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The pressure and entropy for soft-sphere particles interacting with an inverse twellth-power potential
are determined using the Monte Carlo method. The solid-phase entropy is calculated in two ways: by
integrating the single-occupancy equation of state from the low density limit to solid densities, and by
using solid-phase Monte Carlo pressures to evaluate the anharmonic corrections to the lattice-dynamics
high-density limit. The two methods agree, and the entropy is used to locate the melting transition. The
computed results are compared with the predictions of the virial series, lattice dynamics, perturbation
theories, and cell models. For the fluid phase, perturbation theory is very accurate up to two-thirds of
the freezing density. For the solid phase, a correlated cell model predicts pressures very close to the Monte

Carlo results,
I. INTRODUCTION

Fifteen years of numerical work aiming at under-
standing thermodynamic properties of hard spheres has
led to a complete equation of state.* The fluid-! and
solid-branch? pressures and the phase transition loca-
tion® were all accurately measured by computer experi-
ments. Although the numerical machine results do not
in themselves constitute theories, it is in retrospect
possible to select theories, among the many suggested,
which successfully reproduce the machine results. The
virial expansion works for the fluid phase,! and Fix-
man’s theory,® supplemented by the cell-cluster calcu-
lations of the entropy constant,® describes the sclid well.
These are two completely different approaches; a
unified hard-sphere theory analyzing both phases still
appears far off.

The hard-sphere potential is inappropriate for some
problems. For example, the large temperature changes
in strong shock waves correspond, with a realistic
potential, to large changes in effective hard-sphere
diameter. The effective diameter represents an average
closest-approach distance for colliding molecules. At
low density this would be the separation where the pair
potential is ~k7. 1f two very different temperatures
are involved, as in a strong shockwave, then two
different effective diameters are needed. In such a case
a soft-sphere rather than a hard-sphere potential can be
used.

In this paper we use the Monte Carlo method to de-
termine accurate thermodynamic properties for a soft-
sphere potential. We then use the results to check the
accuracy of approximate equation-of-state theories. Of
the many soft-sphere potentials to choose from, we have
picked an inverse power potential, which is the simplest
kind, because a single isotherm determines all the rest,
as we see in Sec. 1I. Among the inverse power potentials

the twelfth,
o(r) =e(o/r)®, (1)

is of special interest as the high-temperature limit of the
Lennard-Jones potential. The Lennard-Jones potential
provides a realistic description of rare-gas interactions
at pressures up to a few kilobars, and has therefore been
extensively studied in computer experiments.”

Soft-sphere and hard-sphere properties can be cor-
related by perturbation theories. Rowlinson! has
shown how to expand the thermodynamic properties
for an inverse nth-power potential around the hard-
sphere limit. The expansion parameter in this per-
turbation expansion is 1/x#. Rowlinson also noted that,
to order 1/u, the inverse power (rg/r)* and the ex-
ponential exp[—n(r—ry)/ry] are identical, so that
additional connections can be established between
inverse-power and exponential-potential thermo-
dynamic properties. Our Monte Carlo results show that,
for =12, Rowlinson’s 1/5 expansion is too crude for
quantitative calculations. But it is still worthwhile to
consider perturbation theories, because computer-time
requirements are so great for force laws more compli-
cated than the hard sphere. However, a perturbation
theory more sophisticated than Rowlinson’s is needed.
Barker and Henderson®™ have developed such a theory
by combining Rowlinson’s steepness expansion with
Zwanzig's high-lemperature expansion.® Comparing
our Monte Carlo results with the Barker-Henderson
predictions indicates that, except for very dense
fluids, their perturbation theory is accurate. A compari-
son of the perturbation theory predictions with results
for the full Lennard-Jones potential has recently been
carried out by Levesque and Verlet.?

In our Monte Carlo work we generate exact equations
of state for the fluid and the solid, and determine the
boundaries of the two-phase region. In addition we
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Fia. [. A two-dimensional single-occupancy system. The
particles, represented as black circles, are free to move as long
as the center of each stays in its cell. The cells are the larger
shaded circles. At high densities almost all collisions occur between
pairs of particles and the single-occupancy thermodynamic
properties are identical with those of a defect-free solid. At lower
densities collisions with the cell walls can occur, and the single-
occupancy system produces an artifical extension of the solid
phase to low density.

study a 32-particle “‘single-occupancy” system over
the whole density range. In a single-cccupancy system,
such as that shown in Fig. 1, each particle is restricted
to an individual cell, the cells being arranged to impose
a regular crystal structure at densities high enough for
the solid to be stable. We show numerically that the
thermodynamic differences between a single-occupancy
solid and the more usual solid, in which the cell walls
are missing, are completely negligible.

For hard spheres the sclid-phase entropy could
only be determined by integrating the single-occupancy
pressure from the known low-density limit to high
density.® For soft spheres lattice dynamics®* provides
an independent way to dctermine the solid-phase
entropy, so that the soft-sphere integration provides a
check on the accuracy of the Monte Carlo pressures.
We also use lattice dynamics calculations to determine
the number-dependence of solid-phase thermodynamic
properties.

Results for the fluid-phase pressure and entropy are
given in Sec. II. Along with the measured Monte
Carlo pressures, we include numerical estimates for the
first five virial coefficients in the density expansion of
the pressure.

