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The pressure and entropy for interacting with an inverse twelJth-po\\'er pot en! ial 
are determined using the Monte The solid-phase entropy is calculated in two ways: by 
integrating the single-occupancy equation of state from the low density limit to solid densities, and by 
using solid-phase :Monte Carlo pressures to evaluate the anharmonic corrections to the 
high-density limit. The two methods and the entropy is used to locate the melting 
computed results are compared with predictions of the virial series. lattice dyn;;mics, pcrturhatiol1 
thcories, and cell models. For the fluid phase, perturbation theory is very accurate to two-thirds of 
the freezing density. For the solid phase, a correlated cell model predicts pressures very to the Monte 
Carlo results. 

1. INTRODUCTION the twelfth, 
<fJ(r) =e(o/r) 12, (1) 

Fifteen years of numerical work aiming at under­
standing thermodynamic properties of hard spheres has is of special interest as the high-temperature limit of the 
led to a equation of state. l-4 The fluid- I and Lennard-Jones potentiaL The Lennard-Jones potential 
solid-branch2 pressures and the phase transition loca- provides a realistic description of rare-gas interactions 
tionS were all accurately measured by computer at pressures up to a few kilobars, and has therefore been 
ments. Although the numerical machine results do not extensively studied in computer experiments.7- 10 

in themselves constitute theories, it is in retrospect Soft-sphere and hard-sphere properties can be cor­
possible to select theories, among the many suggested, related by perturbation theories. Rowlinsonll has 
which successfully reproduce the machine results. The shown how to expand the thermodynamic properties 
virial expansion works for the fluid phase,! and Fix- for an inverse nth-power potential around the hard­
man's theory,5 supplemented by the cell-cluster calcu- sphere limit. The expansion parameter in this per­
lations of the entropy constant,fi describes the selid well. turbation expansion is lin. Rowlinson also noted that, 
These are two completely diHerent approaches; a to order lin, Lhe inverse power and the ex­
unified hard-sphere theory analyzing both phases still ponential exp[ -n(r-ro)lroJ are identical, so that 
appears far off. additional connections can be established between 

The hard-sphere potential is inappropriate for some inverse-power and exponential-potential thermo­
problems. For the large temperature changes properties. Our :~V[onte Carlo results show that, 
in strong shock waves correspond, with a realistic for n= 12, Rowlinson's lin expansion is too crude for 
potential, to large changes in eHective hard-sphere quantitative calculations. But it is still 'worthwhile to 
diameter. The effective diameter represents an average consider perturbation theories, because computer-time 
closest-approach distance for colliding molecules. At requirements are so great for force laws more compli­
low density this would be the separation where the pair cated than the hard sphere. However, a perturbation 
potential is ,.....,kT. If two very different temperatures theory more sophisticated than RowHnson's is needed. 
are involved, as in a strong shockwave, then two Barker and Henderson12 have developed such a theory 
different effective diameters are needed. In such a case by combining Rowlinson's steepness expansion with 
a soft-sphere rather than a hard-sphere potential can be high-temperature expansion.13 Comparing 
used. our Monte Carlo results with the Barker-Henderson 

In this paper we use the yIonte Carlo method to de- predictions indicates that, except for very dense 
termine accurate thermodynamic properties for a so£1- fluids, their perturbation theory is accurate. A 
sphere potentiaL We then use the results to check the son of the perturbation theory predictions with results 
accuracy of approximate equation-of-state theories. Of for the full Lennard-Jones potential has recently been 
the many soft-sphere potentials to choose from, we have carried out by Levesque and Verlet.9 

picked an inverse power potential, which is the simplest In our :\[onte Carlo work we generate exact equations 
kind, because a single isotherm determines all the rest, of state for the JJuid and the solid, and determine the 
as we see in Sec. II. Among the inverse power potentials boundaries of the two-phase region. In addition we 
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FIG. 1. A two-dimensional single-occupancy system. The 
particles, represented as IJlack circles, are free to move as long 
as the center of each stays in its cell. The cells are the larger 
shaded circles. At high densities almost all collisions occur bet\veen 
pairs of particles and the single-occupancy thermodynamic 
properties are identical with those of a defect-free solid. At lower 
densities collisions with the cell walls can occur, and the single­
occupancy system produces an artifical extension of the solid 
phase to low density. 

study a 32-particle "single-occupancy" system over 
the whole density range. In a single-occupancy system, 
such as that shown in Fig. 1, each particle is restricted 
to an individual cell, the cells being arranged to impose 
a regular crystal structure at densities high enough for 
the solid to be stable. We show numerically that the 
thermodynamic differences between a single-occupancy 
solid and the more usual solid, in which the cell walls 
are missing, are completely negligible. 

For hard spheres the solid-phase entropy could 
only be determined by integrating the single-occupancy 
pressure from the known low-density limit to high 
density.3 For sofl spheres lattice dynamicsI4 provides 
an independent way to determine the solid-phase 
entropy, so that the soft-sphere integration provides a 
check on the accuracy of the :Monte Carlo pressures. 
We also use lattice dynamics calculations to determine 
the number-dependence of solid-phase thermodynamic 
properties. 

Results for the fluid-phase pressure and entropy are 
given in Sec. II. Along with the measured Monte 
Carlo pressures, we include numerical estimates for the 
first five virial coefficients in the density expansion of 
the pressure. 

Results for the solid-phase pressure and entropy are 
given in Sec. III. The computed pressures make it 
possible to determine the anharmonic corrections of 
order T and J'2 to the predictions of lattice dynamics. 
The single-occupancy calculation of the solid-phase 
entropy is compared with the lattice dynamics cal­
culation in Sec. IV. :Making use of the theoretical 
number-dependence of the thermodynamic properties, 
we establish the infinite-system melting line in Sec, V. 
In the final section we compare our computed results 
with the predictions of some perturbation theories 
for fluids and some cell models for solids. 

