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Two different ways of describing the work necessary to distort an elastic solid result in al~ern~tive micro­
expressions for the pressure and the elastic constants. In the.case of a hard-sphere sohd WIth nearest-

interactions a lower bound on the pressure can be obtamcd by comparmg the two ex­
pressions. This lower bound is identical with the pressure derived from Kirkwood's free-
volume theory, 

1. INTRODUCTION 

Fast computers make it possible to measure the 
thermodynamic properties of classical many body 

. " t . t"systems by carrymg out compu er expenmen s on 
systems of several hundred particles. l With reasonable 
c~lfe the compressibility factor PV/ NkT and the 
reduced energy E/NkT can be determined within about 
0.01. Although fluids and solids Can both be studied 
using the computers, solids have so far been investigated 
much less than have fluids. This is, because solids 
seem simpler and, second, because the traditional 
treatment of solids, lattice dynamics, is quantum 
mechanical, not classical, and already semiquantitative. 
Increased interest in computer experiments on solids is 
accompanying the realization that both the quantu~ 
corrections to the classical experiments and anharmomc 
corrections to the prediction5 of lattice dynamics can be 
obtained from computer5. 

Current 50lid-pha5e inve5tigations are no longer 
re5tricted to the pre55ure and energy. In 1968, Squire, 
Holt and Hooyer2 formulated the problem of the 
elastic response of a crystal to strain so that it could be 
solved numericallv on a fast computer. The isothermal 
elastic constants:second derivatives of the Helmholtz 

free energy with respect to strain, were expressed as 
canonical-ensemble averages involving the pair potential 
rfJ(r) and its derivatives rfJ'(r) and q;/'(r). The avera!Ses 
were evaluated for the Lennard-Jones and exponentlal­
six pair potentials and compared with the experimental 
elastic constants for rare gases} 

Salsburg independently developed elastic-constant 
expressions which were 50mewhat different from those of 
Squire, Holt, and Hoover. During the summer of 1969 
we compared both treatments and convinced ourselves 
that, despite the apparent difference~, both were corre~t. 
This in itself is interesting because It has happened In 

the past that different microscopic expressions for a 
thermodynamic property can converge at different rates 
in comp~ter calculations.4 We also ~oticed an applic~­
tion of the two formulations for whIch the computer IS 

not required: By combining Salsburg's expression for 
the pressure with the conventional virial theorem, a 
rigorous lower bound on the pressure for a hard-sphere 
solid results. 

II. SOLID-PHASE DEFORMATION 

In theoretical treatments of solid-phase thermo­
dymLmic properties it is convenient to consider an 
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FIG. 1. A single-occupancy solid. The particles, shown as 
black circles, are free to move as long as the center of each stays 
in its cell. The cells are shown as larger shaded circles. 

idealized crystal in which the distractions caused by 
vacancies, dislocations, and grain boundaries are 
absent. The simplest way to make this structural 
simplification is to restrict the particles to individual 
cells, as shown in Fig. 1. Because each cell contains only 
one particle such a crystal can be called a "single­
occupancy" solid.5,6 

With the gross structure of the solid enforced bv the 
cell boundaries, the crystal can be "homogeneo~sly" 
deformed by changing the size and shape of the cells. 
Homogeneously means that all cells are distorted in the 
same way. The resulting deformation is described by 
the macroscopic strain 11: 

'1/1 =![(al/a)2-1], '1/4 = (ada) . (as/a) , 

'1/2=t[(ada)Z-1], 115 = (a1/a) • ( as/a) , 

'1/3= K(a3/a)2-1], 116= (aI/a)· (az/a). (1) 

These strains are the generalization of the thermo­
dynamic variable volume to the case in which properties 
depend upon shape as well as size. 2 shows how 
the basis vectors, al, a2, and aa, in length and 
orientation when a crystal is strained. 

The amount of thermodynamic work oW required to 
induce a particular strain 11 depends upon whether or 
not the crystal is allowed to exchange heat with its 
surroundings. Thermodynamics can describe either 
isothermal (constant temperature T) or adiabatic 
(constant entropy 5) deformations. If we use x to 
indicate either T or 5, the work done can be expressed 
as a power series in 1'), with coefficients depending on x. 
For the simplest interesting case, a cubic crystal under 
an initial hydrostatic pressure P, the expansion has the 

form 

OTVx= - PV ('1/1+'1/2+113) + tCuxV( :1/12+''1/22+1132) 

+CI2xV (111112+111113+112113) +tC44V( '1/42+1152+1152
) + •.• , 

IlWT=OA, bTVS=oE. (2) 

A and E are the Helmholtz free energy and the internal 
energy. The coefficients in the series, the pressure P 
and the second-order elastic constants C/, can be 
expressed as canonical ensemble averages.2 ,3 First 
express the coordinates of all the particles in an N­
particle crystal in terms of the orthogonal vectors al, a2, 
and as. All three vectors have length a in the unde­
formed crystal. Then expand the resulting canonical 
partition function in powers of 1'). In carrying out the 
expansion the location of Particle i is specified as 
xi(aI/a)+Yi(a2/a)+zi(aa/a) and the integration over 
the configuration space contains dx.,dYidzi. The final 
results are averages, carried Dut in the initial unstrained 
configuration: 

