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The high-pressure thermodynamic properties of molecular and metallic hydrogen 
are calculated from the fundamental viewpoint of statistical mechanics. In the molecular 
solid phase the interaction between hydrogen molecules is taken to be an angle-dependent 
de Boer repulsion, fitted to the theoretical results of Hirschfelder, Magnasco, Mason, 
McWeeny, and Musso, with spherical attractions as calculated by Margenau. Thermo­
dynamic properties for the denser metallic phase are obtained from an improved self­
consistent version of the Wigner-Huntington calculation, in which the correlations due 
to electronic repulsions are more closely approximated and in which the Kohn-Sharn 
local exchange is used. By comparing the Gibbs free energies of the molecular solid and 
the metal, we predict a phase transition linking the two at 840 kbars, well within the 
reach of several experiments now being designed. -

1. INTRODUCTION 

From the fundamental viewpoint of the theoretical physicist, hydrogen has a 
unique fascination: It is the simplest atom of all, with only one electron and one 
proton. If the physicist today, with the aid of powerful computers, is unable to 
calculate, rather than merely to measure experimentally the physical properties of 
this most elementary of all substances, it can be said that he understands very little! 

Hydrogen is also interesting from other points of view. Astrophysicists are 
interested not only in hydrogen in stars but also in planets. Saturn and Jupiter 
are mostly hydrogen, under pressures up to 100 Mbars [1]. Astrophysical cal­
culations of the structure of these planets require a hydrogen equation of state at 
high pressures. More practically speaking, nothing is more basic to our very 
existence than hydrogen. The tremendous energy generated by its fusion in the 
sun is the basic source of all life on earth. 

The tremendous energy source provided by hydrogen fusion is already available 
in hydrogen bombs and is of potential catastrophic harm to us all. Soon, the energy 
of hydrogen will be available in usable form, an inexhaustible source of power in 
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fusion reactors, allowing us to reduce our consumption of the dwindling fossil 
fuels [2]. 

For all these reasons hydrogen is studied. Despite this focus of scientific interest, 
estimates of its thermodynamic properties vary widely once we leave the region 
accessible to direct experiment. At high density, as Bernal suggested, the molecular 
crystal fonned by compressing the gas or liquid, on further compression becomes 
unstable relative to a denser metallic fonn. Estimates of the transition pressure 
from the molecular solid to the metallic solid vary all the way from 0.25 to 20 
megabars [3,4]. 

Experiments are now bcing prepared [5] which should soon settle the question of 
the high-density hydrogen equation of state. Thus a theoretical estimate is 
particularly appropriate now, both to guide the experiments and to test the theory. 
Fast computers make such theoretical calculations simpler than ever before, both 
in determining the forces with which atoms and molecules interact, and in dis­
eovering how these forces produce thermodynamic properties. 

2. THE MOLECULAR SOLID 

A. Intermolecular Potential 

The ground state energy Eo of two interacting hydrogen molecules (with fixed 
nuclei) is conventionally divided into two parts, the intermolecular potential 
energy ¢ and the ground state energy of two isolated molecules, 2E(H2); the 
interaction energy is ¢ Eo 2E(H2)' Several studies of ¢ as a function of the 
separation and relative orientation of the two molecules have been carried out 
[6-12]. The most elaborate of these valence bond calculations used a variational 
wavefunction built up of optimized atomic orbitals describing all neutral, singly, 
and doubly ionized structures [10]. The atom-atom separation within each 
molecule was kept fixed at 0.7496A while the separation between the molecular 
centers varied from 1.5-3A. The results given in Refs. [8-12] can all be summarized 
by the empirical repulsive potential 

(1) 

where the four terms in the sum correspond to the four pairs of atoms, one in each 
molecule, shown in Fig. 1. The same form (1) was used by de Boer in 1942 [6]. 
We have adopted the constantsE = J.2e2jao(Elk 1.01 X 1Q6K) and fo = 0.300A. 
This choice reproduces the theoretical results well. The maximum disagreements 
are no greater than 10-15 about the same order of magnitude as the variation 
in the theoretical remIts from the various methods used in Refs. [8-12]. 

