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Synopsis 

• 

Results from Monte-Carlo computer experiments for energy, pressure, specific heat, 
Griineisen y, and elastic constants are compared with approximate lattice dynamics 
and cell-model predictions. Comparisons are made for both the Lennard-Jones 6-12 
and the exponential-six pair potentials. The elastic constants predicted by lattice 
dynamics agree best with the Monte-Carlo results. For the other thermodynamic 
properties the cell model gives more accurate estimates. The effects of increasing the 
number of particles and of making the calculations according to quantum mechanics 
instead of classical mechanics are both studied. 

1. Introduction. Several paths are available for calculating macroscopic 
thermodynamic properties for a system with given interparticle forces. 
Most paths are approximate. The lattice dynamics approximation l ) treats 
correctly all terms in the energy which are quadratic in the particle dis­
placements. The cell-model approximation 2) in which a single particle moves 
in the field of its fixed neighbors modifies the quadratic terms but includes 
an estimate of anharmonic' corrections. More sophisticated theories 3) treat 
anharmonic perturbations analytically (the actual calculations require fast 
computers) but seem complicated enough to attract few follo\vers. 

The approximate methods have the important advantage of being quick 
and inexpensive to calculate. The computer experiments giving exact 
thermodynamic properties, either by following the motion of the particles 
or by sampling the configuration space 4), are relatively expensive because 
they require so much computer time, particularly if high precision is neces­
sary. To halve the statistical uncertainty in computer-experiment results 
requires quadrupling the computer time used up. The precision also depends 
on the sensitivity of the property measured to fluctuations in pressure and 
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energy. Because successively higher derivatives of the free energy involve 
higher moments of the pressure-tensor component distributions and energy 
distributions, the time necessary to characterize derivatives increases rapidly 
with derivative order. Second-order elastic constants and the specific heat 
involve second moments; third-order elastic constants involve third mo­
ments; and so on. So far only first- and second-derivative quantities have 
been examined. Thus, if the approximations should prove to come close to 
exact results, they would give us a useful shortcut to accurate thermo­
dynamic properties. It was in the hope of establishing their usefulness that 
we undertook these calculations. 

In this paper we compare the results of solid-phase Monte Carlo experi­
ments on 108 particles interacting with the Lennard-Jones and exponential-
six potentials with the predictions of 108-particle lattice dynamics and the 
cell model. In addition to the energy and pressure, we compare the second­
derivative quantities: specific heat, Griineisen y, and elastic constants, with 
approximate predictions. Although either computer method, molecular dy­
namics or Monte Carlo, can be extended to quantum systems by using the 
\Vigner-Kirkwood Planck's constant expansion of the free energy5), we have 
made our comparisons using classical mechanics. To find out how important 
the small size and classical nature of our systems are, we use the lattice­
dynamics method to investigate the number dependence of all of the thermo­
dynamic properties and quantum corrections to the elastic constants. Quan- t 
tum corrections to other thermodynamic properties have been calculated 
elsewhere 6). 

In section 2 we describe the lattice-dynamics calculations. The method 
has been in use for over 50 years, although many so-called lattice-dynamics 
calculations of elastic constants have actually been calculations of the 
elastic response of a static lattice. We take lattice vibrations explicitly 
into account. The first correct harmonic calculation using normal-mode 
vibrations was announced by Feldman 7). He obtained expressions for the 
second-order elastic constants which involved the vibration frequencies and 
their strain derivatives. The frequencies were then obtained by the usual 
method of diagonalizing the dynamical matrix. The frequency-shift deriva­
tives were calculated by means of perturbation theory. We calculate the 
work of deforming the crystal by the alternative procedure of computing 
the free energy numerically for several slightly different values of the 
strain and then fitting the results to a strain polynomial. Besides avoiding 
the tedious algebra of Feldman's analytic approach, the numerical method 
is more readily generalized to higher-order elastic constants. 

In section 3 we describe the cell-model calculations. The cell model, al­
though actually only appropriate for solids, was first used in an attempt to 
describe gases and liquids 8). In the cell model the effect of heating the 
crystal lattice is approximated by a "one-particle" model in which a single 
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particle moves in the field of its fixed neighbors. Neglecting interparticle 
correlations by approximating an N-body problem by a one-body problem 

for classical systems, most reasonable at low temperatures and is exact 
only in the static-lattice limit. 

