equations (B2) and (B3) establish Eq. (7) of the text: 

A 1) K. (7) 

*Work performed under the auspices of the U. S. Atomic Ener
gy Commission. 
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