.­II. FLUID-PHASE PROPERTIES 

In either phase, fluid or solid, the pressure P for N 
soft spheres in a periodic volume V and at temperature 
T is calculated from the "irial theoremI5 : 

PV/iYkT= 1- (3NkT)-1(Ll'q,') 

= 1+ (4/1VkT) (L€(a/I') 12) 

= (4E/lfkT) -5. (2) 

The brackets indicate a canonical-ensemble average, the 
sums include each pair of particles in the system, k is 
Boltzmann's constant, and E= <p+~TkT is the thermo­
dynamic internal energy. The excess entropy Se 
(relative to an ideal gas at the same density and 
temperature) as well as the excess Helmholtz and 
Gibbs free energies, A e and Ge, can be obtained by 
integrating the Monte Carlo pressure results: 

S6 PV-NkT jP (PV-_YkT) 
- = - dlnp
lVk 41YkT 0 "YkT 

PV-NkT €j'lkT 
= 4J.VkT - 0 CrkT)-I(Lq,)d In kT 

= [(PV-J.VkT)/41\TkT]- (AetnT) 

=5[(PV- J.YkT) /4_YkT]- (Ge/jVkT) , (3) 

where p is the density relative to the density at which 
hard spheres of diameter a would be close packed, 
p= N 0'3/ (V2 V). The simple scaling of temperature and 
density integrals in (3) and the proportionality between 
PV -LYkT and E-~lVhT in (2) are both consequences 
of the simple inverse power law, not general results. 
The scaling relations are most easily derived by writing 
the canonical partition function Z=exp( -A/kT) as 
an integral over reduced distances, s.,:= (lV/V) 1/3r i: 

3N.' ((V/NA3r~-)f [(4p4E) 'JZ=e--AIAT = J.Yl exp - kT L S ij-12 dS , 

(4) 

where A is the thermal de Broglie wavelength 
h/(27rmkT)1/2. Because the integrand is a function of 
p4€/kT only and the integration limits are independent 
of V and T, the excess thermodynamic properties (with 
respect to an ideal gas in V at T) are functions of 
p4E/kT only. For this reason a single isotherm or iso­
chore determines the entire equation of state. For 
simplicity we sometimes speak of "low density" or 
"high density" in this paper, having in mind a fixed 
temperature. The same regions, from a fixed-volume 
viewpoint, could equally well be described as "high 
temperature" or "low temperature." 

For numerical calculation of excess entropy from the 
Monte Carlo pressures, it is convenient to consider 
excess properties wi th respect to an ideal gas in the 
constant external field <Po, where <Po is the energy of a 
static lattice (depending on V but not T). By sub­
tracting the dominant st\\t\c;-\a,tHce contribution to the 
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pressure, the accuracy of the integration determining 
Se is improved. Compare Figs. 2 and 3, which show the 
32-particle single-occupancy equation-of-state data 
plotted in two ways: In Fig. 2 the Helmholtz free energy 
relative to an ideal gas is determined by integrating 
the steeply rising C-·v p4) integrand. In the process of 
calculating S· from (3), the static-lattice contribution 
has to be subtracted from the integral. In 3 the 
static-lattice contribution is left out before plotting the 
data (p* is P-Pstatic-Pideal) and the change in the 
entropy-determining integrand is reduced by an order 
of magnitude. As the figures show, entropy changes 
can be calculated by either temperature or density 
integrations. 

The fluid-phase lVIonte Carlo pressure calculations 
for 32 and 500 soft spheres are summarized in Table 
1. K 0 number-dependent lattice corrections or center­
of-mass corrections have been made in the tabulated 
data. Lattice corrections add in the effect of particles 
outside the periodic iv10nte Carlo volume. For 32 
particles this effect would increase our "nearest­
image" value for the compressibility factor PVIJVkT 
by 0.136p4€lkTj the correction for 500 particles is 
negligible for the densities investigated. The center­
of-mass correction is more important. Because there is 
no restoring force opposing motion of the system as a 
whole, three degrees of freedom make ideal-gas contri­
butions to the thermal (nonstatic) part of the pressure. 
Because center-of-mass motion makes no contribution 
in the thermodynamic limit, its contribution should 
be removed when estimating infinite-system proper­
ties. To make this correction the excess compressibility 
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FIG. 2. Equation of state for 32 single-occupancy soft spheres, 
plotted with the integration of Eq. (3) indicated by shading. 
The shaded area is [A'(p=1.2) Ae(p=O.l)J/NkT for the 
isotherm t/kT= 1. The proportionality of the pressure and energy 
scales and the logarithmic temperature and density scales is a 
consequence of the inverse twelfth-power potential used. The 
temperature scale corresponds to the case p = 1. At high density 
the integrand is porportional to p4. 
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FIG. 3. Equation of state for 32 single-occupancy soft spheres, 
with the integration of Eq. (12) indicated by shading. 

temperature scale applies to the case p= 1; the density scale 
E/kT= 1. The static·lattice and ideal-gas contributions to 
pressure and energy are subtracted to increase the accuracy 

of this calculation over that shown in Fig. 2. The shaded area is 
[T5(0.1) - T 5(1.2) ~VP*(O.1) +~VP*(1.2)]/N!IT. The sharp 
break in the equation of state occurs when the particles first 
contact the cell walls. In Fig. 2 the break is disguised by the 
static-lattice contribution to the pressure. 

factor, p*vI1VkT, should be multiplied by a factor 
of iVI 1), 1.0020 for 500 particles. This correction 
is never larger than 0.02 for 500 particles. 