The advantage of the cell model over the harmonic approximation lies 
in its ability to estimate anharmonic contributions from potential-energy 
terms beyond the quadratic ones. The cell model has often been used to 
calculate energy, pressure, and specific heat 9). Our elastic-constant calcu­
lations are a new use of this model. Henkel 10) has studied a similar model, 
a quantum cell model in which the potential was expanded in powers of 
displacement and the quartic contributions were treated by perturbation 
theory. If the perturbations were ignored, Henkel's work would reduce to 
the usual harmonic Einstein model. 

In section 4 we compare the tabulated results from both approximations 
and consider the dependence of the results on number of particles. Vie also 
discuss some interesting cancellations found in the course of the Monte 
Carlo calculations. In section 5 we assess the importance of quantum effects 
on the elastic constants. 

2. Lattice-dynamics calculations. The lattice dynamics calculations are 
based on the approximation of truncating a Taylor expansion of the 
lattice potential energy <P after the quadratic terms in the particle dis­
placements. Sometimes this is called the "quasi-harmonic" approximation. 
The coefficients in the Taylor series expansion are calculated from the as­
sumed force law, and the lattice sites are chosen to match the structure of 
the lattice being described. The expansion is made about a configuration in 
which each atom is fixed at its average position in a perfect crystal with 
fixed center of mass. Thus the truncated potential depends upon the size 
and shape of the assumed static lattice configuration. By changing to 
normal-mode coordinates the quasi-harmonic Hamiltonian can be rewritten 
as a sum of 3N 3 independent harmonic oscillator Hamiltonians. The 
partition function of an oscillator, either quantum or classical, is known11) 
so that the quasi-harmonic thermodynamic properties of the system can be 
calculated. 

The partition function, Z = exp( -A/kT), where A is the Helmholtz 
energy and kT is Boltzmann's constant times the absolute temperature, can 
be written as a product of single oscillator partition functions: 

3N-3 

Z = exp(-<Po/kT) Zcm II Zi, 
i=l 


Zcm = {V/N)(21tNmkT/h2)f, 


Zi = {etx - e-!X);l 


Xi == hyi/kT. 
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In the classical limit only the first term in the expansion, kT/hv, is kept. 
<Po is the static lattice energy. The vibration frequencies Vi are determined 
from the quadratic Hamiltonian; the center of mass contribution is Zcm. 
For accurate work on small crystals Zcm has to be included if comparisons 
are made with Monte Carlo calculations in which the center of mass is 
allowed to move. 

Thermodynamic properties can all be derived from the partition function. 
Temperature derivatives can be evaluated explicitly to compute the energy 
and specific heat: 

(E/kT) = (3 In ZIG In T)1]; Cv = (3E/3T)1]. 

"Strain" derivatives are harder to evaluate. The strains are defined in 
terms of three vectors colinear with the edges common to one corner of 
a parallelepiped produced by deforming a cube of crystal with sidelength a. 
If aI, a2, and a3 are the vectors, then 

1]1 = t~(al/a)2 1J, 1]4 (a2/a). (ag/a), 

1]2 = H(a2/a)2 1J, 1]5 = (aI/a)· (ag/a) , 

1]g H(a3/a)2 - 1J, 1]6 - (al/a).(a2/a), 

are the six independent strains. The dynamical matrix then gives a compli­
cated implicit relation for the vibration frequencies as functions of the 
strains. Because there is no convenient expression for v(1]) it is easiest to 
proceed numerically. Both the average pressure tensor component <Pu) == P 
and the elastic constant Cil can be determined by evaluating A for a strain 
along axis one: a lattice site initially at r (11, 12, 1-g) is displaced to r, 
given by 

o 
fl = h(1 + 21]1)t, fa = fa, 

where fi and ri are the Cartesian coordinates of rand r, and 1]1 is the only 
nonzero strain. In the strained configuration the Hamiltonian is again ex­
panded, the quadratic terms kept, and the result diagonalized, giving a new 
set of frequencies and the free energy A (1]1). The diagonalization can be 
visualized in terms of plane-wave solutions of the classical equations of 
motion. The waves propagate through the crystal with wavelengths and 
directions imposed by the shape of the crystal and described by wave 
vectors chosen from a convenient Brillouin zone 12). If y is a wave vector 
in the unstrained crystal then the corresponding y in the strained crystal is: 

Yl = h(1 - 21]1)-!, Y2 = h, yg = Y3, 
where Yi and Yi are the Cartesian coordinates of y and y. Applying the 
Born-von Karman normal-mode analysis for several values of 1]1, the first 
four or five coefficients in the expahsion, 
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can be determined. By choosing values of 1J1 separated by 0.0001, both 
the pressure and Cil were determined with four-figure accuracy in this way. 

