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Monte Carlo calculations of thermodynamic properties for solid argon are carried out using both the 
Lennard-Jones and the exponential-six pair potentials. \Vhen quantum corrections are taken into account 
the calculated energies and pressures derived from the Lennard-Jones potential agree better with experi­
ment. Neither pair potential successfully reproduces the experimental elastic constants. 

Recent molecular dynamicl and Monte Carl02 

calculations have shown that the Lennard-Jones (6--12) 
pair potential provides a fairly good description of the 
pressure, energy, and phase boundaries for solid, liquid, 
and gaseous argon at pressures below 2 kbar. Because 
of such successes in using the Lennard-Jones potential 
we decided to use that potential for an elastic-constant 
calculation for solid argon. The elastic .constants involve 
second derivatives of the Helmholtz free energy A and are 
therefore much more sensitive to interparticle forces 
than are pressure and energy, which are proportional to 
first derivatives of A/ T with respect to strain and 
temperature, respectively. 

Second derivative quantities can be calculated, for 
any specified force law, fast computers. The strain 
derivatives give the elastic constants; the temperature 
derivative gives the specific heat; and a mixed strain­
temperature derivative is proportional to the Grlineisen 
gamma, 

(ap/aT)v
V C . . v 

When we first carried out the Lennard-Jones elastic­
constant calculations for argon,a we found that the 
results were inconsistent with experiment.4 The cal­
culated adiabatic elastic constan t Clls was much too low 
near the triple point, and quantum corrections to the 
classical calculations are too small to account for the 
deviation. 

Faced with this failure of the Lennard-Jones potential 
for argon elastic constants, we decided to try another 
force law, the exponential-six potential. Ross and Aldero 
analyzed shock-compression data for argon at high 
density. They were able to fit simultaneously the high­
pressure shock data and the zero-pressure zero-tem­
perature lattice energy by using an exponential-six pair 
potential: 

[6 exp(a) exp( -ar/p) -a(p/r)6] 
CPE6=€ (a-6) ; 

a= 13.5, p=3.85 A, E/k= 122"K. 

We have used the classical Monte Carlo method 
described by Wood6 to find out whether or not this 

potential would improve the agreement between cal­
culation and experiment. The desired improvement did 
not occur. 

The calculated thermodynamic quantities are shown 
in Table 1. The volumes used correspond experimentally 
to zero pressure for argon.7 The results in the Table, an 
based on classical mechanics, indicate only a slight bias 
in favor of the Lennard-Jones potential we used 
previously: 

u=3.40 A, 
\Vhen, however, the quantum corrections to the pressure 
are calculated, and added on to the tabulated results, 
the Lennard-Jones potential is va..<;tly superior. A 
static-lattice approximation to the pressure correction, 

can be calculated from the Wigner-Kirkwood8 expansion 
of the Helmholtz free energy in powers of Planck's 
constant h. The approximation is 

t1P= ( - A2/247rV) 1: (r,-t/>III+2rcpff- 2cp') /r+ .. " 
pairs 

where primes denote differentiation with respect to 
distance and r is the distance separating a pair of 
particles in the lattice. V is the volume, and the thermal 
de Broglie wavelength A is given in terms of the particle 
mass m, Boltzmann's constant k, and the absolute tem­
perature T, by A2=h2/(27r1nkT). The numerical values 
of t1P are about the same for the two pair potentials, 
+240, + and +80 bar at 40,60, and 80"K, using 
the static-lattice approximation. Lattice-dynamic cal­
culn.tions which correctly take into account the har­
monic contributions give, for the same corrections, 
+227, +131, and +76 bar fGr the Lennard-Jones 
potential and +224, + 133, and +83 bar for the 
exponential-six potential, showing that the static-lattice 
approximation for the corrections is adequate. The 
corrected pressures show that the Lennard-Jones 
potential predicts pressures in error by about 50 bar 
while the exponential-six pressures are in error by an 
order of magnitude more. The energies deduced from 
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TABLE 1. Classical Monte Carlo thermodynamic properties for the Lennard-Jones and exponential-six pair potentials given in the 
text. One hundred and eight particles were used, with periodic boundaries. Differences in static-lattice pressure, molar energy, and 
elastic constants between infinite crystals and lOS-particle crystals have been included in the corrected lOS-particle results. Each com­
puter calculation is based on the final 250000 configurations of 300000 generated. The quoted uncertainties are obtained by dividing 
the data into five batches, assumed independent, and then quoting the maximum standard error found. 

Temperature 400K 60 0 K SOoK Error Units 

Molar volume 23.00 23.61 24.43 cm3 

Pressure LJ -193 -S1 -22 20 bar 

Energy/Nk 

C!l1' 

