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Statistical Theories of Melting7

W. G. HOOVER and M. ROSSI

Lawrence Radiation Laboratory, University of California,
Livermore, California

Suanrary.  Computer experiments ean now be used to locate the melting transition
for idealized partieles which interaet according to any speeified foree law,  The results
of such computer experiments can then be compared with the predictions of approxi-
mate melting theories.  We review the computer results obtained for some simple
foree laws in order to illustrate the successes and limitations of the theories.

1. Infroduction

Over the years much literature has been devoted to attempts to predict
theoretically the conditions under which a solid will melt or a fluid will freeze.(
In much of this theoretical work the authors seek a mechanism which leads to
mechanical ingtability in the solid or the fluid phase. Solid phase instability can
be brought about through the formation of vacancies, by the vanishing of the
shear or bulk moduli, or by the spontaneous production of dislocations. Fluid
phase instability is signalled by the onset of long-range order or a non-vanishing
ghear modulus. .

Although the study of instability is useful in picturing the process of melting,
the basic cause of melting has no connection with instabilities. IFrom purely
thermodynamic considerations, the fundamental theory of melting can be
summarized as

Ts:Tf; Ps=Dr; {L(P; T):gi(:p: T) {1)
The three conditions correspond to thermal equilibrium, mechanical equilibrium
and chemical equilibrium. KEach of the quantities, temperature, pressure and
per-particle Gibbs free energy, must take the same value in the solid phase as
in the fluid phasc, These equations (1) are melting theory, and describe the
three necessary conditions for the two phases to coexist.

The thermal, mechanieal and chemical mechanisms for melting are separate
complex questions. How do the atoms actually move in going from an ordered

phase to a disordered one? The mechanism and the transition rate can depend .

on the microscopic details of surface structure, imperfections, thermal con-
ductivity and fluid viscosity, all of which vary from one material to another.
Thermodynamics is much simpler, for it works in the same way for all materials.
It is the thermodynamic aspect of melting we consider here.

If melting theory is so simple, why has so much been written on the subject?
It is not that the fundamental theory contains any mysteries but rather that
the free energy ¢ is difficult to caleulate accurately. A rigorvous theoretical
free energy caleulation for a real material proceeds in two steps, both difficult.
First, the erystal strueture must be given and the forces with which the
atoms or molecules interact must be deternined.  Second, the macroscopic

1 Work performed under the auspices of the U.S. Atomic Encrgy Commission.
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consequences of the forces have to be caleulated using statistical mechanies,
The two-step caleulation has to be carvied out separately for cach material of
interest.

The first step scems to be the harder one. For even the simplest of real
materials reliable quantum calewlations of interparticle forees in condensed
phases have not been earried out.  The mathematies of many-body quantum-
mechanical systeins is still too much for today’s computers.  The second step of
carrying out the many-body statistical mechanical caleulations for an assumed
foree law {even an unrealistic one) was until recently possible only at very high
or very low densities. The difficulties in the statistical mechanics were
numerical ones and not very severe. These difficulties have now been over-
come by using fast computers. Present-day computers can simulate accurately
the properties of a few thousand interacting particles. The resulting ¢ com-
puter experiments ’ provide accurate thermodynamie properties over the whole
density range. The difficulty still remaining is the first one of knowing what
the forces in real materials actually are.

The uncertainty in the forces combined with the old difficulties in ealeulating
free energy led to several inexact approaches to a theory of melting. A con-
siderable effort was made to develop theoretical or empirical equations which
could describe experimental p,V, 7" data on melting. The situation can now be
clarified. With the computers we can obtain ‘experimental® data for a
specified force law., When such data, for idealized particles, based on inoun
forces, arve confronted with the predictions of theory, any disagreement can be
ascribed entirely to shortcomings in the theory rather than to uncertainties in
the forces. With such a severe test of theories available to suggest further
improvements, it is now a particularly appropriate time to review the classical
theories and models of melting to see how well they agree with the new com-
puter results.

This study will also allow us to understand what at first appears to be a
paradox: we know that melting occurs when the solid and fluid phases are
together in equilibrium. Then why is it that melting models based on the
properties of only a single phase (as are all the instability models) can success-
fully deseribe a fwo-phase phenomenon in which solid and fluid are equally
hmportant?

2, Melting for inverse power potentials
The simplest possible idealization of intermolecular forces which is still

complicated enough to show a melting fransition is derived from the inverse
power potential: ‘
B(r) = elafr)". (2)

The particles are point centres of repulsion, with the force on any particle heing
a vector sum of contributions —dé/dr from all the other particles. The
strength of the interaction is proportional to the microseopic energy e. The
¢ diameter” of the particles is the length oo The hardness or stiffness of the
particles inereases with ».

We will consider specifically the three most eommonly used values of =,
4, 12 and oo, The corresponding pair potentialg are shown in fig. 1.