By considering two simultaneous strains along the one axis and the two 
axis, and analyzing the resulting free energy changes as a series in 1]1 and 

1]2, we next determined ci~ 

To calculate C44 (a2A/a1]~)T/V a shear strain can be introduced by 
changing the angle between the one and two axes: 

r1 r1(1 - 1]~)t, 

The wave vectors become: 
o 

Y2 Y2, 

• 

The generalization of this technique to calculation of higher-order elastic 
constants or to mixed strain-temperature derivatives is straightforward. 
For crystals of lower symmetry one needs to calculate more elastic constants 
and hence one considers more different combinations of strain. Other strains 
would also be needed for cubic crystals to determine the six nonzero third­
order constants or the eleven nonzero fourth-order constants and the mixed 
strain-temperature derivatives. 

The adiabatic elastic constants 

can be calculated by adding a term to the isothermal constants: 

where 5 is the entropy of the crystal. Because 5(1]1) and (oT/o5)n can be 
calculated exactly for a quasi-harmonic crystal, the correction term can be 
evaluated numerically. 

In order to make a comparison with the 108-particle Monte Carlo calcu­
lations 13, 14) we have calculated the thermodynamic properties for a 108­
particle system with the same periodic boundaries and Hamiltonian as those 
used in the Monte Carlo work. Using the nearest-image convention, each 
particle in the crystal interacts with 107 neighbors according to the Lennard­
Jones 6-12 potential 

<p = 48[((1/r)12 - (a/r)6] 

or the exponential-six potential 

<p = 0.88 exp[13.5{1 -:- r/rmiJJ 
These potentials have both been used principally to describe rare gases and 
have shown themselves to fit these rea(materials well. Although we picked 
these potentials because of their value in describing rare gases we expect 

• 
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TABLE I 
-_.... 

Calculated thermodynamic properties for classical Lennard-Jones and exponential-
six solids. The various Ll's are the 108-particle thermal contributions to the thermo­
dynamic properties which must be added to the infinite static lattice (subscript 0) 
quantities. The column headings indicate temperatures appropriate to solid argon. 
The reduced temperatures, kT/e, where e is the potential well depth, are 0.3361, 0.5042, 
and 0.6723 for the Lennard-Jones potential, and 0.3279, 0.4918, and 0.6557 for the 
exponential-six potential. Reduced volumes, v2V/Nr!tin' wherermin is the minimum in 
the potential, are 0.972, 0.997, and 1.032 for the Lennard-Jones potential, and 0.946, 

0.971, and 1.005 for the exponential-six potentiaL 

• 


(E/NhT)o 25.30 16.66 12.23 25.54 -16.89 -12.47 
L1 (Monte Carlo) 2.89 2.85 2.79 2.89 2.89 2.86 
Ll (Lattice dynam.ics) 3.00 3.00 3.00 3.00 3.00 3.00 
L1 (Cell model) 2.91 2.86 2.80 2.94 2.90 2.85 

(PVjNkT)o 10.11 9.00' 8.57 5.65 -6.39 -6.96 
/..1 (Monte Carlo) .8.78 8.62 8.49 7.67 7.80 7.83 
Ll (Lattice dynamics) 9.29 9.53 9.89 8.18 8.42 8.77 
Ll (Cell model) 8.88 8.74 8.59 7.97 7.95 7.93 

(Cv/Nk) (Monte Carlo) 2.73 2.69 2.79 3.09 2.84 2.87 
(Cv/Nk) (Lattice dynamics) 3.00 3.00 3.00 3.00 3.00 3.00 
(Cv/Nk) (Cell model) 2.84 2.76 2.67 2.89 2.82 2.75 • 
Y (Monte Carlo) 2.82 2.82 2.91 2.73 2.56 2.66 
Y (Lattice dynamics) 3.10 3.18 3.30 2.73 2.81 2.93 
Y (Cell model) 2.95 2.90 2.85 2.64 2.62 2.61 

(CllV/NkT)o 183.5 97.8 52.5 217.1 120.1 68.5 
,,1T (Monte Carlo) 12.6 10.2 6.9 -2.6 3.9 1.5 
,,1 T (Lattice dynamics) 6.1 5.2 3.6 1.5 1.0 0.0 
,,1T (Cell model) 23.4 24.1 24.7 16.2 17.0 17.9 
,,1s (Monte Carlo) 34.3 31.7 27.5 20.4 22.5 21.8 
Lls (Lattice dynamics) 34.9 35.5 32.6 23.9 24.7 25.7 
Lls (Cell model) 48.1 47.3 46.4 36.3 36.4 36.6 