Results for the solid-phase pressure and entropy are
given in Sec. I1II. The computed pressures make it
possible to determine the anharmonic corrections of
order 7" and 1% to the predictions of lattice dynamics.
The single-occupancy calculation of the solid-phase
entropy is compared with the lattice dynamics cal-
culation in Sec. IV, Making use of the theoretical
number-dependence of the thermodynamic properties,
we establish the infinite-system melting line in Sec. V.
In the final section we compare our computed results
with the predictions of some perturbation theories
for fluids and some cell models for solids.
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II. FLUID-PHASE PROPERTIES

In either phase, fluid or solid, the pressure P for ¥
soft spheres in a periodic volume V and at temperature
T is calculated from the virial theorem!:

PV/NET=1—(3NET)"(Tr¢")
=1+ (4/NET) (Xe(a/r) )

=(4E/NET) =5. (2)

The brackets indicate a canonical-ensemble average, the
sums include each pair of particles in the system, % is
Boltzmann’s constant, and £=®--2\kT is the thermo-
dvnamic internal energy. The excess entropy S°
(relative to an ideal gas at the same density and
temperature) as well as the excess Helmholtz and
Gibbs free energies, 4¢ and G*, can be obtained by
integrating the Monte Carlo pressure results:

S PV—NET /‘ﬂ<PV—A\"kT>“
Nk~ 4NET o\ T S
PV—NET [ ¢
- NET)1 In —
ANET /; (VR (d)d In 1

=[(PV—NET)/4NkT]— (4¢/NET)

=5[(PV—NkT) /ANET]— (G¢/NkT), (3)

where p is the density relative to the density at which
hard spheres of diameter ¢ would be close packed,
p=Nga?/(V2V). The simple scaling of temperature and
density integrals in (3) and the proportionality between
PV —NET and E—4NET in (2) are both consequences
of the simple inverse power law, not general results.
The scaling relations are most easily derived by writing
the canonical partition function Z=exp(—A/kT) as
an integral over reduced distances, s,=(N/V)Yr;:

V/NA%Y At
4)

where A is the thermal de Broglie wavelength
I/ (2xmkT)V2, Because the integrand is a function of
p'¢/kT only and the integration limits are independent
of ¥V and T, the excess thermodynamic properties (with
respect to an ideal gas in V at T') are functions of
ple/kT only. For this reason a single isotherm or iso-
chore ‘determines the entire equation of state. For
simplicity we sometimes speak of “low density” or
“high density” in this paper, having in mind a fixed
temperature. The same regions, from a fixed-volume
viewpoint, could equally well be described as “high
temperature” or “low temperature.”

For numerical calculation of excess entropy from the
Monte Carlo pressures, it is convenient to consider
excess properties with respect to an ideal gas in the
constant external field &, where &, is the energy of a
static lattice (depending on V¥ but not T). By sub-
tracting the dominant static-lattice contribution to the
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pressure, the accuracy of the integration determining
§¢is improved. Compare Figs. 2 and 3, which show the
32-particle single-occupancy equation-of-state data
plotted in two ways: In Fig. 2 the Helmholtz free energy
relative to an ideal gas is determined by integrating
the steeply rising (~p? integrand. In the process of
calculating S¢ from (3), the static-lattice contribution
has to be subtracted from the integral. In Fig. 3 the
static-lattice contribution is left out before plotting the
data {P* is P— Peiatic—Picest) and the change in the
entropy-determining integrand is reduced by an order
of magnitude. As the figures show, entropy changes
can be calculated by either temperature or density
integrations.

The fluid-phase Monte Carlo pressure calculations
for 32 and 300 soft spheres are summarized in Table
I. No number-dependent lattice corrections or center-
of-mass corrections have been made in the tabulated
data. Lattice corrections add in the effect of particles
outside the periodic Monte Carlo volume. For 32
particles this effect would increase our ‘‘nearest-
image” value for the compressibility factor PV/NET
by 0.136p%/kT; the correction for 300 particles is
negligible for the densities investigated. The center-
of-mass correction is more important. Because there is
no restoring force opposing motion of the system as a
whole, three degrees of freedom make ideal-gas contri-
butions to the thermal (nonstatic) part of the pressure.
Because center-of-mass motion makes no contribution
in the thermodynamic limit, its contribution should
be removed when estimating infinite-system proper~
ties. To make this correction the excess compressibility
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Fic. 2. Equation of state for 32 single-occupancy soft spheres,
plotted with the integration of Eq. (3) indicated by shading.
The shaded area is [d¢(p=12)— A¢{p=0.1)1/NET for the
isotherm ¢/2T =1, The proportionality of the pressure and energy
scales and the logarithmic temperature and density scales is a
consequence of the inverse twelfth-power potential used. The
temperature scale corresponds to the case p=1, At high density
the integrand is porportional to p%
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Fie. 3. Equation of state for 32 single-occupancy soft spheres,
plotted with the integration of Eq. (12} indicated by shading.
The temperature scale applies to the case p=1; the density scale
to ¢/2T=1. The static-lattice and ideal-gas contributions to
the pressure and energy are subtracted to increase the accuracy
of this calculation over that shown in Fig. 2. The shaded area is
[T5(01)—TS(L.2)~3VP*0.1)+3VP*1.2)])/NkT. The sharp
break in the equation of state occurs when the particles first
contact the cell walls. In Fig. 2 the break is disguised by the
static-lattice contribution to the pressure,

factor, P*V/NET, should be multiplied by a factor
of /(N —1}, 1.0020 for 500 particles. This correction
is never larger than 0.02 for 500 particles.