For hard spheres the virial series, augmented by the 
Pade method, predicts the entire fluid equation of 
state.' To test the usefulness of the virial series for 
soft spheres we calculated the first five terms in the 
density expansion of PVINkT using the methods out­
lined by Barker, Leonard, and Pompe.16 The resdting 
equation of state is 

PVIJ.YkT= 1+x+0.575SxL l-0.2087x3+0.0487x4+ ... , 
X= t1f(T3(l\TIV) (c/kT) 1/4r (l) 

=3.62959p( f/kT) 1/4, (5) 

Up to about half the density [found to be p= 
0.813 (kTI €) 1/4 in Sec. the truncated five-term series 
agrees with the machine results. The maximum devi­
ation is about 1% in PVINkT. As the density is in­
creased the error grows, reaching about 10% at freer,­
ing. By analogy with our earlier work ,,,,ith hard 
spheres1 and Gaussian molecules!7 we expected that the 
Pade approximant reproducing (5), 

PVINkT 

(1+0.4180x+O.1198x2 ) I (1-O.5820x+0.1263x2) , 

(6) 

would be an improvement over the truncated series. 
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TABLE L Fluid-phase thermodynamic properties for inverse twelfth-power systems. In addition to the compressibility factor, de- .~ 
termined from 0.3 million Monte Carlo configurations for p(.IIIT) 1/4 <0.70 and up to 2.5 million configurations for higher densities, 
the entropy relative to an ideal gas at the same temperature and density is tabulated. Because the ideal-gas standard corresponds to 
the partition function Z id •.al"" (VeINA")N, the finite-system entropy lies belo\\, the ideal gas entropy even at zero density. The Helm­
holtz and Gibbs free energies can be obtained from the pressure and entropy data by using Eq. (3) of the text. The pressure data are 

to be accurate within 0.05 or better in PVINkT. The entrop}, data are accurate within 0.02Nk. The quoted infinite-system 
results are smoothed estimates derived from the 500-particle data by taking the center-of-mass and zero-density entropy corrections 
into account. 

p(.jkT)lf4 (PVFNkT)," (S'IXk);co (pyINkTl", 

0.00 1.000 -0.083 l.000 -0.008 1.000 -0.000 
0.10 1.439 -0.367 1.447 --0.299 1.448 -0.291 
0.20 2.108 -0.695 2.119 -0.633 2.121 -0.626 

0,30 3,081 -lo073 3,096 1.014 3.101 -loOOS 


i ~-'"0.40 ":1;. ~",) -1.41)5 4.548 -1.440 4.557 1.43·1 

0,50 6.604 1.970 6.634 -1,923 6.641 1.918 

0.60 9.451 -2.524 9.560 -2.470 9.460 -2.46S 

0.(;5 11. 267 -2.769 11,357 -2.764 

070 13,11'2 -3.155 13 .492 -3.084 13.469 -3.079 

0.74 15.351 -3.34R 15.395 -3.343 
0.77 16.987 -3.548 17.006 -3,543 

0,80 18,763 -3.754 18.762 -3.749 


The approximant (6) is, however, vastly inferior to the 
truncated series, predicting a pressure too low by a 
factor of 2 at freey,ing; we have checked that this con­
clusion is not affected the uncertainty in our cal­
culated virial coefficients. This shows the value of 
considering more than one or two special cases before 
assuming the validity of simple general rules! 

The entropy data given in Table I were calculated by 
numerical integration, carried out along the lines of 
Fig. 3. The table shows that the number dependence 
of the entropy is insensitive to density, the difference 
between the 32-particle and SaO-particle results staying 
roughly constant. Most of the difference is accounted 
for by the low-density limit,18 

N! 

III. SOLID-PHASE PROPERTIES 

The solid-phase calcul~"tions proceed just as in the 
J1uid case, except that the density is so high that the 
initial face-centered arrangement persists throughout 
the calculation. As the analog of the low-density ideal­
gas limit for the fluid, we have the high-density lattice­
dynamics limit for a solid. For p(€/kT)1!4»1 the 
harmonic approximation of lattice dynamics becomes 
exact. If the potential energy.p I: if; is expanded in 
powers of the displacements of the particles relative to 
th(~ center-of -mass displacemen I, and if the resulting 
cxpression is truncated after quadratic terms, the 
quadratic form can be diagonalized and the partition 
function integrated to give Zh",monic in terms of the 
lattice vibration frequencies, l)Jj I : 

\flo) V N3i2 leT3N-3 

""",",nnW-exp(- -~ - II
kl IV AS 3=1 hVj' 

where the center-of-mass contribution is19 

At densities too low for (7) to hold, a pCTturbation 
expansion call be used to extend its usefulness: 

Z =Zhnrmunic exp[- .:Ve1(kT / p"E) -Ne2(kT/ p4€)2_ .• 

(8) 

It should be emphasized that el , 

depend upon the number of particles. Zltr.nnonic depends 
also on p and T . .po is proportional to p4 and the vibration 
frequencies follow a Grlineisen description, all 
proportional to p7l3. The number dependence 
Zharmonic has been established empirically. It was 
found,20 for nearest-neighbor Hooke's Law crystals, 

TABLE II. Entropy constants for periodic face-centered crystals 
of soft spheres interacting with an inverse twelfth-power po­
tential. The constants C(N) are liN times the sum, over 3N-3 
nonzero oscillation frequencies, {Vj l, of In(vEin,tein/vj), where 
VEin,tsin is the Einstein frequency. 