(C12 V/NkT)o 110.7 61.0 34.9 128.9 73.1 43.5 
,,1 12 (Monte Carlo) 0.4 0.9 -2.6 -7.3 -1.8 -3.9 
Llf2 (Lattice dynamics) 6.2 7.4 -9.6 -5.5 -6.4 -8.0 
,,1f2 (Cell model) 9.8 8.4 7.1 9.5 8.7 -7.8 
,,1f2 {Monte Carlo) 22.1 22.3 21.0 15.7 16.9 16.4 
,,1f2 (Lattice dynamics) 22.5 22.8 23.1 16.9 17.2 17.6 
Llf2 (Cell model) 14.9 14.8 14.6 10.7 10.7 11.0 

,,144 {Monte Carlo) 6.0 7.3 7.7 3.5 2.0 3.6 
,,144 (Lattice dynamics) 5.6 5.4 5.1 2.0 2.0 2.0 
,,144 (Cell model) 16.8 16.5 16.2 11.9 12.0 12.2 

• 


Lennard-Jones Exponential-six 

40 60 80 40 60 80 
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that our general conclusions in comparing approximate calculations with 
exact computer experiments will be valid for potentials describing inter­
actions in salts or metals as well. 

Table I gives both the Monte Carlo and the lattice-dynamics results. The 
three temperatures span the range from about 0.48TtriPIO to O.95TtriPle and 
the densities correspond closely to zero pressure. Because the static-lattice 
contributions to the thermodynamic properties present no theoretical 
problems (they are correctly calculated by any theory) we have tabulated 
separately the thermal contributions to the thermodynamic properties. The 
data in the table show that the lattice-dynamics elastic constants are quite· 
close to the Monte Carlo values at three different temperatures and for both 
potentials tested. 

• 

3. Cell-model calC'ulations. The cell-model approach incorporates the same 
static lattice contributions as does the lattice-dynamics method. To these 
are added thermal corrections estimated by having a single "wanderer" 
particle move in the potential field of an otherwise static lattice. Using a 
Ll to indicate restriction of the moving particle to a cell of volume VfN 
centered on its lattice site, and using ~1> to indicate the change in potential 
energy of the system as a function of the wanderer's location, the approxi­
mate partition function has the form: 

ZOOIl == exp( -<1>ofkT)(2rr:mkTfh2)3NI2 [S exp( -~1>fkT) drJN, 
LI 

If only the quadratic terms in ~1> are kept, the so-called "Einstein approxi­
mation" results. By keeping the entire potential we get an estimate of the 
anharmonic contributions to the free energy. This estimate turns out to be 
amazingly good so far as the first derivative quantities, pressure and energy, 
are concerned; it is much less accurate for the higher derivatives. 

To calculate thermodynamic properties from the cell model one differ­
entiates the cell-model free energy with respect to temperature and strain, 
If one wants higher-order derivatives then one should instead use a finite­
difference method similar to our lattice-dynamics approach. For first and 
second derivatives it is simple enough to differentiate explicitly (the calcu­
lation is nearly identical with that described in ref. 13). Again using 6 to 
indicate the difference, from the cell-center value, of a sum over all neighbors 
of the "wanderer" particle, and the subscript 0 to indicate a static-lattice 
property, the thermodynamic quantities can all be written in terms of 
average values <>of functions of the wanderer's location with weighting 
function exp( -~1>fkT): 

<F> == S F(r) exp(-61>fkT) drfS exp(-61>fkT) dr. 
L! LI " 

The equations for the thermodynamic properties are: 

• 
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EjNkT = <PojNkT ! + <o4»jkT, 

PVjNkT = PoVjNl?T + 1 - <ox24>'/r>/kT, 

Cv/Nk ! + [<(04))2> <04»2J/(kT) 2, 

y = V(oP/oE)v = {I [<(04))(ox24>'/r) > 

<04»<ox24>'jr> Jj(kT)2} CvjNk, 

CflV/NkT = (CflV/NkT)o + 2 «04>"x4 jr2> <0q,'x4/r3»/kT 

[<04>'x2/r>2 - <(04)'x2/r) 2>J/(kT)2, 

Ci~V/NkT (Ci~V/NkT) 0 

+ (04>/lx2y2/r2> - <0q,'X2y2/r3»/kT 

+ [<04>'x2 jr>2 - «0q,'x2jr)(04>'y2jr»Jj(kT)2, 


C44VjNkT (Cf2 V jNkT)o 


+ «04>/lx2y2jr2> - <0q,'X2y2/r3»jkT 


-.,. «oq,' xy/r)2>/(kT)2, 


and 

•(Cft - Cfl) VjNkT = (Cf2 - ci~) V/NkT = y2Cv/Nk. 