The very soft (n=4} case of < Maxwellian moleceules’ and the very hard
{n=o00) case of ¢ hard sphere’ particles are not especially realistic, but both
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Fig. 1. Inverse power pair potentials. Maxwellian molecules correspond to n=4;
hard spheres to n=co.

have been studied since the time of Maxwell and Boltzmann because their
transport coefficients and equilibrium properties were the easiest to calculate
theoretically. An intermediate value (n=12) provides a more realistic
description of actual repulsive forces between closed electron shells. This
potential, the ¢ soft-sphere’ potential, is the high-temperature limit of the
much-studied Lennard-Jones potential, which has been successfully applied
to the description of the rare gases.

For any of the inverse power potentials the thermodynamic and transport
properties are particularly easy to calculate because once a single isotherm,
isochore or isobar is known all the others can be determined from it. For the
thermodynamic properties this follows from the way that the configurational
Helmholtz free energy depends on density and temperature. The Helmholtz
free energy function I = U —T'S, rather than the Gibbs free energy function
G=U+pV ~TS=H+pV, is more convenient in statistical calculations(®
because volnme (rather than pressure) is the fundamental independent variable
in theoretical caleulations. From statistical mechanics the dependence of the
Helmholtz free energy on the volume and temperature is given by the canonical
partition function Z(V, T):

1
Zg=exp (—H/ET) = ~~—-j-—--J exp (-—0“ l_fl’ }:?‘13“") dr?®

A .
= Wi As,\” exp (——pn!-i ﬁz Sﬁ_n> sV @

where
p=No¥V, s=r(N/V)V3 and A =k¥@mmiT).

The sums in (3) range over all N{N —1)/2 pairs of particles. The reduced
distances {s} have been introduced to show that the non-ideal part of the free
energy, given by the integral multiplyving V¥/(Nt A®¥) in (3), depends only
on the single density-temperature variable a=p(e/kT)%", rather than on
Vand 7 separately.  This remarkable simplification of the partition funetion
occurs only for inverse power potentials. ' ’
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The dimensionless thermodynamic properties obtained by differentiating the
partition function {d /= —pdV =S dT)—that is, pV/NLT, U/NET and
(8 =8 ea)/Vh—likewise depend only on the combined density-teruperature
variable . Thus any isotherm or isochore, over which p(e/A7)%7 varies from
0 t0 oo, gives the entire equation of state for all V and 7. &

| I i
piv)

| J :

Tig. 2. Variation of pressure, volume and temperature in the vicinity of the melting
and freezing transitions. The numerical results on which these curves are
based were obtained usiug the inverse twelfth power potential.

Along any isotherm, isochore or isobar the melting transition is characterized
A A O N , )
by two d‘lsw11t.1nmtleb, as s]19\\ n in fig. 2.'. (ap/aV )y, (8/pdT), and (aT/aV ),
all are discontinnous at melting and again at freezing. The discontinuities,
which signal the start and the finish of melting, oceur at two characteristic
values of the density-temperature variable z:
;o /] . A7 8 :

s :ps(e!/kf)&j?i, &y =P£( /]‘VT’)W?L} (4)
where p, and p; are the densities of the coexisting melting solid and freezing
fluid at temperature 7' 1f we introduce z, and z; for the corresponding pure-
phase compressibility factors, (pV/NET), and (pV/NLT), in the solid and fluid
phases, then the three p ¥ 7" relations at melting can be expressed in terms of
the ; and z; (where i stands for cither s or f):

})03,«[6 :___p(n~‘~3),’3 Zixi——u}S ;
:pa_;;fte_:(k{[j/e)(n+3)in zifci ; .
‘, B 3
pi =T e)mx,. (5)
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The constants characterizing the melting transition, «,, oy, 2, and z; have to be
determined from statistical ealeulations.

The exact (for inverse power potentials onlyl) relations in (5) suggest a
number of empirical macroscopic p V7T relationships at melting. The Simon
pT relation® between the melting pressure and temnperature,

(p—=p"fe=(T/T"y -1, (6)
has long been used to extrapolate to high pressure-high temperature melting
conditions (such as those within the ecarth) which are experimentally
inaccessible.  Tor the inverse power potentials the Simon equation is exact,
and the constant ¢ is (1 +3/n). The simple relations (5) for the inverse power
potentials appear first to have been pointed out by Domb.t®®  Although the
inverse power approximation is useful for real materials over a limited density
range, we know that real materials arc likely to show decreasing values of n,
and therefore increasing values of ¢, at high compression. Consequently the
Simon equation cannot be trusted at high compressions. It tends to over-
estimate the terperature at which melting occurs.