PV=NkT-(L X2<J>I/r ), 

(L <J>"x4/r2 -<J>'::.,.4/r3) 

- VZ( (P12 )- (P1 )2)/kT, 

- VZ( (P1P2)- (P1 )2)/kT, 

NkT+ (L q/'x2y2/r2_<J>'x2y2/r3) 

- V2 (Ps2)/k T, (3) 

where the sums include all pairs of particles in the 
crystal, where x, y, z indicate the distances separating a 
pair of particles in the aI, a2, and a3 directions, and 
where the brackets ( ) indicate canonical averages in an 
unstrained crystal. Pl , P2 , and P6 indicate instantane­
ous values of pressure tensor components: 

P1V=NkT- L x2<J>'/r, P4V = L yz<J>'/r, 

PzV=NkT- Ly2<J>'/r, PsV= - L xz<J>'/r, 

P3V=NkT- Lz2<J>'/r, P£V= L xy<p'/r. (4) 

Salsburg used a slightly different coordinate system in 

INITIAL 

FIG. 2. The distortion of a crystal described by the strains 
1'/1, 1'/2, and '16, 
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deriving alternative microscopic expressions for the 
expansion coefficients P and Ci /". He located the ith 
particle at RiCfl) Sri, where only the lattice-site 
coordinate R, depends upon the strain and the dis­
placement coordinate Sri, measuring the displacement 
of particle i from its lattice-site position, is strain 
independent. In the solid phase it has been empirically 
established that the rms displacement of a particle is 
small relative to the nearest-neighbor spacing. Linde­
mann's relation states that a solid melts when the rms 
displacement becomes about 1/10 the nearest-neighbor 
spacing. Salsburg makes the assumption that the 
particle vibrations are small enough so that the 
tion limits on the displacement Sri can be considered 
strain-independent. He then finds the following expres­
sions for the pressure and the elastic constants: 

PV= -("'L Xxcf>'jr), 

CnTV = ("'L cf>/lX2x2IrLcf>'X2x2Ir3+cf>'X(X-x) Ir) 

- V2( (P12 (PI )2) I kT, 

cf>/IXYxylr2 -cf>'XYxylr3) 

-PC IkT, 

C44 V = ("'L cf>/I X2yZIrL cf>' X2y2Ir3+cf>'X eX- x) I r > 

The capital letters X, Y, Z in (5) stand for components 
of the interparticle separation in a perfect stationary 
lattice, measured along the aI, a2, and as directions. The 
lower case letters x, y, z stand for the actual varying 
components which fluctuate around the static-lattice 
values X, Y, Z. The pressures PI) p z) and P 6 in (5) are 
slightly different from those appearing in (4). Because 
the expression for the pressure in (5) is different from 
the more conventional one appearing in (3) it is worth 
pointing out that it can be derived more directly, and 
without the assumption of small vibrations.7 Although 
the results in (3) and (5) look different it is easy enough 
to work out special cases showing that the two do agree. 
These special cases also show that the pressure fluctua­
tions, which contribute to the elastic constants, are not 
the same, so that one formulation or the other might be 
more appropriate for a particular problem. (5) might 
work best when the pressure is dose to zero, so that the 
two pressure terms in (3) nearly cancel. 

III. HARD-SPHERE SOLID PRESSURE BOUND 

Apart from the practical consideration that (3) and 
(5) converge at different rates in computer experi­
ments, so that one or the other prove better in 
particular applications, what else can be learned by 
comparing the two formulations? If the particles under 
consideration are hard spheres of diameter u, then (3) 
and can both be simplified because the hard spheres 

exert forces on one another only when they are separated 
by a distance u. If we indicate the angle between a 
pair's separation r and the separation of the cor­
responding lattice sites R by O=cos-I[(rlr). (RIR)], 
and express the nearest-neighbor spacing in the 
crystal as up-113, where p is the ratio of the density to the 
close-packed density, then the two pressure expressions 
can be written: 

3PV=3NkT-u("'L cf>'), 

3PV= -<Tp-113("'L cf>' cosO). (6) 

Because the maximum value for the cosine is 1, the 
second expression a lower bound for <"'L cf>'), 
which, substituted the first expression, provides a 
lower bound on the pressure itself: 

(7) 

This lower bound is perfectly rigorous under the 
assumptions of (1) single occupancy and (2) nearest­
neighbor interactions, both of which are certainly 
reasonable for hard-sphere solids. It is interesting to 
note that the bound is exactly the same pressure 
expression that WoodS calculated using Kirkwood's 
self-consistent free volume theory. The bound fits the 
results of the hard-sphere computer quite 
welL The maximum error is about 8%. It occurs at an 
expansion of from the close-packed density, where 
the hard-sphere solid melts.6 
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