For hard spheres the virial series, augmented by the
Padé method, predicts the entire fluid equation of
stale.! To test the usefulness of the virial series for
soft spheres we calculated the first five terms in the
density expansion of PV/NET using the methods out-
lined by Barker, Leonard, and Pompe.'® The resulting
equation of state is

PV/NET = 14-x40.5755:2-F0.20875%-0.048 7oA+« - =,
o= fra®(N/V) (/RT)VT ()
=3.62939p(¢/RT )15, (s)

Up to about half the freezing density [found to be p=
0.813{kT/¢)V* in Sec. V] the truncated five-term series
agrees with the machine results. The maximum devi-
ation is about 19, in PV/NET. As the density is in-
creased the error grows, reaching about 109 at freez-
ing. By analogy with our earlier work with hard
spherest and Gaussian molecules” we expected that the
Padé approximant reproducing (3),

PV/NET
= (1-4-0.41805--0.119842) / (1—0.5820x-+0.126342),
(6)

would be an improvement over the truncated series.
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Taece I. Fluid-phase thermodynamic properties for inverse twelfth-power systems. In addition to the compressibility factor, de-
termined from 0.3 million Monte Carlo configurations for p(e/k7T)¥1<0.70 and up to 2.5 million configurations for higher densities,
the entropy relative to an ideal gas al the same temperature and density is tabulated. Because the ideal-gas standard corresponds to
the partition function Z4..= (Ve/NA%¥, the finite-system entropy les below the ideal gas entropy even at zero density. The Helm-
holtz and Gibbs free energies can be obtained from the pressure and entropy data by using Eq. (3) of the text. The pressure data are
expected to be accurate within 0.05 or better in PI//N%7. The entropy data are accurate within 0.02N%. The quoted infinite-system
results are smoothed estimates derived from the 300-particle data by taking the center-of-mass and zero-density entropy corrections

nto account.

ple/bIS (PV/NET)s KAy (PV/NET 500 (57 NE) s (PV/NET ) (S%/NE) s
0.00 1.000 —0.083 1.000 —0.008 1.000 —0.000
0.10 1.439 —0.367 1.447 —0.299 1.448 —0.291
0.20 2.108 —~0.693 2,119 —0.633 2.121 —0.626
.30 3.081 —1.073 3.006 —~1.014 3.101 —1.008
0.40 4333 —1.495 4,348 —1.440 4.357 —1.434
0.30 6.604 —1.970 6.634 1,923 6.641 ~1.918
0.60 9,451 ~2.524 .560 —2.470 9.460 —2.463
0.063 11.267 —2.760 11.357 —2.764
0.70 13.182 ~3.153 13.492 ~3.084 13.469 ~3.079
0.74 15.351 —3.348 15.395 —3.343
0.77 16.987 —3.548 17.006 —3.543
0.80 18.763 —~3.754 18.762 —~3.749

The approximant (6} is, however, vastly inferior to the
truncated series, predicting a pressure too low by a
factor of 2 at freezing; we have checked that this con-
clusion is not affected by the uncertainty in our cal-
culated virial coefficients. This shows the value of
considering more than one or two special cases before
assuming the validity of simple general rules!

The entropy data given in Table T were calculated by
numerical integration, carried out along the lines of
Fig. 3. The table shows that the number dependence
of the entropy is insensitive to density, the difference
between the 32-particle and 500-particle results staying
roughly constant. Most of the difference is accounted
for by the low-density limit,*

/.S¢ (N/ey¥
expkg ===

III. SOLID-PHASE PROPERTIES

N!

The solid-phase calculations proceed just as in the
fluid case, except that the density is so high that the
initial face-centered arrangement persists throughout
the calculation. As the analog of the low-density ideal-
gas limit for the fluid, we have the high-density lattice-
dynamics limit for a solid. For p(e/kT)V0>1 the
harmonic approximation of lattice dynamics becomes
exact. If the potential energy ®= 3~ ¢ is expanded in
powers of the displacements of the particles relative to
the center-of-mass displacement, and if the resulting
expression Is truncated after quadratic terms, the
quadratic form can be diagonalized and the partition
function integrated to give Zyumenic in terms of the
lattice vibration frequencies, {»;}:

V N32 8N-8 L

. _ by
/gi'eurmonie_exp - izl :;'Y A o 'h"y;s

= (2mN) I,

(7)

where the center-of-mass contribution is!®
( [’?’2‘\"’) (1\73/2/;&3} .

At densities too low for (7} to hold, a porturbation
expansion can be used to extend its usefulness:

Z = Z rarmonic €XpL — NCL (R T/ p'e) = NCo(RT /ple)?—« < .
(8)

It should be emphasized that Zvsmenie, C1, Ciy »-»
depend upon the number of particles. Zyumnonic depends
also on p and 7. &y is proportional to p* and the vibration
frequencies follow a Grineisen description, all being
proportional to . The number dependence of
Zyarmonic Das been  established empirically. Tt was
found,® for nearest-neighbor Hooke's Law crystals,

Tasre I1. Entropy constants for periodic face-centered erystals
of soft spheres interacting with an inverse twelfth-power po-
tential. The constants C{N} are 1/N times the sum, over 38 —3
nonzero oscillation frequencies, {#;}, of In(vginstein/v;), where
¥Einstein 18 the Elnstein frequency.