An approximate V7T melting relation states that the volume expansion at
melting, relative to the initial standard volume V', is a linear function of
temperature:(®

TIT =1+4+cAV/V). (7
This appears to be the first two terms of a power series expansion in (AV/V").
For inverse power potentials; it is. The full expansion follows from (4):

n(n+3) AT
——l-S—(AL/V)+.... (&)

TIT =14 S ATV +
In the inverse power case we see that the expansion converges poorly for
large n, corresponding to steep repulsion. Ewven for the softest case, a Max-
wellian solid (n = 4), the third term increases to 5 per cent of the second term by
the time the solid has been compressed 4 per cent. Kvidently (7) should fail
badly at high compressions, predicting, unlike the Simon equation, too low a
temperature at melting. If the effective value of n changes rapidly with com-
pression this change can compensate for the higher terms omitted in (7).
Grover ) has shown that such a compensation actually oceurs for alkali metals,
where (7) reproduces experimental data for AV/V" up to 0-4. However (7)
has not been shown to be successful in predicting melting bevond AV/V’ = 0-1
for any other class of materials. It fails in the case of closed shell systems such
as the rare gases and ionic solids (wheve » is known to be of order 9 or more)
and has not been adequately tested for non-alkali metals because of a lack
of data.

An underlying microscopic simplicity is responsible for the many simple
macroscopic relations among inverse-power thermodynainic quantities. We
have already introduced the scaled distances {s}, giving lengths in units of the
characteristic length (F/N)V3. An inunediate consequence of this step is the
observation that the relative importance of any configuration in scaled space
is alwavs the same at fixed p(e/kT)¥". This can be seen most easily from the
dynamical point of view. 1f we also introduece sealed time, -, measured in
units of the characteristic time (1/N)Y3au/LT)V2, the scaled equations of
motion for inverse power particles are simplified. The sealed accelerations,
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d2s/dr2, and forces are found to depend only on the density-teraperature
rariable 2. This means that for a fixed value of p(¢/kT)?", the dynamic
behaviour of the system in s-r variables at any density or temperature looks
exactly the same. On the time-averaged basis of statistical mechanies, this
dynamical identity shows again that the relative importance of any configura-
tion of particles, expressed in s coordinates, is density and temperature
independent at fixed p(e/£7)3".

Because melting and freczing oceur at characteristic values of &, each possible
configuration in the scaled coordinates will always have the same probability,
and the scaled ¢« structure * of the solid and fluid along curves of constant o will
always be the same. In pictorial language we can say that as we move along
the melting or freezing curve all the atoms in the solid or fluid will always be
in the same relative positions to one another when viewed in the scaled space.
Thercfore, because the relative arrangements are unchanged, any z-dependent
structural characteristic, when expressed in scaled variables, can serve as an
indicator of melting or freezing.

The best-known example of a structural characteristic used to predict
melting is the sohid-phase Lindemann law,® which states that the ratio of the
root-mean-squared displacement to the nearest-neighbour spacing is a constant
along the melting line. Because the characteristic length used in defining our
reduced distances was {V/N)V3 and is essentially the nearest-neighbour
spacing, the Lindemann ratio is a sealed root-mean-squared displacement and
must be constant at fixed p(e/L7)%*. For any inverse power potential aeny
function of the s variables is constant along the melting line so that the
Lindemann relation is exactly correct.

In the fluid, particle displacements are no longer a useful struetural deserip-
tion. Instead, the pair distribution function is introduced. It gives the
probability, rclative to the ideal-gas probability, of finding two particles a
distance r apart. In secaled variables the pair distribution function in the
freezing fluid is constant aloug the freezing line. The Kourier transform
(called the structure factor) of the pair distribution function is often discussed
instead, beeause a portion of the transform can be directly measured in
laboratory experiments designed to scatter x-rays or neutrons from the fluid.
For inverse power potentials the scaled Fourier transform is unchanged along
the freezing line.  Because the actual structure factor is a function of the wave-
vector K, an inverse length, the characteristic positions of extrema in the
strocture factor vary as p¥3a(hZ/e)V" at freezing.  Ashcroft and co-workers®
have correlated the ficezing densities for liquid metals using a structure-factor
criterion.  This is the analogue, for fluids, of Lindemann’s law.

Ross® introduced a criterion for melting closely related to the scaling of
the microscopic particle distributions. He predicted that the non-ideal part
of the Helmholtz free energy would be constant along the melting line.  This
constancy follows from the form of the partition function in (8) and also from
the dynamical analysis showing that the relative impertance of the scaled con-
figurations contributing the excess free energy depends only on a.

The simple scaling relations for the dynamics, the macroscopic thermo-
dynamies, the Lindemann constant, the structure factor, and so on are nof
obtained if attractive forces are added to the inverse power repulsion or if the
repulsion has some other form. The microscopic structure in real systems
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actually does change somewhat along the melting line, and it is therefore
necessary to caleulato separately the variation of the free energy with volume
at each temperature. We expect, howeover, that over a limited density-
temperature range the inverse-power model can be used to deseribe real
materinls,  The fact that several empirical melting relations hold exactly for
inverse power particles supports the analogy.