."'. -­



-

THER}fODYNAMIC PROPERTIES OF COMPRESSED SOLID HYDROGEN 623 

In the preliminary calculations designed to study the ease of rotation in the 
solid phase we used only the repUlsive part of the hydrogen-hydrogen interaction 
(1). For quantitative predictions of solid hydrogen thermodynamics, the attractive 
forces due to the interactions of induced dipoles and quadrupoles must be included. 
Because these attractive forces have a smaller impact on thermodynamic quantities, 

FIG. 1. Angle-dependent repulsive interations between nearest-neighbor molecules. The 
dashed lines represent the distances appearing in Eq. (1). 

and because they depend much less strongly on orientation, we are justified in 
neglecting the angle dependence in the attractions. We use Margenau's results: 

1>att (2) 

where R is the center-to-center separation of the two molecules [13]. 

B. Thermodynamic Properties 

To calculate thermodynamic properties with our interaction potential 1> = 

1>l'ep -i- 1>att we need to know the high-pressure crystal structure of hydrogen. 
Although the high-pressure structure has not yet been determined experimentally, 
the existence of a low-pressure cubic form of molecular hydrogen has been 
established (14J. Because other structures are less symmetric and seem no more 
likely at high pressure we use the simplest possible cubic crystal structure, the 
so-called "a-Nitrogen" structure shown in Fig. 2. It seems likely that the solid­
phase properties are insensitive to the assumed structure. 

We first carried out exploratory classical computer simulations of small 
(32 molecules) periodic crystals of hydrogen using the Monte Carlo method 
described by Wood (15]. In applying the Monte Carlo method to hydrogen it 
proved convenient to select and move an individual atom in proceeding from one 
configuration to the next. Random increments in the polar and azimuthal angles 
describing the orientation of the atom's molecule were selected and the atom was 
moved so as to keep the atom-atom separation in that molecule constant. The 
maximum angular jump allowed was varied with density and temperature and the 
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decision as to whether or not a trial move is accepted was as usual based on 
comparing e-B4>/kT with a random number between 0 and l. 

Expressions for the energy and pressure can be derived by differentiating the 
canonical partition function Z for N hydrogen molecules: 

(3) 
PV ( ~ In Z) = N I: R¢~~) _<I: R . r¢frep)
kT \ oln V T 3kT 3rkT'<
 

The first two sums in (3) range over all pairs of molecules. The last sum is taken 
over all pairs of atoms in nearest-neighbor molecules. The dot product in this 
repulsive term arises because volume differentiation corresponds formally to 
separating the centers of two interacting molecules. The change in the relative 
separation of a pair at r is proportional to the dot product r . R. 

Both the exploratory Monte Carlo calculations and more extensive "cell-model" 
calculations in which only a single particle was allowed to move, the rest being 
kept fixed in their perfect-lattice orientation (the orientations shown in Fig. 2), 

FIG. 2. Assumed crystal structure of the mOlecular solid, the so~cal1ed "",-nitrogen" structure. 
There are four molecules in the unit cell. The molecular axes lie parallel to the body diagonals 
of a cube. 
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indicated that the quasiharmonic approximation of lattice dynamics would furnish 
a semiquantitative description of the energy and pressure between 3-7 cc/mole H2 
and for temperatures up to several hundred degrees. In this range the classical 
Monte Carlo energy relative to a static lattice was quite close to the ideal harmonic 
value of 5NkT. This means that under these conditions the molecular rotational 
quantum number relevant at low densities is no longer a useful description of the 
molecular state; the "rotations" should instead be viewed as anharmonic vibrations. 

The simplest solid-phase harmonic model is the Einstein model in which a single 
particle vibrates in the field of its fixed neighbors. The vibrations include three 
degenerate "translational" center-of-mass-motion frequencies and two degenerate 
"rotational" frequencies. These frequencies are listed in Table I. The barrier to 
rotation of a molecule (the minimum increase in potential energy necessary to 
interchange the two atoms in a molecule) is shown in Fig. 3. The Monte Carlo 
work indicates that cooperative motion reduces the effective barrier to rotation. 