N C(N) C(Nl +lnNIN 11 Einsie-in{7 (1n/€) 112,0-7/3 

~- ~~- ~ ~~-.... .. .... ... .... ...-- ­~~-

-0.22108 0.12550 1.8286 

32 -/0,20970 0.31801 3.6615 


108 0.28850 0.33185 3.6661 

256 0.31464 0.33630 3.6661 

500 0.32553 0.33796 3.6661 

864 0.33088 0.33870 3,6661 


1372 0.33381 0.33908 3.6661 

2048 0,33557 0.33929 3.6661 

2916 0.33668 0.33942 3.6661 

400O 0.33743 0,33950 3.6661 


co 0,33972 0.33972 ,).6661 


±~ E ; ,. ¥ , ~,,~, - .,.... 
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-.. TABLE III. Selid-phase thermodynamic properties for inverse twelfth-power systems. The 32-partide results are for a single-occu­
pancy system. The 500-particle results were calculated without the single-occupancy constraint. The en~ro~): data were obtained by 
fitting the Monte Carlo pressure to Eq. (8) of the text, using the entropy constants from Table II. The mtimte-system estImates use 
the infinite-system entropy constant [ from Table II and the [1 and [. estimated for 500 particles, +0.0875 and -0.009, respectively . 

p(E/kT) 111 (PV I,YkT) 32 (S"INk) 3. (PVINkT).oo (SelNkhoo (PVINkT)", (S'INk)", 

0.74 '"'-'14.14 -3.867 13 .91 -3.945 
0.80 16.05 -4.390 16.55 -4.371 16.51 -4.395 
0.90 22.11 -4.980 22.S1 -5.042 22.55 -5.040 
1.00 30.55 -5.507 30.99 -5.630 30.99 -5.616 
1.20 56.65 -6.463 57.15 -6.637 57.16 -6.640 

that 

.y--l In Bit (IlEinstein) =C(lY) 
;=1 \ Vj 

=C- (In l{/iV) (9) 

The Einstein frequency, also proportional to p7J3, is the 
frequency at which a single particle oscillates if all the 
other particles are held fixed in a perfect-lattice arrange­
ment. We found that (9) also holds for soft-sphere 
crystals. By computing the oscillation frequencies for 
v~rious sized crystalsl4 (using the same nearest-image 
convention used in the Monte Carlo , we obtained 
the large-system limit C and verified the InN /lV de­
pendence of C(JV). Results are given in Table II. 

The anharmonic corrections in , C1 and must - both be used to fit the solid-phase YIonte Carlo data 
up to the melting point. TheJretical calculations of 
anharmonic termsZl generally aim to find Terms up 
to sixth order in the displacements contribute 
to C2 • The computer results for 500 soft spheres in the 
solid phase are given in Table III. The data can be 
fitted within their statistical accuracy by the ap­
proximations C1 7/80, C2 = 9/1000. The 32-particle 
clata in the table are consistent with a value for 

23/200, and about the same value for -19/2000. 
Vlithout definite knowledge of the dependence of 

and C2 on iV, we have used the SOO-particle estimates 
to calculate the thermodynamic properties for infinite 
crystals listed in the table. Also listed in the table are 
the entropies calculated from the lVIonte-Carlo 
estimates of C1 and C2 for 32 and 500 soft spheres. 

II. TEST OF THE SINGLE-OCCUPANCY MODEL 

The single-occupancy model, which we here use for 
soft spheres, was 11.1'st used to determine the solid-phase 
hard-sphere entropy.3 It is the only numerical way to 
determine the hard-sphere entropy. because the pressure 
fluctuations ne<u' the melting transition make direct 
integration of the pressure inaccurate. For soft spheres, 
the single-·occupancy model is not the only vvay to find 
the solid phase entropy; the lattice-dynamics method 
we used in Sec. HI is an alternative. Thus, by comparing 
our soft-sphere entropy results from Sec. III with 
calculated entropies from the soft-sphere single-oc­

cupancy model, we check the accuracy of the single­
occupancy approach. This is an indirect test of the 
validity of the previous hard-sphere3 and Lennard­
Jnnes potentiaF calculations.22 

By enforcing perfect crystalline order the model 
ignores the dislocations, grain boundaries, and va­
cancies that are present in real crystals. The most 
impJrtant of these defects, vacancies, can be treated 
theoretically;~3.~4 for soft spheres it is found that 
the fraction of vacancies at is of order 
exp( .25 This small defect popUlation has a 
negligible effect on solid-phase bulk thermodynamic 
properties, justifying the use of the artificially struc­
tured sinfTle-occupancv restriction. 

Previo~s calculatio~ls3.7 used dodecahedral \Vigner­
Seit;.; cells to confine the particles. To simplify the 
geometry we here use spherical cells. The cell diameter 
used is equal to the nearest-neighbor spacing in a 
perfect face-centered cubic crystal. Our results show 
that in the density in which the solid is thermo­
dynamically stable it makes no difference whether the 
cells are dodecahedra or At low density, 
where the single-occupancy rneth,)d a metastable 
extension of the solid phase, results do depend on cell 
geometry. The spherkal cells are smaller, by a factor of 
3Vi/11' and this diJTerent low-density limit must 
be taken int') account in entropy calculations. 

At densities up to about O.l(1,T 1/4 a .Mayer 
j-function expansion of the partition function gives 
the thermodynamic properties of the single-occupancy 

in terms of a two-particle integral: 

Zso=(~~:llr eXPlG Nz i I 1)dr1dfz]. 