The fact that the microscopie structure in both phases, solid and fluid, scales
in the same way as does the melting transition, a two-phase property, explains
the apparent paradox mentioned in the Introduction, namely that one-phase
properties adjusted to fit a single point (thus determining p(e/AT)%") on the
melting line can be suceessfully used to predict the whole curve.  We see now
that such predictions would be exwet for an inverse power potential. The
validity of the sealing for real materials still must be determined.

3. Results from the computer experiments

The Maxwellian, soft-sphere and hard-sphere potentials have all been studied
in computer experiments. The results of such caleulations differ from results
of laboratory experiments primarily in that the forces are chosen in advance in
computer experiments.

Ordinarily periodic boundaries are used, as shown in fig. 3, to eliminate
number-dependent surface effects. In the cowmputer experiments a large
number of equilibrinm configurations is generated (typically a few hundred
thousand), either by the molecnlar-dynaniic method®b of solving the classical
equations of motion or by the simpler « Monte Carlo’” procedure.(*?

In Monte Carlo ealculations velocities are absent; the particles proceed from
one configuration to another, not according to F=m¥# but as a result of random
moves. By selecting all such moves whicli lower the potential energy @, but
only a fraction exp (3D /LT) of those moves which increase the energy by 80,
the Monte Carlo method generates exactly the sane configurations that would
oseur if the equations of wotion were solved instead. As the configurations
are generated, the pressure and the energy are caloulated as averages. Typical
results are shown in fig. 4 for the Maxwellian, % soft-sphere®® and hard-
sphere(® particles.

Fig. 3. Schematic illustration of the periodic houndaries used to eliminate surface
effects in computer caleulations.  The system shown contains three particles
and is surrounded by periodic replicas of the same svstem.  Notice that the
dark particle. just leaving the central ccll, Is being replaced by its periodic
image (the other images of this particle are lightly shaded).  The number of
particles in the central cell is constant.
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A peeuliarity of the computer experiments is that they cannot easily handle
coexisting phascs.  This iy because the relatively large fraction of particles,
of order ¥N—V3, on the two-phase boundary where the phases meet is negligible
only for systems much too large to study with computers.  The inhomogencous
surroundings in the vieinity of a pliase boundary cause the surface particles to
have a higher free energy than that in either pure phase. The free energy
increagse duc to the surface particles mulkes the computer results in two-phase
regions depend strongly on tlie number of particles.%  In contrast, the one-
phase results (where surface effects have been eliminated by using periodic
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Fig. 4. Thermodynamic equations of state for three inverse power potentials from
computer experiments.  ApF/NET is the increase in the compresszibility factor
over that of a perfect static lattice at the same density and temperature.
The discontinuities in the slopes of the three curves correspond to the melting
and freezing transitions.
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Fig. 5. Boundaries of the two phases, fluid and solid, for inverse power potentials.

phase region where fluid and solid can coexist. This region is very narrow
for the softer Maxwellian molecules (n==4),
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boundaries) depend only a little on system size so that sepavate free energy
caleulations for the two phases can accuvately predict the phase fransition
location corresponding to the ¢ thermodynamic imit *, X - co.

To locate the melting transition, the computer pressure or energy data for
the two phases have to be integrated to get the free encrgy.  The Helmholtz
free energy for each phase can be determined by cither a volume or a tempera-
ture integration:

(3H[6VYp= —p; (3[H/T)8T)y = — UJT2 (9)

Then the phase boundaries, along which the solid and fluld temperature,
pressure and per particle Gibbs free encrgies are equal, can be determined. (9
The phase boundaries determined in this way for the three inverse power
potentialg are shown in fig. 5. Notice that, as predicted by the scaling rela-
tions (4), the hard-sphere melting and freezing densities are temperature
independent. The corresponding densities for soft-sphere and Maxwellian
particles are respectively proportional to 744 and 734

All three inverse power potentials have been studied at Livermore. (3315
The hard-sphere results agree guantitatively with independent work carried
out at Los Alamos. 2" The soft-sphere results agree with calculations done at
Orsay. (19

Although the inverse power potentials are the simplest to use, they are not
sufficiently realistic at low temperatures where attractions must be taken into
account. Attractions split the fluid portion of the phase diagram into two
parts, gas and liquid. These same attractive forces spoil the simple scaling of
the forces and of the melting equations, complicating the computer experiments
designed to map out the phase diagram. The most extensive work carried out
so far represents the atiractive part of the potential by adding on an inverse
sixth power attraction to the soft-sphere repulsion:

b {ry=Ar=12— Br-8, (10)
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Fig. 6. The Lennard-Jones phase diagram, as determined at Orsay and Los Alamos.
Superimposed on this diagram is the soft-sphere phase diagram resulting when
ouly repulsive forees are used.  The fluid-solid two-phase region for the soft-
sphere potential is lightly shaded.
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For this < Lennard-Jones ™ potential the entire cquation of state has been
determined, mostly at Orsay, 92D but with considerable  corroborating
caleulations from Los Alamos, 3% Af pressures up to about two kilobars the
computer results fit closely the measured results of laboratory experiinents on
solid and fluid argow, so that at moderate pressures the potential (10} is prob-
ably fairly close to the true interaction between argon atoms. This
correspondence illustrates that the fundamental problem of determining inter-
molecular forces can be attacked more casily by comparing calculated thermo-
dynamic properties with experiments than by attempting to carry out acourate
quantum mechanical caleulations of the forees.