N C(N) C(N)+InN/N  vyinssemo (/)2
4 ~0.22108 0.12550 1.8286
32 +-0.20970 0.31801 3.6615
108 0,28850 0.33185 3.6661
256 0.31464 0.33630 3. 6661
500 0.32533 0.33796 3.6661
864 0.33088 0.33870 3.6661
1372 0.33381 0.33908 3.6661
2048 0.33557 0.33929 3.6661
2916 0.33668 0.33942 3.6661
4000 0.33743 0.33930 3.6661
® 0.33972 0.33972 3.6661
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Tasre IT1. Sclid-phase thermodynamic properties for inverse twelfth-power systems. The 32-particle results are for a single-occu-
pancy system. The 300-particle results were calculated without the single-occupancy constraint. The entropy data were obtained by
fitting the Monte Carlo pressure to Eq. (8} of the text, using the entropy constants from Table TL. The infinite-system estimates use
the infinite-system entropy constant € from Table IT and the Cy and C; estimated for 500 particles, +0.0875 and —0.009, respectively.

ple/RT)HV (PYV/NET )5 (S¢/NE)s, (PV/NET Y500 (S¢/Nkjsw (PV/NET ) (S/NE) o
0.74 ~14.14 —3.867 13.91 —-3.945
0.80 16.03 —4.390 16.55 —4.371 16.51 —4.395
0.90 22.11 —4.980 22,51 —5.042 22.55 —3.040
1.00 30.55 —3.507 30.99 —~35.630 30.99 -5.616
1.20 56.65 —6.463 57.15 —6.637 57.16 - 6. 640

that cupancy model, we check the accuracy of the single-
s s occupancy approach. This is an indirect test of the

M 1 |/ d Emm"‘) =C(NV) validity of the previous hard-sphere® and Lennard-
1\ Jenes potential” calculations.?

= C—(ln N/N)-+O(N-1).  (9)

The Einstein frequency, also proportional to p7%, is the
frequency at which a single particle oscillates if all the
other particles are held fixed in a perfect-lattice arrange-
ment. We found that {9) also holds for soft-sphere
crystals. By computing the oscillation frequencies for
various sized crystals!* (using the same nearest-image
convention used in the Monte Carlo work}, we obtained
the large-system limit ¢ and verified the In¥/N de-
pendence of C(N). Results are given in Table I1.

The anharmonic corrections in (8}, Cy and Cs, must
both be used to fit the solid-phase Monte Carlo data
up to the melting point. Theosreiical calculations of
anharmonic terms? generally aim to find Cy. Terms up
to sixth order in the particle displacements contribute
to Ce. The computer results for 500 soft spheres in the
solid phase are given in Table III. The data can be
fitted within their statistical accuracy by the ap-
proximations Cy=7/80, Cy=—9/1000. The 32-particle
data in the table are consistent with a larger value for
C'1, 23,200, and about the same value for Cy, —19/2000.

Without definite knowledge of the dependence of (4
and Cy on ¥V, we have used the 500-particle estimates
to calculate the thermodynamic properties for infinite
crystals listed in the table. Also listed in the table are
the entropies calculated from (8) using the Monte-Carlo
estimates of ¢ and Cp for 32 and 500 soft spheres.

I7. TEST OF THE SINGLE-OCCUPANCY MODEL

The single-occupancy model, which we here use for
soft spheres, was first used to determine the solid-phase
hard-sphere entropy.® It is the only numerical way te
determine the hard-sphere entropy, because the pressure
fluctuations near the melting transition make direct
integration of the pressure inaccurate. For scft spheres,
the single-occupancy model is not the only way to find
the solid-phase entropy; the lattice-dynamics method
we used in Sec. 111 is an alternative. Thus, by comparing
our soft-sphere entropy results from Sec. III with
calculated entropies from the soft-sphere single-oc-

By enforcing perfect crystalline order the model
ignores the dislocations, grain boundaries, and va-
cancies that are present in real crystals. The most
important of these defects, vacancies, can be treated
theoretically;*®* for soft spheres it is found that
the fraction of vacancies at melting is of order
exp(—PV/NET).® This small defect population has a
negligible effect on solid-phase bulk thermodynamic
properties, justifying the use of the artificially struc-
tured single-occupancy restriction.

Previous calculations®? used dodecahedral Wigner-
Seits cells to confine the particles. To simplify the
geometry we bere use spherical cells, The cell diameter
used is equal to the nearest-neighbor spacing in a
perfect face-centered cubic crystal. Our results show
that in the density region in which the solid is thermo-
dynamically stable it makes no difference whether the
cells are dodecahedra or spheres. At low density,
where the single-occupancy method gives a metastable
extension of the solid phase, results do depend on cell
geometry. The spherical cells are smaller, by a factor of
3V2 /299 and this different low-density limit must
be taken intn account in entropy calculations.

At densities up to about 0.1(k7/¢}¥* a Mayer
JfHfunction expansion of the partition function gives
the thermodynamic properties of the single-occupancy
system in terms of a two-particle integral:

. Vcell N /1 Ng » . .

