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In theoretical equation-of-state investigations an 
important goal is to obtain the Helmholtz free energy, 
from which other thennod)lnamic properties can be 
obtained. The Helmholtz free energy is hard to cal­
culate directly. A less ambitious goal is to relate the 
free energy for the system of interest to the properties 
of a simpler, well-understood system. The simplest 
example of such a "perturbation" calculation considers 
the effect on the free energy when attractive forces are 
added to a purely repulsive hard-sphere system. 

This idea that attractive forces can be treated as a 
perturbation, with the distribution of particles being 
determined by short-range repulsive forces goes back to 
van der Waals and Boltzmann. Zwanzig1 formulated 
the corresponding perturbation theory precisely, show­
ing that the change in Helmholtz free energy caused by 
adding an attractive potential to a repulsive hard-core 
interaction could be expressed as a high-temperature 
series in liT, where T is the temperature. Until recently 
it had been relatively unnoticed that the first tenn in 
Zwanzig's series provides a rigorous upper bound on 
the Helmholtz free energy: 

(1) 

The subscripts refer to reference-system properties and 
the averaging indicated by angle brackets in (1) is 
carried out using the distribution characterizing the 
unperturbed reference system. In the proof2 of (1) we 
replace (E-Eo)lkTbyx: 

exp[ - (A -Ao) IkTJ= (C-Z ) = e-(x) (c-x+(x» 

~e-("') (l-x+ (x» = e-{z}. (2) 

Seventy years ago Gibbs3 derived inequalities that 
closely resemble (1). Inequality (1) is attributed to 

Bogolyubov by Bazarov,4 who first used this "Gibbs­
Bogolyubov" inequality in numerical thennodynamic 
calculations. 

The Gibbs-Bogolyubov inequality can be used to 
select the best value of any parameter on which the 
reference-system energy depends. Bazarov used a 
hannonic Einstein model, and minimized the free energy 
by varying the Einstein frequency. Bazarov's numerical 
melting-line results were only in semiquantitative 
agreement with rare-gas experiments because no 
liquid-phase properties were considered in his cal­
culation. 

Mansoori and Canfield5 carried out a much more 
thorough variational calculation, in all three phases, 
using the Einstein-like Lennard-Jones-Devonshire cell 
model to describe the solid phase, and the Wertheim­
Thiele6 solution of the hard-sphere Percus-Yevick 
equation to describe the fluid phases. The results 
Mansoori and Canfield obtained7 closely resemble those 
of the exact computer experiments.s Mansoori and 
Canfield's success in using just the one-term Gibbs­
Bogolyubov inequality suggests that higher-order terms 
should lead to a quantitative theory of liquids. Mansoori 
and Canfield thought that higher-order inequalities 
could be obtained by truncating Zwanzig's liT series 
after terms other than the first. But their results from 
truncation of the series after the third term were 
disappoin ting. 

To understand the failure of third-order truncation, 
we e},"plored the higher-order terms. We found that 
such inequalities do not, in fact, existj9 Although 
higher-order truncated series may provide extrema in 
free energy as the parameter characterizing the refer­
ence system is varied, there is no guarantee that the 
truncated free energy will bound the true free energy. 
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The simplest way to show this lack of general higher­
order inequalities is to examine special cases for which 
the free energy is known and compare truncated series 
approximations with the known free energy. The case 
of a system with only three energy levels, - E, 0, and €, 

is already complicated enough to illustrate the lack of 
inequalities convincingly. If the state of zero energy 
corresponds to the reference-sy'stem energy, and has 
degeneracy g in the system of interest, then the canonical 
partition function is 2 cosh(cjkT) from which the 
high-temperature expansion of the free energy differ­
ence, (A-AQ)/kT can be calculated: 

- (A xy+ 6X2y2) (3) 

where x is (E/kT)2 and y is (2+g)-I. For g small 
(0, 1, 2) and x equal to 1 the truncated free energy 
series predicts too low a free energy if truncated after 
the x or x3 terms and too high a free energy if truncated 
after the x2 term. These bounds are all reversed if g is 5. 

These simple cases illustrate that at least through 
seventh-order terms in the high-temperature series only 
the Gibbs·-Bogolyubov bound is generally valid. Even 
this simple example is fairly realistic. The perturbation 
energies could refer to energy states in a crystal, or in a 

gas, in which the particles spend most of the time in 
free flight 0), and have occasional collisions with 
other particles (attraction, E = - €; followed by 
repulsion, E= e). 

The lack of higher-order bounds on the free energy 
means that a fresh approach is needed to extend the 
Mansoori-Canfield theory. 

* This work was performed under the auspices of the U.S. 
Atomic Energy Commission. 
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