The Lennard-Jones density-teruperature phase diagram, shown in ﬁo 6, has
superimposed on it the phase diagram for the soft-sphere repulsive potonmal.
The similarity suggests that where the deviations arve small the effect of the
attractive forces could be treated by first-order perturbation theory. A« first-
order” theory agsumes that the particle distribution is unchanged by the
presence of the attractive term. A < second-order * theory would ealculate the
changes in the distribution too. The first-order chauge in Helmholtz free
encrey is found by averaging the contributions of the sixth-power terni, using
the distribution found for the repulsive twelfth-power alone. In first-order
theory the change in Helmholtz free energy is

A= (N¥2T) f( — BrS)g,(r) dr, (1)

where g¢,(r) is the pair distribution function based on the repulsive forces. The
first-order changes in energy and pressure can be derived by differentiating AH
with respect to 7' and F. The resulting expressions®® involve not just the
pair distribution function g,{r), but also the three- and four-particle distribution
functions. Hansen has carried out the complete first-order perturbation
caleulation for both the fluid and the solid phases. His results show that the
first-order correction (11) is adequate only at temperaturves well above the
critical temperature. Thus any fundamental theory based on free energy
calonlations from perturbation theory is restricted to high temperatures.

Nevertheless it is possible that certain average properties other than pressure
and energy are less sensitive to atlractive forees and so can be used to follow
the melting transition to low temperatures.  Hansen found that the Lindemann
ratio, {r*>V3¥d, where d is the nearest-neighbour spacing, remained constant
within its statistical exror (5 per cent} over a temperature range fron: the triple
point to the high-temperature soft-spherc limit. In the fluid phase the
corresponding indicator of freezing, the principal maximum in the structure
factor, wus likewise found to be nearly temperature-independent within its
statistical error (2 per cent).

These two characteristic funetions for melting and ircezing illustrate that
relations which are exact for simple inverse power potentials can be effectively
correct for more complieated situations, and therefore useful in analysing real
experiniental data.  In describing real materinls, with unknown forces, the
first step is to determine an effective pair potential by analysing experimental
data. Then the statistical theory, using the same potential, can be applied to
phase-diagram caleulations.
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4, Approximate theoretical models

To save the expense of actual computer caloulations, theoretical models for
the thermodynamice or structural properties of the solid and fluid phases arve
useful.  In order to apply such models to real muterialg some foree law must
be chosen. consistent with experimental data.  Given the forees the models
can be applied.  The most fundamental approach to melting is a free energy
eomparison between the two coexisting phases.  The approach becomes a
‘model ’, rather than exact statistical mechanies, only becanse the free energy
calculation is approximate.

The most successful theory so far devised for fluid-phase free energy is based
on finding the hard-sphere diarneter which best represents, in the sense of
minimizing the first-order perturbation theory Helmholtz free energy, the
softer potential of interest.®*%  This theory predicts pressures and energies in
terms of the havd-sphere free energy {(which is already known from computer
experiments) and the hard-sphere distribution funection (which can be approxi-
mated fairly well by the Wertheim-Thiele solution of the Percus-Yevick
integral equation). If the repulsive portion of the soft potential is reagsonably
steep, 1% for example, then this theory works well, with errors in the free
energy of order 0-3N4L7'. For softer potentials such a perturbation approach
would have to be based on a softer nnperturbed potential.

In the solid phase the hard-sphere distribution is not available in a con-
venient form for numerical work. Instead the Lennard-Jones—Devonshive cell
model is used to make an estimate of the thermodynamic properties.(2®
According to this cell model the partition function is approximated by the Nth
power of a one-particle integral in which a “ wanderer’ particle moves in the
energy field of all the others. All particles but the wanderer are assumed fixed
at their lattice sites. The cell version of the partition function is:

exp { ~8D/kT) dr:lA (12)

”

v

where the potential energy of the perfect stationary lattice is @;,. The change
in the potential energy of the system when the wanderer moves away from its
lattice site to ris §@. The A next to the integral indicates that the wanderer
is not allowed to leave its cell.  This model prediets accurately the encrgy and
the pressure in the solid phuse, but is less accurate in predicting free encrgy.
The free cnergy errors are abont the same order of magnitude, at melting, as
are the fluid-phase perturbation theory ervors at freezing, 0-3NED, )