(10)

Particles 1 and 2 occupy adjacent cells in the integra-
tion, and z is the coordination number, 12 for a face-
centered crystal. For hard spheres confined to spherical
cells the integral can be worked out analytically:

' 255 (42 515 — 35 6/
/I(WM“4Mwm=—”“(p 3+®x,
4 1260
(11)

AN

where o is the sphere diamcter; this form serves as a
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Tasie IV. Siugle-occupancy thermodynamic properties for 32 soft spheres with pericdic boundaries. Each sphere is confined by a
spherical cell, with diameter equal to the nearest-neighbor spacing. In addition to the compressibility factor, entropy, and Helmboltz
free energy {(with respect to an ideal gas at the same density and temperature), the excess properties with respect to an ideal gasin a
mean field equal to the static-lattice energy, &, are also given, indicated by stars. Use of these functions reduces rounding errors in
numerical integrations. Because entropy is independent of an lmposed constant field, the relation (S¢/Nk&) = (S¢/NEk) * holds.

ple/kT)M (PV/NET) (PV/NET)* (S5¢/NE) (Ae/NET) (A3 NET)*
0.00 1.000 0.000 —1.300 1.300 1.300
0.10 1.245 0.243 —~1.395 1.457 1.456
0.20 1.806 0.767 ~1.578 1.780 1.770
0.30 2.730 1.534 —1.835 2.268 2.219
0.40 4.116 2.498 —2.164 2.943 2.789
0.50 6.129 3.621 —~2.560 3.842 3.465
0.55 7.407 £.199 —2.787 4.389 3.837
0.60 8.850 1.753 ~3.082 5.008 4.226
0.65 10.393 5.086 ~3.353 5.701 4.624
0.70 11.861 5.068 ~3.733 6.448 5.000
0.80 16.054 5.171 —4.390 8.134 5.683
0.90 22.107 5.277 —4.980 10.257 6.299
1.00 30,346 5.418 —5.507 12.894 6.862
1.20 36,633 5,623 —6.463 20.377 7.869

guide in extrapolating the low-density: single-occupancy
results for soft spheres to zero density.™

Comparing the low-density soit-sphere entropy with
the lattice-dynamics entropyv from Sec. III gives the
theoretical entropy difference between the low- and
high-density Hmits. At the same time, by measuring
— (0d o/ IV =Py, as a function of density, the entropy
difference can also be determined numerically by inte-
gration, as shown in Fig. 3:

5e(p) = 50) PV o prT
Nk S ANRT  J, NET

where P*z= P— Paatie— Piaent. At the highest density
studied, p=1.2(&T/¢; V%, the 32-particle excess entropy
{(with respect to an ideal gas at the same density and
temperature) was found from (12) to be —6.46Nk,
The Monte Carlo pressures used in the integration
are listed in Table IV. If we instead fit the high-density
32-particle pressure data to (&) with (C1=23/200,
Ca==—19/2000, and the entropy constant C(32) =
.210 from Table TI, the calculated excess entropy is
—6.45Nk. This agreement indirectly confirms the
validity of the hard-spherve calculations, and at the
same time shows that any svstematic errors in the
Monte Carlo pressures must be less than 0.01 in
PV/.‘?\T}CT. .

We also wanted clear cut evidence that the effect of
the cell walls in the single-occupancy system i3 negligi-
ble at all solid densities. Because the ccll walls must
have maximum effect at low densities, near melting, we
have studied the magnitude of this effect by making a
pair of “solid-phase” calculations at a density so low,
0.8(kT /)4, that the fiuid is actually the thermo-
dynamically stable phase. We carried out two 300-
particle runs of 0.3 million moves each, identical
except for the single-occupancy restriction; one run

dlup, (12)

included the cell walls; the other did not. For the
full length of the 0.3 million moves, both runs remained
exactly identical, showing that never did any particle
approach a cell boundary. This shows that the 500-
particle solid-phase data in Table III, generated with-
out cell walls, would have been unchanged by the
single-occupancy restriction. Because center-of-mass
drift must eventually cause particles to near the cell
walls, we continued the single-occupancy problem for
an additional 0.8 million moves, finding a total of 14
cell-wall collisions, This low frequency of cell-wall
collisions, of order 109 af densities for which the fluid is
stable, indicates that the single-occupancy restriction
introduces only an insignificant error, of roughly the
same order as that due to the neglect of vacancies.

V. MELTING TRANSITION

Knowing the thermodynamic properties of both
phases makes it possible to locate the melting line. The
simplest way is to find the density at which the Helm-
holtz {ree energies of the metastable fluid and the single-
occupancy solid are equal, and then to use the equal-
area rule” to find the densities at which the two stable
phases cocxist at equal pressure, temperature, and
Gibbs free energy per particle. The most time-con-
suming part of the numerical work turned out to be
determining the equation of state for the dense fluid.
By analogy with hard spheres we expected that, in the
density region where the fluid phase is stable, a 500-
particle soft-sphere system would melt easily from the
initial face-centered arrangement. In practice the soft-
sphere system was found to be much more sluggish
than the hard-sphere system.

At p(e/RT}Y4=0.70 the soft-sphere compressibility
factor rose from the static-lattice value, 5.83, to about
12.5 after 0.075 million moves, to 13 after 0.125 million

-~
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moves, and finally began to oscillate arcund the
equilibrium value, 13.5, after 0.2 million moves. The
run was extended to a million configurations to confirm
this value.

At the next higher density, p(e/27)"4==0.74, still
well within the stable fluid phase, the compressibility
factor increased from the static value, 7.28, to about
14, nearly the harmonic lattice-dynamics value, after
0.06 million moves. Then, over the next 0.4 million
moves, the pressure slowly rose at a constant rate to a
plateau at 15.35, where an additional million configura-
tions were generated.

Because this evidence indicated fantasticallv long
times to melt and reach equilibrium at bigher densities,
the fluid data at 0.77 and 0.80 were generated in a dif-
ferent way. We took the final p(e/R7)1¥=0.7% con-
figuration and scaled the interparticle distances to
correspond to a higher density, p(e/kT)¥4=0.77, after
which the problem was run for 1.5 million moves. We
compared this run with a second p{e/k7T)24=0.77
calculation starting with random particle coordinales.
After 1.5 million moves the two estimates agreed;
thus either method, sudden compression or random
start, is suitable at this density. At the highest density
investigated in the fluid phase, p(e/k7T17¢==0.80, we
ran a random-start problem for 2.5 million moves.
In both random-start problems the initial .2 million
moves were discarded in computing average pressures.

