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The improved self-consistent phonon theory (ISC) is compared with classical Monte Carlo 
experiments for a model approximating solid Xe. A Lennard-Jones (LJ) (12-6) nearest­
neighbor (nn) potential is used to calculate the lattice constant, expansivity, C v' Cp. the bulk 
modulus, and the thermodynamic Griineisen parameter. The ISC is found to bc only semi­
quantitative at high temperatures. By comparing the Monte Carlo results for high tempera­
turc and the ISC for low temperature with experiment we can see deficiencies in our simple 
nn model of the interatomic forces in solid Xe. 

I. INTRODUCTION 

Equilibrium and dynamical properties of the 
rare-gas solids (RGS) Ar, Kr, and Xe have now 
been calculated over a wide range using a variety 
of intermolecular potentials and different approxi­
mations. 1-

9 Thermodynamic properties are usually 
derived from a model Helmholtz energy, and there­
in lie two difficulties. First one needs to know the 
interatomic forces; and second one must solve the 
dynamical problem. Progress in the former area 
now seems quite promising, 4,9 especially since the 
advent of reasonable quantum-mechanical models 
for the binding in diatomic molecules10,11 and the 
availability of precision molecular-beam scattering 
data12

• 
13 and spectroscopic work. 14 Unfortunately 

at present there is not yet a reliable pair potential 
for Xe, and thus one is forced to use the familiar 
Lennard-Jones potentials. The dynamical problem 
also presents difficulties. At low temperatures, 
for a heavy atom like Xe, the quasiharmomc ap­
proximation with suitable perturbation-theory (PT) 
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FIG. 1. Diagrammatie representations of anharmonic 
contributions to the Helmholtz free energy. (a) is the 
second-order cubic, and (h) is the first-order quartiC 
contributions based upon conventional perturbation theory. 
(c) is the leading correction to the first-order self-con­
sistent theory (note the vertex renormalization), and (d) 
is a higher-order correction. 

corrections for anharmonicity appears to be satis­
factory, but as the temperature is raised and the 
vibrational amplitude increases, other approaches 
are needed. Recent developments in the theory of 
anharmonic effect in crystals have centered on self­
consistent theories. 15-17 The best approach pres­
ently available is the so-called improved self-con­
sistent theory (ISC) of Goldman, Horton, and 
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FIG. 2. Zero-pressure lattice constant of solid Xc. 
ISC and PT were calculated using a (12-6) LJ potential 
with FISC and F pT , respectively (see Ref. 5). Experi­
mental data arc taken from a compilation in Ref. 19. 
Monte Carlo results are shown as squares. 
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FIG. 3. Zero-pressure expansivity for solid Xe. 
Curves QH, ISC, and PT were calculated using F QH• FISC. 
and F pT , respectively (see Ref. 5). Monte Carlo results 
are shown as squares. Experimental data are from 
Refs. 20 and 21. 

Klein. 2 However, as we go to high temperatures in 
a solid like Xe which melts at about three times the 
Debye temperature, we are approaching a different 
regime. At these temperatures solid Xe is essen­
tially classical in its dynamical behavior, and 
Monte Carlo computer experiments provide a use­
ful alternative approach. Moreover, in principle 
they provide an exact solution to the d:ynamical prob­
lem. For intermediate and low temperatures, and 
for solids like Ne, the classical Monte Carlo ap­
proach is not applicable. 

The present work is concerned with a test of ISC 
at high temperatures where the Monte Car10 experi­
ments provide the exact results. We use a simple 
potential that is known to give a fair over-all ac­
count of the thermodynamics. The outline of the 
paper is as follows: Sec. II gives a brief statement 
of the theory and the relationship of ISC to PT. 
Section III presents the potential used, Sec. IV the 
results, and finally Sec. V gives sununary. 

II. OUTLINE OF DYNAMICAL THEORIES 

Quasiharmonic (QH) theory yields the standard 
expression for the Helmholtz energy of ~ ';,olleCtion 
of oscillators Iy

kr 
F QH= 'Po +6/01 ; 10/= (1/,8) In(2sinh~ hpwqJ ) , 

oj 

where <1>0 is the static lattice energy, 13= l/kT, and 
wqJ are the normal modes derived from the usual 
dynamical matrix. Corrections to FQH arise from 
terms <l>a, <1>4' <l>s, etc., which are the higher-order 
terms in the Hamiltonian that are, respectively, cu­
bic, quartic, etc., in the particle displacements. 
Using PT the leading corrections to F QH can be de-
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FIG. 4. Zero-pressure Co for solid Xe. The curves 
QH. ISC, PT were calculated fromFQH, FISC, and F pT • 

respectively (see Ref. 5). The Monte Carlo results are 
shown as squares. Experimental data are from Ref. 19. 

rived. These are shown diagramatically in Fig. 1. 
The lowest first-order PT correction is shown in 
Fig. 1(b); this is due to the quartic term <1>4' The 
lowest second-order contribution in PT is due to <l>a 
and is shown in Fig. l(a). To this order 

FpT FQF/. +F4 +Fa•3 , 

where the notation is self-explanatory, and explicit 
expressions can be found in the literature. 
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FIG. 5. Zero-pressure bulk modulus of solid Xe. 
The curves QH, ISC, and PT were calculated from F QH. 