Another approach to solid-phase thermodynamies is move traditional but no
more accurate.  This is via lattice dynamies. @9 The potential energy of the
ervstal is expanded in powers of the displacements of the particles from their
lattice sites.  If terms higher than quadratic are ignored (which is justified at
low enough temperatures) the motion of a periodic ervstal with fixed centre-of-
mass can be analysed into 3.V — 3 normal-mode vibrations, each with a charac-
teristic frequency v. The partition function for such a erystal becomes the
product of 3.V —3 harmonic oscillator partition functions,

Z =cxp (— O/ RT /B {13)

Marmonie
At higher temperatures, near melting, the anharmonic corrections ignored
in (13) become so large that the harnmonie free encrgy is no more aceurate
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than is the cell model free energy. The best guess for the {ree energy of the
solid would be based on the low temperature free energy from (13) with an
anharmonie correction based on the eell model (12).

Although perturbation theory, the cell model and lattice dynamies all
caleulate free energy, i prineiple the correct way to locate a phase transition,
the small errovs these models make in free energy lead to larger errors in the
transition pressure and density. A free energy ecrror of O-3NLT in either
phase would change the caleulated hard-sphere transition pressure by about
25 per cent, for example.  Because phase transitions are seusitive to simall free
energy changes it is in practice worth while to consider simpler one-phase
theories, less fundamental but just as acewrate.  We will deseribe three such
motdlels; compare their predictions with computer experiments; and then go on
to show that these models are useful in interpreting real data from laboratory
experiments.

A model for melting based on the Lennard-Jones-Devonshire cell model
makes use of the scaling property found for the inverse power potential in (3).
Ju the cell-model approximation the reduced one-particle integral, v;¥, a scaled
free volume, can be introduced by using the reduced distance s=r(N/1T)V3:

Z ey =exp (— O fETYHVINAZY v *;

oxp (—H JNKT)=vi = | exp (=3@/4T) ds, (14)
where H _is the Helmholtz free energy relative to that of an ideal gas particle
confined to the volume ¥/ in a mean field equal to the static lattice cnergy.

Proceeding by analogy with the inverse power results we assume that the
single-particle free volume v* is constant along the melting curve. Despite
its approximate basis this assumption would evecily reproduce the melfing
curve for an inverse power potential.  To the extent that «* is constant as the
inverse power varies we can expect that more general potentials could be
described with the same v*,

The best test for this approximate model is given by the Orsay data for the
Lennard-Jones potential. 32 \We have carried out caleulations of v {or this
potential at the same temperatures for which the mcléing density has been
determined. Using the soft-sphere value of +* (nrelting), 0-0041, we have
found nuwmerically the density at which the Lenuard-Jones potential has the
same value of »* at the lower temperatures. The results of this calewdation
ave shown in table 1, compared with the actual Monte Carlo results of Hansen
and Verlet. The excellent agreement, at temperatures as low as the friple
point, confirms the notion that selected averages can be insensitive to the
presence of attractive forces. The scaled free volume, which is an average
over all the arrangements of a particle in its cell, is evidently a good choice.
We would expect cqually good agreement for any reasonable pair potential.
The fact that the agreement is not so good at low temperature points out the
need to determine melting law parameters at the highest possible pressures.
Doing so minimizes the complieations jutroduced by the attractive forces.

A second one-phase melting niodel can be derived from a modified
“correlated * cell model which incorporates a physical mechanism for solid-
phase instability. The model is tllustrated in fig. 7. T'wo of the neighbours
of the wanderer move co-operatively with it so that the resulting notion
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corresponds to a long wavelength shear wave. Such a model was used by
Squire and Salsburg®? with somewhat surprising results.  In two dimensions
the model accounts for the observed first-order melting transition found for
hard dises. % The model predicts a van der Weaals loop at approximately
the same pressure and density as i3 found in computer experiments carried oub
on several hundred dises.®%  In three dimeusions, however, the model does
not predict a loop, thus failing to account for the well-established hard-sphere
melting transition. The good agreement for discs must therefore be regarded
as somewhat fortuitous.

S

Table 1. Comparison of predicted melting densities (scaled) for the Lennard-
Jones potential with the Monte Carlo vesults from Reference 21. The
predictions are based on matching the cell model v* at each temperature
to the v.* found empirically to fit the soft-sphere data of Reference 14.
The densities given in this table, Ne¥/V, apply to the Lennard-Jones
potential n the form 4e{(o/r)1? —(c/r)®].