E6 
LJ 
E6 
Exptl 
LJ 

+293 
-896 
-906 
-878 

28.4 

+297 
-829 
-840 
-819 

22.8 

+235 
-755 

769 
-748 

16.2 

20 
1 
1 
3 
1 

bar 
OK 
OK 
OK 
kbar 

E6 31. 0 26.2 19.1 1 kbar 
C1zT LJ 16.1 13.1 8.8 1 kbar 

E6 17.6 15.1 10.8 1 kbar 
CH LJ 16.9 14.4 11.6 0.3 kbar 

E6 19.1 15.9 12.8 0.3 kbar 

Cu,q 
Exptl 
LJ 31. 5 27.4 

8 
22.6 

2 
0.3 

kbar 
kbar 

E6 34.3 30.1 24.6 0.3 kbar 
31 2 kbar 

Czs 19.2 17.6 15.2 0.3 kbar 
20.9 19.0 16.3 0.3 kbar 

Exptl 13 2 kbar 
'Y LJ 2.82 2.S2 2.91 0.1 

E6 2.73 2.56 2.66 0.1 
ExptJ 2.65 2.66 2.58 0.2 

C./Nk LJ 
E6 

2.73 
3.09 

2.69 
2.84 

2.79 
2.87 

0.1 
0.1 

experiment9 also coincide with the Lennard-Jones 
potential predictions. The quantum corrections, which 
need to be added to the reduced energies in Table I, are 
found, using 108-particle lattice dynamics, to be +19, 
+12, and +7°K for the Lennard-Jones potential and 
+ 22, + 13, and +8 for the exponential-six potential 
at 40, 60, and BOOK. 

The second derivatives of the free energy: Grtineisen 
gamma, specific heat, and elastic constants, are much 
more sensitive to the pair potential (and to many-body 
forces!) and are consequently harder to reproduce. Holt 
and ROSSIO have recently studied the Griineisen gamma 
for the Lennard-Jones and exponential-six potentials 
and concluded that, for this property at least, the 
exponential-six potential is consistent with experiment, 
while the Lennard-Jones potential is not. The precision 
of this comparison is limited both fluctuations in the 
Monte Carlo calculations and by experimental un­
certainties. The same fluctuations and uncertain­
ties make a meaningful comparison of the specific heats 
difficult. The adiabatic elastic constants can be deter­
mined within about 1 % using the Monte Carlo method, 
making them a particuhi.rly sensitive test of any pro­
posed pair potential. The zero-pressure elastic constants 
are related to the compressibility by the relation 
t.1=3/[Cl1+2CIZ]. Despite large uncertainties in the 
experimental elastic constants, the data in the Table 
together with the quantum corrections (about +7% at 
40oK, +4% at 800 K for the isothermal constants) 
show that neither pair potential, Lennard-Jones or 
exponential-six, correlates the elastic properties. The 

Lennard-J ones case is particularly interesting because 
the combination 3/[Cll+2C12] approximates the 
measured compressibility wellll so that the inaccuracies 
in Cll and C12 approximately cancel. The exponential-six 
potential fits neither the elastic constants nor the 
compressibili ty. 

As far as argon is concerned, our results show only 
that as more experimental data are taken into account, 
it becomes harder to find an effective pair potential 
consistent with the data. If this inconsistency is due to 
many-body forces, it may indeed be impossible to find 
an effective potential since elastic constants are sensitive 
to many-body forces.12 

The Monte Carlo results we have tabulated can also 
be used to test approximate theories of the solid phase. 
We expect to report on the comparison of Monte Carlo 
results with lattice-dynamic and cell-model calculations 
in the near future. 

ACKNOWLEDGMENT 

We would like to thank W. G. Cunningham for his 
help in coping with the computers at Livermore. 

'" This work was performed under the auspices of the U.S. 
Atomic Energy Commission. 

t Summer employee; present address: Purdue University, 
Lafayette, Ind. 

i Summer employee; present address: Georgia Institute of 
Technology, Atlanta, Ga. 

1 J.-P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969). 
2 I. R. McDonaJd and K. Singer, J. Chern. Phys. 50, 230S 

(1969) 
3 W. Hoover, A. C. Holt, and D. R. Squire, Physica 44, 437 

(1969). 

http:forces.12


1784 HOOVER, HOLT, SHORTLE, AND GRAY 

4 M. Gslinger, H. Egger, and E. Luscher, Phys. Letters 27A, 
695 (1968); H. R. Moeller and C. F. Squire, Ph},s. Rev. 151, 
689 (1966); C. F. Squire, private communication of the recalcula­
tion of the foregoing results, 1968. 

• M. Ross and B. Alder, J. Chern. Phys. 46, 4203 (1967). 
6 W. W. Wood, in Physics of Simple Liquids, H. N. V. 

Ternperley, J. S. Rawlinson, and G. S. Rushbrooke, Eds. (John 
Wiley & Sons, Inc., New York, 1968). 

7 E. R. Dobbs, B. F. Figgins, G. O. Jones, D. C. Piercey, and 
D. P. Riley, Nature 178, 483 (1956). 

S L. D. Landau and E. M. Lifshitz, Statistical. Physics (Acldison­
Wesley Pub!. Co., Inc., Reading, Mass., 1958), p. 96. 

9 E. A. Guggenheim and M. L. McGlashan, Proc. Roy. Soc. 
(London) 255A, 456 (1960). 

10 A. C. Holt and M. Ross, "Calculations of the Gruneisen 
Parameter for Some Models of the Solid," Phys. Rev. (to be 
published) . 

11 In a previous comparison [D. R. Squire, A. C. Holt, and 
W. G. Hoover, Physica 42. 388 (1969) ] no quantum corrections 
were made. The inconsistencies found in that work between the 
Monte Carlo and experimental compressibilities largely disappear 
when the quantum corrections are included. 

12 W. Glitze and H. Schmidt, Z. Physik 192, 409 (1966). 


	p1
	p1
	p2
	p3