The fluid equation of state that finally resulted is
shown in Fig. 4 for the isotherm e=%£7. On that iso-
therm the infinite-system fluid density at freezing is
0.813:40.006. The density of the coexisting solid is
0.844-4-0.006. The transition pressure is P17/ \ViT=
15.9540.3, and the entropy of fusion is [0.8940.02 V%,
about 237, less than the hard-sphere value?

This fusion entropy corresponds to Ross and Alder’s
estimate for argon® at ~1000°K. Thelr melting rule,
on the other hand, which states that the fluid side of the
transition should be identified with the highest density
at which the initial solid configuration melts, probably
underestimates the transition density by a few percent.

Because our results correspond to the high-temper-
ature limit of the Lennard-Jones potential,

oLy =€ (ro/r)F—2(ro/7)*], (13)
we compared our pressures with Wood’s isotherm at
kT /e=100,% and found that, even at that high temper-
ature, the attractive term’s effect is to lower the
pressure on the order of 109%,. For temperatures so
high that the attractive contributions can be ignored
our results predict

<‘pVﬂf‘/‘7\Te) melt = 15.95 (kT/E) 514)
Pt =0.813(kT/e) 1,

peotia=0.844 (RT /e) 14, (14)
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Fie. 4. Comparison of Monte Carlo data for 5300 soit spheres
with four approximate equations of state. Vy=Ns*/v2. The
curves drawn are the isotherms, ¢/2T=1. The curve labeled
Rowlinson shows the result of keeping first-order terms in a 1/#
expansion of the partition function for inverse nth-power potentials.
The Perturbation #1 curve is calculated from the Barker—
Henderson theory, assuming a break point g between the steep
and weak parts of the potential such that ¢{r=p)=47. The
Perturbation # 2 curve uses a break point u chosen to minimize
the variation of A with u (see Fig. 6 for the g which results}.
The phase-transition predictions of the perturbation theories
are based on the use of the usual cell model {with spherical
smearing) for the solid phase. The correlated cell model, in which
three particles simultaneously move, as shown in Fig. 7, predicts
pressures fitting the solid branch of the Monte Carle equation
of state within the accuracy of the latter. The location of the
Monte Carlo solid-fluid tieline corresponds to equal values of
the Gibbs free energy per particle in both phases.

VI. APPROXIMATE THEORIES

In view of the poor convergence found for the five-
term virial series in Sec. [T, the alternative perturbation-
theory approaches to the fluid equation of state are
well worth pursuing. Computer time can be saved by
taking advantage of known hard-sphere results, using
these as the basis of perturbation caloulations. In
practice, perturbation calculations are scldom extended
beyond one or two terms in the expansion parameters,
so that a wise choice of these parameters is essential.

Rowlinson! expanded the partition function for the
potential e(o/r)* around the hard-sphere e(o/7)*
limit, using 1/# as the expansion parameter. For our
soft-sphere case his theory, truncated to first order in
1/#, predicts for the isotherm e/k7T =1

(I)V) 3= (PV)m for = (12/’;11}3;)@. (15)
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T1c. 5. Specific heat for soft spheres, The solid-phase data were
derived from the approximate partition function (8) and have an
uncertainty of about 0.1N% near melting. The fluid data were
derived from (17), which required estimating the fluid corapres-
sibility numerically. The fluid data also have an uncertainty of
0.1 % near freezing. The temperature scale at the base of the graph
corresponds to heating the solid at constant volume, illustrating
Grover’s rule that specific heat decreases linearly with tem-
perature, Co/NEk=3[1—ar], where ®=0.05 and r= T/ T yen. The
density scale at the top of the graph corresponds to the isotherm
e/kT=1.

This predicted isotherm is shown in Fig. 4 for com-
parison with the Monte Carlo results. At densities where
the predicted pressure is accurate an estimate from one
or two virial coefficients would do just as well.

Another way to estimate the closeness of the soft-
sphere system to the hard-sphere limit is to examine the
specific heat. C,/Nk is 1.5 at all densities for hard
spheres, and is higher for soft spheres, reaching 3.0
at high density. In the solid phase the specific heat can
be estimated from (8):

(Cof NB) sor1a=3—2C1(RT/ ple) —6Co (R T/ pte)®. (16)

For the fluid the equivalence of density and temperature
differentiations following from (4} leads to the relation
(C@) 3, PV 1 (E)(P*V/NkT}) (17
e = — e — RERLSR— 7
Nk e 2 4ANET 16 d Inp 7
The specific heats from (16) and (17) appear in Fig. 5
and can be seen to lie well above the hard-sphere limit.
Both the solid and the fluid specific heats show a
tendency to increase near the melting transition. De-
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spite these increases the data striking!y obev Grover’s
rule that C,/Nk=3{1—ar), where a=0.034+0.01 and
7 is the temperature divided by the meliing temper-
ature.® This empirical rule, established experimentally
for several metals, holds for soft spheres as well. It is
well worth emphasizing that the uncertaintv in the
computer-generated specific heats is quite large, of
order 0.1NE.