( 10) 

Particles 1 and 2 occupy adjacent cells in the integra­
tion, and z is the coordination number, 12 for a face­
centered For hard spheres confined to spherical 
cells the integral can be worked out analytically: 

'1l'2(7" ( 42p..1/8_35+6pli3) 

1260 

(11) 

where (7 is the sphere diameter; this form serves as a 

http:calculations.22
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TABLE IV. Single-occupancy thermodynamic properties for 32 soft with periodic boundari<"s. Each sphere is confined by a ~. 

spherical ceti, with diameter equal to the nearest-neighbor spacing. In addition to the compressibility factor, entropy, and Helmholtz 
free energy (with respect to an ideal gas at the same density and temperature), the excess properties with respect to an ideal gas in a 
mean field equal to the static-lattice energy, 1.>c, are also given, indicated by stars. Use of these functions reduces rounding errors in 
numerical integrations. Because entropy is independent of an imposed constant field, the relation (SeINk) (S'INk) * holds. 

p (.1 kT) 1/·1 (PVINkT) (PVINkT) * (AcINkT) (AeINkT) * 

0.00 1.000 0.000 -1.300 1.300 1.300 
0.10 1.U5 0.243 -1.395 1.457 1.456 
0.20 1.806 0.767 1.578 1.780 1.770 
0.30 2.730 1.53·1 1.835 2.268 2.219 
0.40 4.116 2.498 -2.164 2.943 2.789 
0.50 6.129 3.621 -2.560 3.842 3.465 
0.55 7.40~ -1.199 -2.787 4.389 3.837 
0.60 8.880 -1.753 -3.082 5.008 4.226 
0.65 10.393 5.G86 -3.353 5.701 4.624 
0.70 11. ):;61 5.068 -3.733 6.448 5.000 
0.80 16.05-1 5.171 -4.390 8.154 5.683 
0.90 22.107 5.277 -4.980 10.257 6.299 
1.00 30.5-16 5.418 -5.507 12.894 6.862 
1. 20 56.65:> 5.623 -6.463 20.377 7.869 

in extrapolating the single-occupancy 
results for soft spheres to zero c;; 

Comparing the entropy with 
the lattice-dynamics entropy from Sec. III gives the 
theoretical entropy difference between the low- and 
high-density limits. At the same by 

(CJAso/aV)r =P so as a ftmction of density, the entropy 
difference can also be determined r:umerically by inte­

as shown in Fig. 3: 

seep) -56 (0) P*V JP p*r 
;Yk 4.YhT 0 _YkT d Illp) (12) 

where At the highest density 
studied) p= 1.2 (kT/e) excess 
(with respect to an ideal at the same density 
temperature) was found (12) to be -6.46Nk. 
The Monte Carlo pressures used in the integration 
are listed in Table IV. If we instead tit the high-density 
32-particle pressure data to (8) with C1 = 

19/2000) and the entropy constant C(32) 
0.210 from Table II, the calculated excess ent.ropy is 
-6,451\'k. This indirectly confirms the 
validity of the calculations, and at the 
same time shows that errors in the 
Monte Carlo pressures 11'.llSt be less than 0.01 in 
PV/Nl,T. 

We also wanted clear cut evicL,nce that the effect of 
the cell walls in the system is 
ble at all solid densities. Because the cell walls must 
have maximum effect at low dr;nsities, near melting, we 
have studied the magnitude of this effect by making a 

of "solid-phase" calculations at a density so low, 
0.8(kT/E) that the fluid is actually the thermo­
dvnamicallv stable \Ve carried out two 500­
p~rticle r~ns of 0.3 million moves each, identical 

for the single-occupancy restriction; one run 

included the cell walls; the other did not. For the 
full length of the 0.3 million moves, both runs remained 
exactly identical, showing that never did any particle 
approach a cell boundary. This shows that the 500­
particle solid-phase data in Table III, generated with­
out cell walls, would have been unchanged by the 
single-occupancy restriction. Because center-of-mass 
drift must eventually cause particles to near the cell 
walls) we continued the single-occupancy problem for 
an additional 0.8 million moves, finding a total of 14 
cell-wall collisions. This low frequency of cell-wall 
collisions, of order 10.5 at densities for whidz the fluid is 
stable) indicates that the single-occupancy restriction 
introduces only an insignificant error) of roughly the 
same order as that due to the neglect of vacancies. 

V. MELTING TRANSITION 

Knowing the thermodynamic properties of both 
phases makes it possible to locate the melting line. The 
simplest way is to find the density at which the Helm­
holtz free energies of the metastable fluid and the 
occupancy solid are equal) and then to use the 
area rule27 to find the densities at which the two stable 
phases coexist at pressure, temperature, and 
Gibbs free energy per particle. The most time-con­
smning part of the numerical work turned out to be 
determining the of state for the dense fluid. 
By analogy with spheres we expected that, in the 
density region where the fluid phase is stable, a 500­
particle soft-sphere would melt easily from the 
initial face-centered arrangement. In practice the soft­
sphere system was found to be much more 
than the hard-sphere 

At p (E/kT) 1/4 0.70 the soft-sphere compressibility 
factor rose from the static-lattice value, 5.83, to about 
12.5 after 0.075 million moves, to 13 after 0.125 million 
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moves, and finally began to oscillate around the 
equilibrium value, 13.5, after 0.2 million moves. The 
run was extended to a million configurations to confirm 
this value. 

At the next higher density, p(t/kT)!l4=0.i4, still 
well within the stable fluid phase, the compressibility 
factor increased from the static value, 7.28, to about 
14, nearly the harmonic lattice-dynamics value, after 
0.06 million moves. Then, over the next 0.4 million 
moves, the pressure slowly rose at a constant rate to a 
plateau at 15.35, where an additional million configura­
tions were generated. 