ET]e Monte Carlo ps Predicted pe
100 271 271
274 1-18 119
1-35 1-05 1-04
1-15 1-02 1-01
0-75 0-97 0-94

Applving the same correlated cell model to the soft-sphere potential we
found a maximum in the molar heat capacity, ¢;. This maximum is of special
interest because it oceurs without invoking vacaney formation.  The maximum
oceurs at the density where the wandering central particle can first approach
the edge of its cell. Such a motion evidently corresponds to the diffusion of
atoms through the solid. Because such a motion is mechanical instability,
rather than melting, the break-up of the erystal ocours at o lower density than
the melting density. However, because the instability oceurs in the vicinity
of melting, it can be used as a rough guide.

ORDINARY CELL CORRELATED CELL

Fig. 7. Comparizon of the ordinary cell model, in whiel the central particle moves
in the ficld of its fixed neighbours. with the correlated ecll model, in which
two of the neighbours (those which would be closest and farthest away in the
ordinary cell wodel) move along with the contral pavticle.


http:correlat.ed

352 W. & Hoover and M. Ross

In fig. 8 the form of the “specific heat anomaly ’ (the anomaly in C) is
shown at three different temperatures for the Lemmard-Jones potential.  For
argon the highest temperature point corresponds to 12 000 K. The other
temperatures are twice eritical and the triple-point temperature.  There is a
good semiquantitative correspondence between the “kuee ” in the molar heat
capacity and the density of the freezing fluid. Because the ‘specific heat
anomaly ’ found in the cell model is produced by the sliding of particles past
one another, corresponding to mechanical instability, this model indicates
that the iustability density and the freezing density roughly correspond at all
temperatures. Both scale along the melting line. :

DD frecze—

Fig. 8. Molar heat capacity Oy as obtained from fhe correlated ccll model in the
vicinity of the melting and freezing transitions. The four curves cover a
temperature range from oo down to the normal liquid. Note that all four
curves exhibit a maximum or a * knee ’ in the vicinity of freezing.

An analogue of mechanical instability can be found in the computer caleula-
tions in the vicinity of melting, and can be used as a third melting model,
If the density is gradually deereascd in the computer experiments a well-
defined density is found at which diffusion first sets in and the solid-phase
ordered structure breaks down. This density can be determined accurately
with only a little machine caleulation. Ross aud Alder suggested that this
computer instability density should eorrespond to the freezing density of the
fluid, arguing that any density at which the fluid can form in a computer
experiment ought to correspond to pure fluid in the thermodynamic large-
system limit. Using the maxtmum melting density criterion Ross and
Alder®® determined a high-temperature melting curve for argon. The soft-
sphere results indicate that their estimates for the freezing density will be
too low, by about 4 per cent, at high temperature.  The actual sealed freezing
density, 2y, is 1-150. In the computer caleulations a 32-particle solid melted
at 1-089, but at 1-131 a 300-particle solid did not melt even affer 1-1 million
moves,
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We made a nwuber of instability-point runs for the full Lenmard-Jones
potential, determining the density at which the 108-particle solid no longer melts
after a run of one million moves.  (The averages between the lowest density
at which the solid did not melt and the next lower density were actually used.)
For the soft-sphere potential the instability density is {1131 4 1-089)/2=1-110.
The Lennard-Jones results are shown in table 2 compared with the actual
melting densities.  The ratios of the two sets of numbers are rerarkably

Table 2. Comparison of melting instability densitics (scaled) for the Lennard-
Jones potential. The instability density corresponds to the highest
density at which the solid phase, in an AN-particle periodic system,
spontaneously moelts.

ILT/G Pm Pi Pm/Pi N
oo 0-844(kD[e)V¢ | O-T85(kT[e)V/4 1-0756 32; 500
100 2-706 2-468 1-096 108
2:74 1-179 1-058 1-114 108
1-06 1-012® 0-896 1-126 108
Average: 1-103
Hard-spheres | 1-041 .1 0943 1-104 500

() This high-temperature limit for the Lennard-Jones potential is based on the
soft-sphere 712 repulsion. 0909 The densities quoted, Xo%/V, apply to the Lennard-
Jones potential in the form 4e{{a/r)*2—(a/r)®].

{b) Obtained by interpolating the results of Hansen and Verlet. (31

constant. The reason must be that although the instability observed in the
computer experiments is nof the melting transition but a different structural
instability, it scales in the same way as does the melting transition.  Although,
strictly speaking, the instability density will eventually, for extremely long
runs on very large systems, coineide with the melting density, so that the ratio
will drop to unity, the change of instability density with svstem size and length
of run is so small that the instability density in practice is quite reproducible,
barely changing even for the largest systems computers can study.

The hard-sphere ratio, given in the last row of table 2, agrees with the
soft-splhiere estimate, suggesting that the 10 per cent difference between the
melting and instability densitics is fairly general. This suggests that the
extensive Monte Carlo caleulations required to find the melting point could be
circumvented by finding the breals in the solid-phase isotherm and multiplying
the corvesponding density by 1-1. A solid-phase caleulation at this density
followed by a fluid phase caleulation at the same pressure would then provide
the melting parameters.  These calculations could be carvied out with satis-
factory accuracy using the Mansoori-Canfield porturbation theory for the fluid
pressure and the Lennard-Jones-Devonshire eell model for the solid.