TABLE I 

Einstein temperatures, energies, and pressures for solid molecular hydrogen. Volume is expressed 

in cc per mole of H•. Iitrsa • and Iirot are the characteristic temperatures, hvik, in Kelvins, 


for the "translational" and "rotational" vibrations of an Einstein molecule. The 

energies (kbarcc/mole H 2) and pressures (kbars) are tabulated both for a 

_ static lattice and for a lattice with zeropoint energy incorporating both 
the translational and rotational zeropoint energies. 

Volume liv1b Iirot E.tatic Palauc Ewith zp Pw!th zp 

~--..---... 

4 1474 1257 1544 900 1824 971 
5 1205 957 892 465 1116 513 
6 990 753 540 260 722 295 
7 821 608 338 154 488 181 
8 688 501 216 95 341 117 
9 583 419 140 61 245 78 

10 498 355 91 40 181 54 

Because the Debye model, with a quadratic frequency distribution g(v) a v2, is a 
better approximation to reality than is the Einstein model, we have used the Debye 
theory to calculate the contribution of the zero-point energy to the thermodynamic 
properties. As Rice has stressed [16], the best way to correlate the Einstein and 
Debye models is to equate the second moments of the two frequency distributions 
(as is required for consistency at high temperature): 

(4) 


Our numerical results for the static-lattice energy and for the energy with the 

-
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Debye zero-point energy (9/8)(5/3) NhvDebye added can be closely approximated 
by the following simple functions of the molar volume V(cc/mole H 2): 

Estatlc = 1810 OOOe-4.2V,fa - I2I40V-2, 

1 129 OOOe-4.01Vl/8 - I885V-2, (5)Ewith zp 

8Debye = 83 730e-2.24vl/a - 9525 V-2. 

Rotationo I Barrier in 
Molecular Hydrogen 

"'s! 3.0 
)( 

on 
c:: 

0.3 

4 6 8 10 
VOLUME (cc/Mole H2 ) 

FIGURE 3 

In (5) the energies are in kbarcc/mole H2 and 8Debye hVDebyeik is in kelvins. 
The pressure-volume equation of state from (5) is shown in Fig. 4 for comparison 
with other theoretical estimates. Numerical values appear in Table L Our pressure 
lies between that of Abrikosov [17] (who used a hexagonal crystal structure and 
completely ignored the contribution of attractive terms to the pressure) and 
Trubitsyn [18], who fitted the form (5) to Stewart's low-pre3sure data. Notice that 
our pressure agrees much better with deMarcus' extrapolation [1] of the same 
experimental data. We expect our results (5) to apply at volumes less than 7 or 8 
cc/mole Hz. For lower densities our repulsive potential overestimates the inter­
molecular repulsion. This is the reason why our energies and pressures near lOcc 
are much higher than the experimental ones. 

,­
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3. THE METALLIC SOLID 

In the alkali metals the thermodynamic properties are largely determined by the 
s-band electrons. Hydrogen which has no core electrons to perturb its 1 s 
properties should be the simplest of the alkalis. It differs from the heavier alkalis 
in two important ways: (1) Because there is no core of screening electrons the 
electrons are more tightly bound to the nuclei, giving a nonuniform charge density; 
(2) The small mass of the nucleus makes the zero-point energy contribution 
relatively more important than in the heavier alkalis. 

Just as in the molecular case the high-pressure crystal structure of metallic 
hydrogen is not known. By analogy with the other alkalis we suppose it to be 
body-centered cubic. Because Carr [19] has shown that energy differences between 
the body-centered cubic and face-centered structures are of order 100 calories per 
mole we expect that thermodynamic properties are essentially independent of the 
metal's crystal structure. 

Many earlier calculations of metallic hydrogen thermodynamics have been 
carried out, [1,3, 17-21] but without supporting calculations for the other alkalis 
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which can be compared with experiment. For hydrogen we will use a revised and 
self-consistent Wigner-Seitz procedure, applying the same method to both lithium 
and sodium as well, for which experimental data are available. The good agreement 
in these more complicated cases justifies applying the same approach to hydrogen. 