Because this evidence indicated fantastically long 
times to melt and reach equilibrium at higher densities, 
the fluid data at 0.77 and 0.80 were generated in a dif­
ferent way. We took the final p(,,/kT)l!4=0.7-! con­
figuration and scaled the interparticle distances to 
correspond to a higher density, p(,,/kT)1/4=0.I' J after 
which the problem was run for 1.5 million mO\·es. "\Ye 
compared this run with a second p(e/hT)14=0.77 
calculation starting with random particle coordinates. 
After 1.5 million moves the two estimates agreed; 
thus either method, sudden compression or random 
start, is suitable at this density. At the highest density 
investigated in the fluid phase, p(£/kTl14=0.80, we 
ran a random-start problem for 2.5 million moves. 
In both random-start problems the initial 0.2 million 
moves were discarded in computing average pressures. 

The fluid equation of state that fine.lly resulted is 
shown in Fig. 4 for the isotherm E hT. On that iso­
therm the infinite-system fluid density at freezing is 
0.813±0.006. The density of the coexisting solid is 
0.844±0.006. The transition pressure is PYo/XkT= 
15.95±0.3, and the entropy of fusion is [0.89::t:0.02].Yh, 
about 25% less than the hard-sphere va'ue.3 

This fusion entropy corresponds to Ross and Alder's 
estimate for argon28 at .........,lOOOoK. Their melting rule, 
on the other hand, which states that the fluid side of the 
transition should be identified with the highest density 
at which the initial solid configuration melts; probably 
underestimates the transition density by a few percent. 

Because our results correspond to the high-temper­
ature limit of the Lennard-Jones potential, 

(ro/r) 12_2hiT) (13) 

we compared our pressures with Wood's isotherm at 
,~T/E= 100,29 and found that, even at that high temper­
ature, the attractive term's effect is to lower the 
pressure on the order of 10%. For temperatures so 
high that the attractive contributions can be ignored 
our results predict 

Psolid = 0.844(kT/,,) 114. (14) 

>o[ f­-'" 
c. Z 

with 
FlG. 4. Comparison of Monte Carlo data for 

of state. V 
the isotherms, 1. 

four approximate equations 
curves drawn are 
Rowlinson shows the result of 
expansion of the 
The Perturbation # 1 curve is calculated from Barker-
Henderson theory, assuming a break /L between the steep 
and weak parts of the potential that </J(r=/L) kT. The 
Perturbation # 2 curve uses a break chosen to minimize 
the variation of A with /L (see Fig. for /L which 
The predictions of the perturbation 
are on the use of the usual cell model (with spherical 
smearing) for the solid phase. The correlated cell model. in which 
three particles simultaneously as shown in Fig. 7, predicts 
pressures filting the solid branch the Monte Carlo equation 
of state within the of the latter. The location of the 
Monte Carlo solid-·fluid to equal values of 
the Gibbs free energy per particle in phases. 

VI. APPROXIMATE THEORIES 

In view of the poor convergence found for the tive­
term vidal series in Sec. II, the alternative perturbation­
theory approaches to the fluid equation of state are 
well worth pursuing. Computer time can be saved by 

advantage of known hard-sphere results, using 
these as the basis of perturbation cakulaLions. In 
practice, perturbation calculations are seldom extended 
beyond one or two terms in the expansi0n parameters, 
so that a wise choice of these parameters is essentiaL 

Rowlinsonll expanded the partition function for the 
potential "(0/1')" around the hard-sphere e(u/r) '" 
limit, using lin as the expansion parameter. For our 
soft-sphere G1Se his theory, trunc,Lted to fll'st order in 
l/n, predicts for the isotherm 1 

(PVh2= (PV)", for P12= (12/11)3p"". (15) 

http:0.89::t:0.02].Yh
http:p(�/kTl14=0.80
http:p(e/hT)14=0.77
http:p(t/kT)!l4=0.i4
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FIG. 5. heat for soft spheres. The solid-phase data were 
derived from the approximate partition function (8) and have an 
uncertainty of about O.lNk near melting. The fluid data were 
derived from (17), which required estimating the fluid compres­

numerically. The fluid data also have an uncertainty of 
near freezing. The temperature scale at the base of the graph 

corTespOl:lds to heating the solid at constant volume, illustrating 
rule that specific heat decreases linearly with tem­

perature, Cv/Nk=3[I-arJ, where a=0.05 and r= T /Tme". The 
density scale at the top of the graph corresponds to the isotherm 
E/kT= 1. 

This predicted isotherm is shown in 4 for com­
parison with the Monte Carlo results. At densities where 
the predicted pressure is accurate an estimate from one 
or two vidal coefficients would do just as well. 

Another way to estimate the closeness of the soft­
sphere system to the hard-sphere limit is to examine the 
specific heat. Cv/1Vk is 1.5 at all densities for hard 
spheres) and is for soft spheres) reaching 3.0 
at density. In the solid phase the heat can 
be estimated from (8): 

(Cv/jVk) 

For the fluid the equivalence of density and temperature 
differentiations following from (4) leads to the relation 

3 P*V 1 (d(P*V/NIlT)) _ 
-- = - + - - . (1/)()NI. 2 4J.VkT 16 d lnp T 

fluid 

The heats from (16) and (17) appear in Fig. 5 
and can be seen to lie well above the hard-sphere limit. 
Both the solid and the fluid heats show a 
tendency to increase near the melting transition. De­

spite these increases the data obey Grover's 
rule that Cv/1Vk~3(1-aT), where a=O.05±0.Ol and 
T is the temperature divided by the temper­
ature.30 This empirical rule, established experimentally 
for several metals, holds for soft spheres as welL It is 
well worth emphasizing that the uncertainty in the 
computer-generated specific heats is quite large, of 
order O.1Nk. 