FISC. and F pT , respectively (see Ref. 5). The Monte 
Carlo results are shown as squares. Experimental data 
are from Ref. 22. 
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FIG. 6. Zero-pressure Griineisen parameter for solid 
Xe. The curves QH, ISC, PT were calculated from FQH, 

FISC, and F PT , respectively (see Ref. 5). The Monte 
Carlo results are shown as squares. Experimental data 
are from Refs. 20 and 21. 

Thermodynamic properties based upon F pT have 
been reported. In particular, the PT approach was 
shown to be unsatisfactory at high temperatures.! 
An alternative approach has been developed based 
upon self-consistent procedures. 15-17 In lowest or­
der the free energy is then 

Fsc (<I>o}sc +B fqJ - i.E:; Uqj , 
qJ qf 

where Uqj is the contribution of the mode wqJ to the 
energy. Self-consistency arises because the aver­
aging of the force constants has to be carried out 
with a displacement-displacement correlation func­
tion which itself depends upon the force constants. 
Explicit details can be found in the cited references. 
This lowest-order self-consistent theory has no ex­
plicit contribution from odd derivative terms of the 
type in Fig. 1(a). To remedy this one should strict ­
ly go to a fully self-consistent second-order theory 
or even higher. 15 This does not appear to be prac­
tical at present. A hybrid theory, the so-called 
ISC which contained the leading term omitted in F s c, 
was introducedl!: 

FISC =Fsc+ AF, 

where AF is shown diagramatically in Fig. 1(c). 
The chief difference between AF [Fig, 1(c)] and Fs,s 
[Fig. l(a)] is the appearance of thermally averaged 
third-order force constants, which manifests itself 
as vertex renormalization in the figures. Finally, 
Fig. ltd) shows a further higher-order term analo­
gous to F 4,4 in conventional PT. This term has been 
used in explicit calculations recently by Koehler. 8 
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It is now possible to treat classical many-body 
problems exactly using a computer. 18 In Classical 
Monte Carlo experiments the independent variables 
are usually the temperature T and the size and shape 
of the system. Once the potential energy is speCi­
fied as a function of the particle coordinates, ;41 

<I> {{x~ }), the computer samples many configura­
tions in the vicinity of the initial one, weighting 
them with their relative probability e-/l~, which cor­
responds to a canonical-ensemble average. The 
Helmholtz energy F and internal energy E are 

1 
F=-jilnZ 

- ~ In0-SNi ...i e- S~ d {x~ 1) 

E=~(NI(3) +<<I» , 

where Z is the canonical partition function and A 
is the thermal de Broglie wavelength. The canoni­
cal-ensemble average is 

( ({ f}» i f 0' -1!41 d {x ~1Ox" = l!. ••• II e A3NZ 

The Ll.'s below the integral sign are appropriate to 
the solid phase and indicate that particles are re­
stricted to their own regions of space. 

Thermodynamic properties follow from the free 
energy in the usual way. 

III. CHOICE OF POTENTIAL 

We have chosen to work with a Simple nearest­
neighbor (nn) Lennard-Jones (LJ) (12-6) potential 
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FIG. 7. Zero-pressure Cp for solid Xe. The curves 
QH, ISC, PT were calculated from F QH , FISC, and F pT , 

respectively (see Ref. 5). The Monte Carlo results are 
shown as squares. Experimental data are from Ref. 19. 
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with parameters taken from Horton's review 
article19

: 

This potential gives a fair account of the thermo­
dynamic properties. 1 The restriction to nn inter­
actions is not essential. 1 However, since the aU­
neighbor (12-6) potential does little better in ac­
counting for many of the thermodynamic properties, 
there is no reason to favor it here. 

IV. RESULTS 

Figures 2-7 show the results of calculation of 
thermodynamic properties of solid Xe using the LJ 
(12-6) nn potential and the various approximations 
for the dynamics outlined above. In the specific 
heat and the expansivity, the Monte Carlo experi­
ments differ considerably from all the other dynam­
ical models. Although the ISC appears to be the 
best model available, corrections to it appear to be 
large at high temperatures. This confirms findings 
of Koehler, who recently showed8 that the diagram 
in Fig. 1(d) makes a significant contribution to the 
high-temperature thermodynamic properties of solid 
Ar. Independent calculations23 for solid Xe at 
160 OK incorporating the diagram in Fig. l(d) also 
predicted far too large a lattice constant. It thus 
appears that as yet we do not have an adequate dy-

G. HOOVER 

namical theory for high temperatures. However, 
a combination of Monte Carlo calculations at high 
temperatures and ISC at lower temperatures would 
probably enable one to span the whole temperature 
range of solid Xe adequately. It is clear from 
Figs. 2-7 that the LJ (12-6) nn potential used in 
this fashion gives only a semiquantitative account 
of the experimental data. This is not very surpris­
ing in view of the gross oversimplification involved 
in using this potential. 1 

V. SUMMARY 

We have compared the thermodynamic properties 
of solid Xe calCulated using approximate treatments 
of anharmonic effects with an "exact" classical 
Monte Carlo experiment. The ISC theory appears 
to give the best results, which is encouraging to 
some extent, since this is the most sophisticated 
theory yet applied to explicit numerical calculation. 
However, it is clear that at high temperatures cor­
rections to ISC are Significant. 

We have also shown that the simple LJ (12-6) nn 
model is not really an adequate representation of 
the interatomic forces in solid Xe. Further calcu­
lations using more realistiC interatomic potentials 
of the kind already used4

,9 in solid Ar and Kr would 
be most valuable. 
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