To calculate the ground-state (zero kelvino) energy of the metal, we solve 
the Schroedinger equation for the wavefunctions which minimize the Hartree-
Fock energy [22] 

y2 + VcoreCr)) dr 

where the <Pic satisfy 

-!i2\12 )
(~-+Vt/;Io (7) 

and 

v = Vcore + Velcctrost.atlc + Vexchange and correlation 

The sums range over half a Brillouin zone and the integrals are carried out in 
spheres. The electrostatic and core potentials represent the interaction of an 
electron with the fixed nuclei and with the uncorrelated charge distributions due to 
all the other electrons. The exchange and correlation potential is the local effective 
potential of Kohn and Sh::tm [23] in which the local charge density is assumed to 
contribute to the exchange and correlation energy present in an ideal electron gas 
at the same density. We are in effect minimizing the energy of a slightly more 
general equation than Eq. (6). The free electron correlation energy interpolation 
formula given by Carr and Maradudin [24] is incorporated in this calculation. 

One further approximation is made in the self-consistent solution. The expansion 
of the electronic energies in powers of k is truncated after the quadratic term. It has 
been shown [25] that terms to this order are nearly structure independent but that 
the quartic term depends on the crystal structure. The errors incurred by ignoring 
it should be on the order of ten calories per mole, even less than those due to 
replacing the Wigner-Seitz cell integrals by integrals in spheres. We use the 
procedure of Bardeen [26J to evaluate the quadratic term. It involves a single 
numerical integration of the Schroedinger equation for a p-state out to the cell 
boundary using the eigenvalue obtained for the lowest valence s-state, The 
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quadratic energy term is given in terms of values of the s- and p-state wavefunctions 
on the surface of the sphere according to 

rxk 2, (8) 

where Uo is the lowest s-state wavefunction and p is the function obtained by the 
indicated p-state integration. To this order of approximation 

(9) 

where p(r) is normalized such that p(r )/r 2 uo(r) 0 at r = rs • 

The one other important contribution to the energy of hydrogen is the zero-point 
energy. Other terms such as the Van der Waals interaction, the exchange interaction 
between ion cores, the volume dependence of core states, and relativistic effects 
can be of some significance for the other alkali metals, particularly the heavier 
ones. In the harmonic approximation the zero-point energy is given by 

Ezp = (9/8) NkOo , (10) 

where 00 is the zero-temperature Debye temperature hVDebyelk. 00 can be calculated 
from the elastic constants. Fuchs [27] has shown that the shear moduli of alkali 
metals are adequately described by the electrostatic contribution alone. His result is 

C = _12_._9....-:::-:.:... 
44 (IIa) 

(lIb) 

The bulk modulus at zero temperature is given by 

With these elastic constants we obtain the Debye temperature from de Launay's 
tables [28]. This procedure works very well for lithium and sodium and should work 
well for hydrogen. As an independent check we develop an interpolation formula 
based on the Debye 00 for an isotropic continuum. For an isotropic material 

_ f(a) V2/3 ( d.'P )1/2 
00 (12)

- M1/2 dV 0 ' 
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where (J is Poisson's ratio and lv[ is the atomic mass. We use values of Poisson's 
ratio calculated by Kopyshev [29] from an isotropic Thomas-Fermi model and 
require the resultant formula to fit the 00 of sodium. In this approximation 

f(a) = 2700(0.4438X1/ 6 - 0.1555Xli3 + 0.0178Xl/2), (13) 

where X = Z2V, pressure is in Mbars and volume in cm3 per gram. This inter­
polation formula reproduces experiment within about 10 %for the alkali metals. 
The disagreement between the two methods of obtaining 00 is fairly large for 
hydrogen both in magnitude and volume dependence. This is shown in Fig. 5. 
The Kopyshev 00 is also plotted. It is rather similar to the 00 obtained from the 
elastic constants. 
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FIGURE 5 

Finally, putting all these terms together we get for the total energy 

T
? ?In: 1 r8 f·rs 

E = Eo + _.- + -2- Ves(r) per) dr + per) €xc(p(r» dr 
• 0 0 

E 0.004Z:ff+ 'zp - r 2 (14) 
8 
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where Eo is the ground-state electron energy, Ves is the electrostatic potential, 
Exc = free electron exchange energy + free electron correlation energy, 

0.916 	_ 0.1303 0.04951n rs - 0.00012 rs2 
rs 

ExC = 

and the last term corrects the electrostatic energy of a bcc lattice for crystal 
structure. We find that the iterative process to find a self-consistent potential 
converges in 2-3 iterations. Relatively small changes result from this iterative 
procedure in the energy obtained on the first iteration for hydrogen and sodium, 
but the differences for lithium are large. 