Zwanzig13 has considered a high. temperature per­
turbation theory based on the expansion 

f exp[-(E+oE)/kTJdf~ l-<koEr') 
J exp[ - E/kTJdlJ 

1«OE)2)+ 2 kT -.... (18) 

This approach, is not particularly useful for 
potentials lacking a hard core. Barker and Henderson12 

have recently combined the best features of Rowlinson's 
and Zwanzig's attacks by considering a two-parameter 
expansion. The potential is first divided up into a 
steep part (r<fJ.) and a weak part (r>fJ.!. In the 
region the potential is expanded around a hard-sphere 
potential of diameter d: 

d= - 1~ (e-<I>/kT -1)dr. (19) 
o 

1.2 

1.0 

O.B~ /, 

/
I 

/*"'~ / 

/ 

I 
! I 
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" FIG. 6. Variation of the perturbation-theory break 
with density on the isotherm €/k T = 1. The choice of J.< at 
below 0.3, where the minimum in A disappears, is somewhat 
ambiguous. At these lower densities any choice J.< within the range 
indicated by the full curves results in the same value for the COIn­
pressibility factor, within 0,01 at p= 0,3, and less at lov,'er densities. 
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-., TABLE V. Compressibility factors and Helmholtz free energies for the fluid are compared with the predictions of perturbation theory. 
In Perturbation # 1, the break point of the potential is taken at ¢ =kT. In Perturbation # 2 the break point is chosen to minimize the 
variation of Helmholtz free energy with respect to break point. The results ail refer to the isotherm, </kT= 1. 

p (PV /NkT)"" (PV/NkTh (PV/NkT) , (Ae/NkT)ro (A'INkT)J (A'/NkT)2 

0.10 1.45 1.47 1.36 0.40 0.42 0.39 
0.20 2.12 2.15 2.11 0.91 0.94 0.89 
0.30 3.10 3.16 3.18 1.53 1.58 1.54 
0.40 4.56 4.65 4.72 2.32 2.40 2.37 
0.50 6.M 6.89 6.93 3.33 3.43 3.43 
0.60 9.46 10.31 9.98 4.60 4.79 4.77 
0.65 11.36 12.70 11.88 5.35 5.62 5.57 
0.70 13.47 15.73 14.13 6.20 6.60 6.46 
0.75 15.91 19.63 16.61 7.14 7.74 7.45 
0.80 18.76 24.74 19.57 8.19 9.10 8.55 

This choice of d eliminates Helmholtz free energy con­ p(~/kT)IJ4=0.2 to p(flkT)ll4=O.4. At higher densities 
tributions which would be linear in the steepness the pressure is too high, but never by more than 5%. 
paxameter. In the weak region the potential is multi­ The perturbation-theory melting transitions drawn in 
plied by a strength parameter analogous to 1/kT. It on Fig. 4 are a little misleading. In finding the transi­
is important to select the break point J.L dividing the tion locations for the perturbation theories it seemed 
steep and weak regions 'with care. If the division is reasonable to use also an approximate theory for the 
made at infinity and only flrst-order terms in lin are solid phase, namely, the cell model in which one particle 
kept, Rowlinson's theory results. If the division is made moves in the field of its fixed neighbors. Because the 
at 17, which seems a natural flrst guess, then the results, free energy error in the perturbation theories at 
truncated after first-order terms in the steepness and freezing is roughly the same as the free energy error in 
strength parameters, are much better the curve the cell model, about 0.3NkT, the errors approximately 
marked Perturbation # 1 in 4). It seems most cancel in determining the phase transition. - logical however, to choose J.L in such a way that the In describing the solid phase the lattice-dynamics 
partition function is insensitive to the choice---this approach can give an accurate calculation of the high­
corresponds to minimizing the Helmholtz free energy density entropy. At the same time, the anharmonic 
with respect to J.L in the soft-sphere case, but might terms C1 and Cz found numerically show that the 
correspond to a maximum for other potentials. The traditional lattice-dynamics perturbation theory, which 
thermodynamic properties using a density-dependent estimates only C1 after considerable effort, is not 
breakpoint, again truncated after first-order terms, accurate near the melting density. As an alternative 
with If. chosen to minimize the variation of A with IL, route to Cl and C2, we have explored two types of cell 
are labeled Perturbation # 2 in Fig. 4 and are tabulated models (see Fig. 7). In either case the partition function 
in Table V. The variation of J.L with density on the is approximated by the Nth power of a one-particle 
isotherm E/kT = 1 is shown in 6. At densities less integral: 
than 0.3 the free energy minimum disappears. The 
theory at these low densities is insensitive to IL, and the [exp( - ~~~01}'.-3 i exp( - ;;}lrT, (20)
results for any choice in the range of values indicated 

in Fig. 6 lead to the same low-density PV/lVkT within 
 where o..p is the change in energy of the system as the 
0.01. particle moves from its lattice site to r. The cell models 

The perturbation theory is in quantitative agreement are easily calculated than the lattice-dynamicsmore 

with the moderate-density machine results from about 
 perturbation theories and do estimate anharmonic 

contributions to the pressure and the energy accurately. 
TABLE VI. Comparison of solid-phase compressibility factors In the simplest version of the cell model81 the neigh­

with cell-model and correlated-cell-model predictions. The static­ bors of the moving particle at r are held fixed at their 
lattice contribution to PV/NkT is 24.264pVkT. lattice sites. To simplify calculations the neighbors are 

often "smeared out" over a spherical surface, converting 
p«/kT)1I4 CFV/NkT)oo (PV/NkT).ell (PV/NkT)eof' the integral in (20) to a one-dimensional integral. For 