Zwanzig® has considered a high-temperature per-
turbation theory based on the expansion

[ exp[ —(E+6E) /kT1dQ 1 <i§>
Jexp[—E/ETIdQ  \kT

1 /(0L
3l

This approach, by itseli, is not particularly useful for
potentials lacking a hard core. Barker and Henderson®
have recently combined the best features of Rowlinsen’s
and Zwanzig’s attacks by considering a two-parameter
expansion. The potential is first divided up into a
steep part (r<u) and a weak part (r>pu). In the steep
region the potential is expanded around a hard-sphcre
potential of diameter 4:

(18)

"
d=— / (e#T—1)dr. (19)
a

1 1 T I I

1.0

0.8—

olz 0.6

0,41

T | - :

[ 0.2 0.4 0.6 0.8
2
Fic. 6. Variation of the perturbation-theory break point u
with density on the isotherm ¢/k7 = 1. The choice of g at densities
below 0.3, where the minimum in 4 disappears, is somewhat
ambiguous. At these lower densities any choice g within the range
indicated by the full curves results in the same value for the com-
pressibility factor, within 0.01 at p=0.3, and less at lower densities,
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Tasir V. Compressibility factors and Helmholtz free energies for the fluid are compared with the predictions of perturbation theory.
In Perturbation # 1, the break point of the potential is taken at ¢=%7". In Perturbation #2 the break point is chosen to minimize the
variation of Helmholtz free energy with respect to break point. The results ail refer to the isotherm, /47 =1.

) (PV/NET ) (PY/NETH (PV/NET), (Ae/NET) (de/NETYH (A /NET)2
0.10 1.45 1.47 1.36 0.40 0.42 0.39
0.20 2.12 2.13 2.11 0.91 0,04 0.89
0.30 3.10 3.16 3.18 1.33 1.38 1.54
0.40 4.56 4.65 4.72 2.32 2,40 2.37
0.50 6.64 6.89 6.93 3.33 3.43 3.43
0.60 9.46 10.31 9.98 4.60 4.79 4,77
0.65 11.36 12.70 11.88 5.35 5.62 5.57
0.70 13.47 15.73 14,13 6.20 6.60 6,46
0.73 15.91 19.63 16.61 7.14 7.74 7.43
0.80 18.76 24.74 19.57 2.19 9.10 8.55

This choice of d eliminates Helmholtz free energy con-
tributions which would be linear in the steepness
parameter. In the weak region the potential is nulti-
plied by a strength parameter analogous 1o 1/£7. It
is important to select the break point u dividing the
steep and weak regions with care. If the division is
made at infinity and only first-order terms in 1/5 are
kept, Rowlinson’s theory results. If the division is made
at o, which seems a natural first guess,; then the results,
truncated after first-order terms in the steepness and
strength parameters, are much better (see the curve
marked Perturbation #1 i Fig. 4). It seems most
logical however, to choose p in such a way that the
partition function is insensitive to the choice—this
corresponds to minimizing the Helmholtz free energy
with respect to up in the soft-sphere case, but might
correspond to a maximum for other potentials. The
thermodynamic properties using a density-dependent
breakpoint, again truncated after first-order terms,
with u chosen to minimize the variation of 4 with u,
are labeled Perturbation # 2 in Fig. 4 and are tabulated
in Table V. The variation of x with density on the
isotherm ¢/k7 =1 is shown in Fig. 6. At densities less
than 0.3 the free energy minimum disappears. The
theory at these low densities is insensitive to g, and the
results for any choice in the range of values indicated
in Fig. 6 lead to the same low-density PV/NET within
0.01,

The perturbation theory is in quantitative agreement
with the moderate-density machine results from about

Tasre VI. Comparison of solid-phase compressibility factors
with cell-model and correlated-cell-model predictions. The static-
lattice contribution to PV/NET is 24.264p%/kT.

p(e/RTY  (PV/NET)s  (PV/NET)esn (PV/NET) som
0.80 16.51 16.12 16.53
0.90 22.55 22.34 22.56
1.00 30.99 30.85 30.98
1.20 57.16 57.09 57.15

p{e/RT) 4 =0.2 to p{e/kT)¥*=0.4. At higher densities
the pressure is too high, but never by more than 3%.
The perturbation-theory melting transitions drawn in
on Fig. 4 are a little misleading. In finding the transi-
tion locations [or the perturbation theories it seemed
reasonable to use also an approximate theory for the
solid phase, namely, the cell model in which one particle
moves in the field of its fixed neighbors. Because the
free energy error in the perturbation theories at
freezing is roughly the same as the free energy error in
the cell model, about 0.3N%7, the errors approximately
cancel in determining the phase transition.

In describing the solid phase the lattice-dynamics
approach can give an accurate calculation of the high-
density entropy. At the same time, the anharmonic
terms C; and €y found numerically show that the
traditional lattice-dynamics perturbation theory, which
estimates only (i after considerable effort, is not
accurate near the melting density. As an alternative
route to Cy and Cs, we have explored two types of cell
models (see Fig. 7). In either case the partition function
is approximated by the Nth power of a one-particle
integral:

d 3 ol
Zeeuz{exp(— R_;j;):&"” / exp(—— ﬁ?)(ir} , (20
£ A [

where 8¢ is the change in energy of the system as the
particle moves from its lattice site to r. The cell models
are more easily calculated than the lattice-dynamics
perturbation theories and de estimate anbarmonic
contributions to the pressure and the energy accurately.