The zero temperature thermodynamic properties for metallic hydrogen, lithium, 
and sodium calculated as just described appear in Table II and in Figs. 4, 6-8. 

TABLE II 

Zero Kelvin Thermodynamic Properties of Sodium, Lithium, and Hydrogen 

-E/N 
(Ry)a 

p BO Cfl 
(Megabars) 

Cf2 

_..... 

SODIUM 

This calc. 
Exp.32-34 
This ealc. 
Exp."3 

3.93 
3.93 
3.90 

0.081 
0.082 

o 
o 

0.002 
0.002 

0.080 
0.078 
0.087 
0.085 

0.090 
0.088 
0.098 
0.097 

0.075 
0.073 
0.082 
0.079 

0.058 
0.062 
0.060 
0.064 

160 
153 

1.040 

1.042 

1.064 

1.068 

LITHIUM 

This calc. 
Exp.'2,35,36 

3.24 
3.24 

0.121 
0.119 

o 
o 

0.138 
0.138 

0.161 
0.153 

0.127 
0.130 

0.131 
0.114 

350 
335 

1.058 0.806 

HYDROGEN 

This calc. 
This calc. 
This calc. 
This calc. 
This calc. 
This calc. 
This calc. 

1.68 
1.64 
1.60 
1.56 
1.52 
1.48 
1.44 

0.0594 
0.0590 
0.0576 
0.0551 
0.0514 
0.0462 
0.0393 

o 
0.0970 
0.2173 
0.3699 
0.5627 
0.8059 
1.1124 

1.174 
1.529 
1.840 
2.262 
2.780 
3.476 
4.283 

1.404 
1.786 
2.127 
2.582 
3.138 
3.877 
4.735 

1.059 
1.401 
1.699 
2.104 
2.603 
3.277 
4.060 

1.282 
1.423 
1.590 
1.776 
1.988 
2.230 
2.509 

2120 
2233 
2353 
2479 
2613 
2754 
2902 

0.880 
0.884 
0.888 
0.892 
0.895 
0.899 
0.902 

0.964 
0.967 
0.969 
0.971 
0.973 
0.975 
0.977 

• E/N is energy/atom relative to isolated atoms. 
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The hydrogen results use the ()o obtained from elastic constants. The core potential 
used for lithium was that due to Seitz [30] and that used for sodium was the one 
given by Wigner and Seitz [31]. The agreement with the experimental data on the 
two more complicated metals is very good. The slightly poorer agreement with 
experiment at high pressure for sodium may be due to the neglect of the afore­
mentioned terms or the less precise core potential. There is also some uncertainty 
in the shock experiment and the procedure used to reduce it to zero kelvins. 

Moleculor 
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-E Molecular SoFd 
~ {Repulsive Terms 

to 
-" 
~ 
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M(}toHk Solid 

Trubit.syn Molecular Solid 

~ 
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For The MetalliC and The Molecular Phase, of 
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PresslJre (Mbar J 

FIGCRE 8 

For the hydrogen static lattice we get a cohesive energy of 0.073 Ry/atom which 
is significantly larger than Wigner and Huntington's value of 0.050 Ry and Carr's 
value of 0.058 Ry but less than Calais' value of 0.096 Ry. The zero-temperature P, 
E, and ()o for pressures less than 5 mbars and with ()o obtained from the elastic 
constants are summarized by: 

3.7428
E Ecohesive - 3.3214 + 2.1134 In V 

V 
in Mbars cc/mole H 

p = _ 2.1134 -+ 3.7428 in Mbars , , V2 ' 