~...- ...- ...- ...-- ­
soft spheres we have carried out both the exact non­

0.80 16.51 16.12 16.53 smeared calculations and the smeared-out cell cal­
0.90 22.55 22.34 22.56 

culations. The results, given in Table VI, show that the
1.00 30.99 30.85 30.98 

cell-model value for C1 is about 30% too large and, with~. 
1.20 57.16 57.09 57.15 

less sensitivity, that the cell-model C2 is nearly correct. 
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FIG. 7. Two kinds of cell models. The from these 
models are compared ,,,ith the soft-sphere Carlo results 
in Table VI. In the ordinary cell model, one particle mo'·es. 
J n the correlated eel! model three particles move rnClTWlran 

with identical displacements from their lattice 
moving particles include the central particle and two "'''5'''uv'~ .­
the two neighbors which ,muld be respectively to and 
farthest from the central particle in the ordirrary cell modeL 

Because the difference betv.'ecn the nonsmcared and 
smeared calculations was found not to exceed 0.02 
in PVlirkT for the solid, only the smeared-cell results 
appear in the table. 

Alder and \Vainwright's movies of the two-dimen­
sional hard·disk solid32 show correlated motion of 1'0\1\'5 

of particles in the solid, especially at densities near 
melting. A "correlated cell model" taking this motion 
into account33 describes accurately the solid branch 
of the hard-disk isotherm, and produces a van del' 
Waals loop in the vicinity of the hard-disk melting 
transition. For the soft spheres we have studied a cor­
related cell model which is nearly exact in its pressure 
predictions for the solid. In this correlated cell model the 
particle which would, in a perfect lattice, be closest 
to the moving particle moves cooperatively with it; a 
third particle, in line with these two, alsD moves 

7), The model's success in predicting solid-phase 
pressures is outstanding. See Table VI for a comparison 
of the pressures from the :l\'Ionte Carlo experiments and 
those from the cell model and the correlated cell 
model. Numerical estimates of the anharmonic coef­
ficients from the correlated cell model are C1 = 0.100, 

-0.017, and =0.0014. These coefficients describe 
the machine results just as well as our empirical 

C1=0.088, C2 = -0.009. The specific heat for the 
correlated model is shown in Fig. 8 for comparison 
with the estimated specific heat from (16). The Ull­

in the IvIonte Cm'lo results is at least as great 
as the between the two curves~the ap­
proximate anharmonic partition function including 

C1 and C2 is not very reliable for predicting deriva­
tives of the free energy of higher order than the first. 

The m.aximulll in the correlated-cell heat capacity 
is indicative of a high-order phase transition and is 
associated with the sliding motion of the atoms past 
each other. This interpretation is confirmed by in­

numerical values of the integrand in (20) for 
the correlated model. At high densities the moving 
atom remains near its cell center, but as the density 
is decreased and melting approaches, there is a large 

increase in the value of the integrand ior the region 
between the correlated particles. Thi;; corresponds to 
the movement of atoms through the solid. :\lthough 
the correlated model does not predict melting quantita­
tively, it does predict an order-disorder transition at 
about the density of the Monte Carlo melting transition. 
The heat-capacity maximum nearly coincides with the 

freezing demity; it is unlikely that this coin­
will also occur for all other potentials. 

Because the model does represent a breakup of the 
solid based on mechanical, as opposed to thermo­
dynamic, grounds,:l4 the density at which the breakup 
occurs does lie below the true thermodynamic melting 

in qualitative agreement with the Ross­
Alder rule.28 The specific heat maximum indicates that 
the model includes a mode of the kind needed to 

the large specific heats found in rare-gas 
near melting. The specific heat increase occurs 
the assumption of vacancies or other lattice 

defects. How well the correlated cell model heat 
capacity correlates with the melting curve for more 
realistic potentials is being investigated.3s 

Lindemann that solids melt when the root-
becomes a characteristic 

spacing. With a few 
Lindemann melting rule 

takes the form 

(21) 

where e is atomic weight. 
This relation is exact melting line 
because the e, proPQrtional 
to and ( proportional to p-7i3, cancel. 
The soft-sphere Lindemann constant, using the ap­
proximation is 111, fairly close to 
the Lindemann constant fQr argon. 

2,90 \ 
\ 
\ 
\ 
\ 
\

'2.8 /\ Con.lot.ci C.lI \-" :z: \ ,
"­
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"- ­'2,86 
Monte- eerio .. 

.;;" .!:'" 
"f 'i 

2.84 .... :E 

0.75 0.80 0.85 0.90 .5 1.00 
p 

FIG. 8. The full curve shows the constant-volume 
heat from the correlated cell model along the isotherm 
The dashed curve shows the estimate from 
Carlo data. The uncertainty in the latter is comparable to the 
offset between the two curves. Note that the specific-heat maxi­
mum from the correlated cell model nearly coincides with the 
freezing density. 
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Ross has recently suggested that the Lindemann 
law be generalized to a theoretically more convenient 
form, by requiring that the nonideal part of the con­
figurational partition function,36 

Z*= -Ae/kT) , (22) 

be constant along the melting line. As we see from the 
in (-± l) this rule also holds for the soft-sphere 

potential. 
Ashcroft and co-,vorkers have a slightly different 

recipe for the melting line?; They suggested that the 
maximum in the Fourier transform of the pair distribu­
tion function be used to correlate the freezing densities 
of liquid metcJs. As another consequence of the 50ft­
sphere scaling relation, the reduced distribution func­
tions also depend upon the combination Thus 
the Fourier-transform maximum has a characteristic 
constant value in each phase along the melting line. 
Because the k characterizing the maximum scales as a 
reciprocal length, the position of the maximum varies 
as T1/12 along the melting line. Hansen and Verlet7 •38 

have found that the Fourier-transform melting rule is 
nea.,.ly correct for the full Lennard-Jones we 
expect they will soon report their detailed results. 
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