In the simplest version of the cell model® the neigh-
bors of the moving particle at r are held fixed at their
lattice sites. To simplifv calculations the neighbors are
often “smeared out” over a spherical surface, converting
the integral in (20) to a one-dimensional integral. For
soft spheres we have carried out both the exact non-
smeared calculations and the smeared-out cell cal-
culations. The results, given in Table V1, show that the
cell-model value for ( is about 309, too large and, with
less sensitivity, that the cell-model C, is nearly correct.
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Fia. 7. Two kinds of cell models. The pressures from these
models are compared with the soft-sphere Monte Carlo results
in Table VL. In the ordinary ccll model, one particle moves.
In the correlated cell model three particles move cooperatively,
with identical displacements from their lattice positions; the
moving particles include the central particle and two neighbors—
the two neighbors which would be respectively closest to and
farthest from the central particle in the ordinary cell model.

Because the difference between the nonsmeared and
smeared calculations was found not to exceed 0.02
in PV/NET for the solid, only the smeared-cell results
appear in the table.

Alder and Wainwright’s movies of the two-dimen-
sional hard-disk solid® show correlated motion of rows
of particles in the solid, especially at densities near
melting. A “correlated cell model” taking this motion
into account® describes accurately the solid branch
of the hard-disk isotherm, and produces a van der
Waals loop in the vicinity of the hard-disk melting
transition. For the soft spheres we have studied a cor-
related cell model which is nearly exact in its pressure
predictions for the solid. In this correlated cell model the
particle which would, in a perfect lattice, be closest
to the moving particle moves cooperatively with it; a
third particle, in line with these two, also moves (see
Fig. 7). The model’s success in predicting solid-phase
pressures is outstanding. See Table VI for a comparison
of the pressures from the Monte Carlo experiments and
those from the cell model and the correlated cell
moclel. Numerical estimates of the anharmonic coef-
ficients from the correlated cell model are ;=0.100,
Co= —0.017, and C3=0.001,. These coeflicients describe
the machine results just as well as our empirical
choice, Cy=0.088, C2=—0.009. The specific heat for the
correlated model is shown in Fig. 8 for comparison
with the estimated specific heat from (16). The un-
certainty in the Monte Carlo results is at least as great
as the deviation between the two curves—the ap-
proximate anharmonic partition function including
just ¢y and Cs is not very reliable for predicting deriva-
tives of the free energy of higher order than the first.

The maximum in the correlated-cell heat capacity
is indicative of a high-order phase transition and is
associated with the sliding motion of the atoms past
each other. This interpretation is confirmed by in-
specting numerical values of the integrand in (20) for
the correlated model. At high densities the moving
atom remains near its cell center, but as the density
is decreased and melting approaches, there is a large
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increase in the value of the integrand for the region
between the correlated particles. This corresponds to
the movement of atoms through the solid. Although
the correlated model does not predict melting quantita-
tively, it does predict an order-disorder transition at
about the density of the Monte Carlo melting transition.
The heat-capacity maximum nearly coincides with the
liquid’s freezing density; it is unlikely that this coin-
cidence will also occur for all other potentials.

Because the model does represent a breakup of the
solid based on mechanical, as opposed to thermo-
dynamic, grounds,™ the density at which the breakup
occurs does lie below the true thermodynamic melting
density, in qualitative agreement with the Ross—
Alder rule®® The specific heat maximum indicates that
the model includes a mode of the kind needed to
explain the large specific heats found in rare-gas
crystals near melting. The specific heat increase occurs
without the asswmption of vacancies or other lattice
defects. How well the correlated cell model heat
capacity correlates with the melting curve for more
realistic potentials is being investigated.®

Lindemann suggested that solids melt when the root-
mean-squared displacement becomes a characteristic
fraction of the nearest-neighbor spacing. With a few
additional assuwmptions, this Lindemann melting rule
takes the form

CLindem ann & ¢ < M 1’7‘3;3/}} 7‘,\ melt},gg

where § 1S Ivpepye/® and M is the gram atomic weight.
This relation is exact along the soft-sphere melting line
because the density dependences of 8, proportional
to p% and (V¥3/T) ne1*?, proportional to p~73, cancel.
The soft-sphere Lindemann constant, using the ap-
proximation (¢pevge/VEinstein) 2= 3, is 111, fairly close to
the Lindemann constant for argon.

(21)
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¥1G. 8. The full curve shows the constant-volume specific
heat from the correlated cell model along the isotherm /27 =1.
The dashed curve shows the estimate {rom soft-sphere Monte
Carlo data. The uncertainty in the latter is comparable to the
offsct between the two curves. Note that the specific-heat maxi-
mum from the correlated cell model nearly coincides with the
freezing density.
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Ross has recently suggested that the Lindemann
law be generalized to a theoretically more convenient
form, by requiring that the nonideal part of the con-
figurational partition function,

Zi=exp(—AYkT), (22)
be constant along the melting line. As we see from the
scaling in (4!, this rule also holds for the soft-sphere
potential.

Ashcroft and co-workers have a slightly different
recipe for the melting line They suggested that the
maximum in the Fourier transform of the pair distribu-
tion function be used to correlate the freezing densities
of liguid metals. As another consequence of the soft-
sphere scaling relation, the reduced distribution func-
tions also depend upon the combination p%/k7", Thus
the Fourier-transform maximum has a characteristic
constant value in each phase along the melting line.
Because the k characterizing the maximum scales as a
reciprocal length, the position of the maximum varies
as 7% along the melting line. Hansen and Verlet?.#
have found that the Fourier-transforin melting rule is
nearly correct for the full Lennard-Jones potential; we
expect they will soon report their detailed results.
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