()o = 124.7 + 4466.9 _ 18i~.2 in kelvins, (15) 

where Vis the volume (cc/mole H). 
At temperatures above zero we use the Debye theory to estimate the contribution 

of the nuclear motion to thermodynamics. Because the Fermi energy is of the 
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order of a few electron volts we ignore the contribution of electronic excitations. 
The thermal contribution to the pressure is 

where 

-dIn 80 (16)'Yo = dInv~' 

4. THE TRANSITION TO A METALLIC SOLID 

There has been considerable theoretical interest, since the 1930's, in the possibility 
that molecular hydrogen becomes unstable relative to the metallic solid at high 
enough pressure. More recently, as experimenters learn to produce higher and 
higher pressures, there has been increasing interest in actually making the metal. 
Two approaches are being tried out: huge static presses in Russia and at Cornell; 
magnetic implosion at Livermore. [5] 

Exactly how high a pressure is needed to produce the metal is of critical 
importance in designing experiments. This is because the different methods have ",­
different limits to the pressures they can reach. For this reason it is worthwile to 
try to set realistic limits on where such a transition is likely to occur. Past estimates 
have ranged from 0.25-20 Mbars [3,4J, the lower pressure being relatively easy 
to obtain and the higher one being out of reach at present. Most estimates are in 
the vicinity of 2 Mbars. 

In general, one can say that the previous estimates are based on fairly similar 
equations of state for the metal, but wildly varying and questionable equations of 
state for the molecular phase. This uncertainty in the molecular phase properties 
was avoided by Alder [4] who used the relative interatomic distances for the other 
alkali metals in the gas phase and in the metal to predict this ratio for hydrogen. 
The extrapolation is made difficult because the alkali metals other than hydrogen 
are already stable relative to the molecular solid at zero pressure--calculations for 
the metastable diatomic solids would probably show a transition pressure becoming 
increasingly negative with increasing atomic number. 

In Fig. 8 the zero kelvin Gibbs free energy is shown as a function of pressure 
for the metallic and molecular solids. The larger low-pressure compressibility of 
the molecular form is responsible for the characteristic difference between the metal 
and molecular phase at low pressure. At higher pressur.es the two curves differ less. 
Tnibitsyn's predicted free energy is based on a much softer molecular equation of 
state than ours, leading to much smaller volumes (given by the slope in the plot) 

http:pressur.es
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at high pressures and to a much higher cstimate (3.1 Mbars) for the transition 
pressure. Our own estimate is 840 kbars. The volume change at the transition is 
quite large, from 2.09 cc/gm in the molecular solid to 1.20 cc/gm in the metal. 
The corresponding transition for deuterium would be at a lower pressure (by about 
50 kbar) because of the relative lowering of the metal free energy by the changed 
zero-point energy. Zero-point motion is more important in the metal than in the 
molecular solid because the metal's density is greater. 

The Gibbs free energy obtained by using the repulsive part of the H 2-H2 inter­
action is also plotted to demonstrate the smallness of the effect of the attractive 
forces. The zero-kelvin free energy for the metal is essentially the same whether 
the zero-point energy is calculated from the elastic constants or from the istropic 
approximation, Eq. (12). However, there is a significant difference at higher 
temperatures between the predictions of the two methods. 

At finite temperatures the transition pressure changes slightly with temperature. 
If we continue to apply the Debye model to the molecular phase then the two 
versions of the Debye e for the metal lead to estimates of 1010 kbar (elastic 
constants) and 860 kbar (isotropic) for the transition at 3000 kelvins. 

In view of the good agreement with experiment found for lithium and sodium 
we feel justified in expecting errors no greater than 0.1 Mbar cc/gm in the metal's 
free energy. This corresponds to an uncertainty no greater than 200 kbar in the 
transition pressure. There is no reliable way to check the molecular hydrogen 
calculations against experiment since the experimental data only extend to 20 kbar 
and our calculations are not expected to be accurate at such a low pressure. If the 
uncertainty in the molecular phase were similar to that found for the metal, the 
combined uncertainty in the transition pressure would be 400 kbar. 
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