For fluids or isotropic solids, these relations (as well as the analogous 
exact relations) can be simplified. The three elastic constants are replaced 
by two Lame constants, ),x and p,x, equal respectively to Cf2 and C44 = 

!(Cfl Cf2), where x is either T or S. The bulk modulus, 

Ex = - V(oP/oVh = (Cfl + 2Cf2 + P)/3, 

becomes (3}"x + 2flx P)/3. The shear modulus, ,ux - P, vanishes for fluids. 
With modern computers it is easy to get four-figure accuracy in computed 

cell-model thermodynamic properties. In practice only the first three shells 
of neighbors are necessary in computing the thermal contributions. Even 
for the properties most sensitive to the integration mesh, specific heat and 
Griineisen y, 20-point Gaussian integration is sufficient. For sixth-power 
attraction the lattice sums for the static-lattice properties vary with the 
number of particles included in the sum as liN so that direct summation 
can be used. The results from the cell-model approximation for both pair 
potentials at the same three temperatures and densities used in the Monte 
Carlo and lattice dynamics work are listed in table 1. Notice that the cell­
model energies and pressures are very close to the exact Monte Carlo results. 

4. Intercomparison and discussion 0/ results. The data in table I show 
. that cell-model estimates of the energy and pressure are nearly correct; 
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without faster computers or improved Monte Carlo methods there are only 
a few applications which justify the expense of improving on cell-model 
energies and pressures. The errors in the lattice-dynamics approach, with­
out anharmonic corrections, are an order of magnitude greater. 

For specific heat and Gnlneisen y the cell model again the better ap­
proximation. The lattice-dynamics method is, however, the better approxi­
mation for the adiabatic elastic constants. Neither approximate method 
successfully reproduces the isothermal elastic constants. It is interesting to 
see that these isothermal constants are more sensitive to small changes in 
the interparticle pair potential than are the adiabatic constants. Ideally, 
the isothermal constants would be useful in determining force laws from 
experiment. Unfortunately, the Cl; are hard to measure in laboratory ex­
periments. 

• 

An interesting feature common to the Monte Carlo results and to those of 
both approximate methods is the near cancellation of the thermal contri­
butions to Cfl and Cf2' If the elastic constants are written as the sum of 
three terms, the "Born" term, the "fluctuation" term, and the "kinetic" 
term 13), it is found that at the triple point the thermal contributions to the 
first two terms are both large, about the same magnitude as the elastic 
constant itself, but that their sum is nearly zero. This cancellation can be 
"understood" by examining an idealized model of a solid in which a similar 
cancellation is exact. Consider a classical system of particles interacting 
with the inverse power potential ~ = c{a/r)n. At temperatures low enough 
for the quasi-harmonic approximation to be valid, the combination 

V(Ci~ 2Cf2 2P) = -3[o(PV)/o In VJT 

becomes temperature independent. Separating the "Born" and "fluctuation" 
terms in pairs of braces, we find the results: 

v(Ci~ 2Cf2 2P) -3[o(PV)/o In VJo + {<~ f'r2 ~ fr>} 

- {(1/kT)[«~ ~'r)2) <~ fr)2J} 

-3[o(PV)/o In VJo {n2<L ~>} 

{(n2/kT) [<{L ~)2> - <L ~)2J}. 

Within the braces the sums are over all pairs of particles, and the static 
lattice parts have been subtracted out. In the harmonic approximation the 
last two terms cancel exactly, leaving only the static-lattice derivative 
indicated by the SUbscript o. For potentials other than an inverse power 
the cancellation is not exact. However, it is quite close. For the Lennard­
Jones potential at kT/c = 0.3361 (about half the triple point temperature) 
the thermal Born term contribution to (Ci~ 2Cf2 2P)-V/NkT is 

• 
.. 
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63 59 - 16 = 106. The thermal fluctuation terms give-53 58 = 

Ill. Thus the total thermal contribution -5 is very small relative to 
the static-lattice value of 425. 