To make the two cell models and the instability model just discussed more
relevant to real experiments, not just computer experiments, let us apply these
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ideas to argon.  An effective intermoleculur pair potential for argon has been
determined by fitting shock-wave experiments in which the hguid is com-
pressed from 284 em? mol~) to 87 em® mol~1; the temperature rise is about
12 x 103 K69 {These compressed conditions correspond to a soft-sphere
density-temperature variable = 1-0.)  The pair potential is of the exponential-
six form:

3

6 !
() = €[a bexp {a(1 —9;/1"’*}} — ;—%—6 (?‘*""/7')“’] ;

a=13-5; r*=0383nm (=385 A); ek=122K, (15)

Ross and Alder have used this pair potential to caleulate Monte Carlo iso-
therms and used the breaks in the isotherms to locate the melting point.  'Their
agreement appears to have been fortuitous, since the change in density on
freezing at the temperature they chose to compare with experiment was about
9 per cent, quitc close to the 10 per cent increase in density on going from the
instability point to the melting point. The estimates of the instability deusities
from these isotherms, multiplied by 1-1, are shown in the second column of
table 3. These arc our estimates of the melting densitics. In the third
column arc some cxperimental results, expressed in the same units. The
fourth column in table 3 is analogous to the third column in table 1. We have

Table 3.  Comparison of predicted melting densities (scaled) for argon using the
exponential-six potential. The second colunm shows the instability
densities multiplied by I-1 (predicted melting densities). The third
column shows the cxperimental melting densities. The last column
shows the melting densities predicted using a constant value of v*
chosen to fit the experimental density at 322 K. The densities in this
table are defined by p=Nr¥3/,/(2)V, using the potential parameters
appearing in (15).

Tk 1-1ps Pro peo {07%)
108 101 1013w (0-983
201 B 1-121@ 1-121
322 — 1-2530) 1-253

2 440 228 - 231

12 200 455 — 4-56

{a) R. K. Cravwford and W. B. Daniels, 1968, Phys. Rer. Leiters, 21, 367.
(&) Reference 30.

used (14) for »* and the potential {15) to determine those densitics at which
ve¥* is the same as that corresponding to the 322 K measurement of Stishov
el al. on argon. % This scaling, based on the cell-model free volume, covers the
entire range of experiments and Monte Carlo caleulations to the same accuracy
as the corresponding caleulation using the Lennard-Jones potential.  'We chose
to use the 322 X point as the basis for this calculation Leecause it was the
highest-pressure point available, and should therefore minimize the effect of
the attractive forces. We used an experimental point rather than a Monte
Carlo point because the experimental point is more accurate.



Table 4. High-temperature melting curve for argon.
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3b5

The theoretical pre-

dictions arc based on the exponential-six potential and the v* cell-
model scaling cliosen to fit the experimental volume at 322 K.

'K V/em3 mol~1 p/kbar Viheory/ PDtheory/
' ¢m? mol-1 cm3 mol-*t
20} -32(«) 21-69@ 6-34 (0-01) 21-70 6:13
3224b) 19-4®) 15-84 (0-02) 19-40 15-39
100 _ — 230 (0-5) 18-36 22:44
420 — 26-30 (2) 18-13 24-37
450 — —_ 17-80 27-35
500 — — 17-30 32-53
600 — — 16-45 43-69
300 — — 15-15 68-83
100G — — 14-16 97-37
1 500 — — 12-45 181-75
2 006y — — 11-30 282-68
2 4463 — — 10-53 383-92

(&) R. IX. Crawford and W. B. Daniels, 1908, Phys. Rev. Letters, 21, 367.
(b) Reference 30.
(¢) J. D. Grace and G. C. Kennedy, 1966, J. Phys. Chem. Solids, 28, 635.

In table 4 we have used the same theory to prediet additional points along
the argon melting curve up to 2440 K. In the second and third columns are
some experimentally determined volumes and pressures. The fourth and fifth
columns display the theoretical predictions. At 6 kilobar and 15 kilobar the
theoretical predictions for the pressure are low by 3 per cent (about the error
one might expect based on uncertainties in the potential and in the cell model).
The only serious discrepancy with existing measurements appears at 420 K.
However, Professor Kennedy has informed us that the uncertainty of this
point, the highest pressurc point in an extensive series, may be as large as
2 kilobar. That this would appear to be so is borne out by the good agreement
between our calculations and a nearby experimental point at 400 K.

“These calculations have used idealized pair potentials which are most
applicable to rare gases or spherical molecules. However, from the point of
view of the theorist, melting theory in other materials is in principle no more
complieated. With the computers and melting models now available melting
theory reduces to the question of finding good ‘effective pair potentials’ or,
even more simply, good effective repulsive pair potentials.
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