Reprinted from Tur Journar or Caemicar Pavysics, Vol 53, No. 4, 16171618, 15 August 1970
Printed in U, 8, A,

Helmholtz Free-Energy Bounds from
High-Temperature Series?*

W. T. ASHURST

Department of Applied Science, University of California ot Davis-
Livermore Sandia Laboratories, Livermore, California 94550

AND
W. G. HOOVER
Department of A pplied Science, University of California at Davis-
Livermore Lawrence Radiation Laboratory,
Livermore, California 94450

(Received 13 April 1970}

In theoretical equation-of-state investigations an
important goal is to obtain the Helmholtz free energy,
from which other thermodynamic properties can be
obtained. The Helmholtz free energy is hard to cal-
culate directly. A less ambitious goal is to relate the
free energy for the system of interest to the properties
of a simpler, well-understood system. The simplest
example of such a “perturbation” calculation considers
the effect on the free energy when attractive forces are
added to a purely repulsive hard-sphere system.

This idea that attractive forces can be treated as a
perturbation, with the distribution of particles being
determined by short-range repulsive forces goes back to
van der Waals and Boltzmann. Zwanzig' formulated
the corresponding perturbation theory precisely, show-
ing that the change in Helmholtz free energy caused by
adding an attractive potential to a repulsive hard-core
interaction could be expressed as a high-temperature
series in 1/7, where T"is the temperature. Until recently
it had been relatively unnoticed that the first term in
Zwanzig’s series provides a rigorous upper bound on
the Helmholtz free energy:

A< A+ (E—~E,). (1)

The subscripts refer to reference-system properties and
the averaging indicated by angle brackets in (1) is
carried out using the distribution characterizing the
unperturbed reference system. In the proof? of (1) we
replace (E—E,) /kT by x:

expl— (A—A4,) /T = {e=)= gD {g=HD)
> Q—a+ ()= (2)

Seventy years ago Gibbg® derived inequalities that
closely resemble (1). Inequality (1} is attributed to

Bogolyubov by Bazarov,* who first used this “Gibbs-
Bogolyubov” inequality in numerical thermodynamic
calculations.

The Gibbs-Bogolyubov inequality can be used to
select the best value of any parameter on which the
reference-system  energy depends. Bazarov used a
harmonic Einstein model, and minimized the free energy
by varying the Einstein frequency. Bazarov’s numerical
melting-line results were only in semiquantitative
agrecment with rarve-gas experiments because no
liquid-phase properties were considered in his cal-
culation.

Mansoori and Canfield® carried out a much more
thorough variational calculation, in all three phases,
using the Einstein-like Lennard-Jones-Devonshire cell
model to describe the solid phase, and the Wertheim-~
Thiele® solution of the hard-sphere Percus—Yevick
equation to describe the fluid phases. The results
Mansoori and Canfield obtained” closely resemble those
of the exact computer experiments.® Mansoori and
Canfield’s success in using just the one-term Gibbs~
Bogolyubov inequality suggests that higher-order terms
should lead to a quantitative theory of liquids. Mansoori
and Canfield thought that higher-order inequalities
could be obtained by truncating Zwanzig’s 1/T series
after terms other than the first. But their results from
truncation of the series after the third term were
disappointing.

To understand the failure of third-order truncation,
we explored the higher-order terms. We found that
such inequalities do not, in fact, existl® Although
higher-order truncated series maey provide extrema in
free energy as the parameter characterizing the refer-
ence system is varied, there is no guarantee that the
truncated free energy will bound the true free energy.
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The simplest way to show this lack of general higher-
order inequalities is to examine special cases for which
the free energy is known and compare truncated series
approximations with the known free energy. The case
of a system with only three energy levels, —e, 0, and ¢,
is already complicated enough to illustrate the lack of
inequalities convincingly. If the state of zero energy
corresponds to the reference-system energy, and has
degeneracy gin the system of interest, then the canonical
partition function is 2 cosh(e/47) g, from which the
high-temperature expansion of the iree energy differ-
ence, {4 — A4,)/kT can be calculated:

— (A—A4,) /BT =xy+ (ay— 6% /1242 -+, (3)

where x is (¢/kT)? and y is (2-+4g)~ For g small
(0,1,2) and x equal to 1 the truncated free energy
series predicts too low a free energy if truncated after
the x or 43 terms and too high a free energy if truncated
after the a? term. These bounds are all reversed if g is 5.

These simple cases illustrate that at least through
seventh-order terms in the high-temperature series only
the Gibbs-Bogolyubov bound is generally valid. Even
this simple example is fairly realistic. The perturbation
energies could refer to energy states in a crystal, orin a

LETTERS TO THE EDITOR

J. CHEM. PHYS., VOL. 53, 1970

gas, in which the particles spend most of the time in
free flight (E=0), and have occasional collisions with
other particles (attraction, E=—¢; Iollowed by
repulsion, E=¢).

The lack of higher-order bounds on the free energy
means that a fresh approach is needed to extend the
Mansoori-Canfield theory.
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