The computer experiments also showed that the adiabatic elastic con­
stants converge about ten times as quickly as the isothermal ones and that 
the adiabatic constants agree better with the lattice-dynamics and cell­
model approximations. The reason for this fast convergence and improved 
agreement can be seen by again considering the case of a classical inverse­
power solid. Calculation shows that approximately two thirds of the slowly 
convergent fluctuation contributions to Cfl 2Ci~ is cancelled by the 
adiabatic correction 3L1C. 

At first glance it appears strange that the lattice-dynamics calculations, 
which do poorly in the energy and pressure calculations (at least when com­
pared to the cell model) give good estimates of the adiabatic elastic con­
stants. This fact becomes more easily understood on closer inspection of the 
results of the calculations. In table II we tabulate the percent deviation of 
the thermal part of E, P, and C~ from the Monte Carlo values for lattice­
dynamics and cell-model calculations. The energy, pressure, and elastic 
constants are respectively zeroth-, first-, and second-order strain derivative 
thermodynamic properties. From table II one can observe that higher­
derivative properties are harder to estimate for both methods. The cell-
model calculations deteriorate faster, because the long-wavelength vi- • 
brational modes which are poorly described in this Einstein-like calcu­
lation become more important in the higher-derivative properties. The 
saving feature for the adiabatic elastic constants is that the thermal contri­
bution is a small percentage of the· total elastic constant, so that a 20% 
error in the thermal contribution, which would be intolerable in the pressure 
calculation, leads to an error of only about 5% in the total elastic constant. 

Having concluded that lattice dynamics is useful for computing adiabatic 
elastic constants for 108-particle crystals, we now ask how many particles 

TABLE II 

Percent deviation from Monte Carlo values of the approximate thermal contributions 
to the thermodynamic properties 

Lattice dynamics Cell model 

e--66-12 e-6 6-12 

40 60 80 40 60 80 40 60 80 40 60 80 


0LlE 4 5 8 4 4 5 0 0 2 0 
LlP 6 11 16 7 8 12 1 1 4 2 1 

682 12 19 17 10 18 40 49 69 78 62LlCft 
-33 .

LlCf2 2 2 10 8 .2 7 33 -34 -30 -32 37 
240LlC44 -7 26 -34 -43 0 -44 180 130 110 240 500 
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need be used (or equivalently, how fine a mesh in the Brillouin zone is 
necessary) to imitate the properties of infinite crystals. The same question 
is faced in setting up or interpreting Monte Carlo or molecular-dynamics 
calculations. To answer this question for classical crystals, we calculated 
the lattice-dynamics estimates of pressure, Griineisen y, and elastic con­
stants for periodic cubic crystals of from 32 to 864 particles. The thermal 
parts of the pressure and the Griineisen y were found to converge to three 
significant digits for a Brillouin zone of 107 points. The elastic constants 
require a Brillouin zone of 499 points for three significant digits in the. 
thermal part. The dependence of the elastic constants on N is more compli­
cated than the In N/N dependence observed 15) for the entropy and the 
free energy. Over the range from 31 to 863 points, the convergence is faster 
than liN and increases with N. Because the thermal part is a small cor­
rection to the easily calculated infinite static-lattice results, the error in the 
total elastic constant due to using 107 points instead of an integration over 
the Brillouin zone will be less than 2%. By using 499 points one can elimi­
nate the error entirely for calculations which keep only three significant 
digits. 

s. Quantum-J1Lec/tanical effects. In figs. 1 through 4 we show graphs of the 
adiabatic elastic constants for neon, argon, krypton, and xenon calculated 
by means of lattice dynamics and using the Lennard-Jones 6-12 potential. 
We used 500 particles for this calculation. The values of 8 and (J used here 
are those tabulated by Horton 16) for describing the solid state of rare gases, 
except for the argon calculation in which we used the same values as in our 
other calculations for argon. Our argon parameters are· quite close to 
Horton's. We tabulate 8 and (J in table III. The graphs represent all­
neighbor, infinite-lattice calculations, since retaining more neighbors or 
using more particles will not cause a detectable change in the curves. As 
before, the contribution of the static lattice is calculated for an infinite 
number of particles. The zero-pressure lattice spacings used here were taken 
from Pollack's17) compilation of X-ray diffraction data. Except for neon, 
the intercepts of the quantum-mechanical curves at absolute zero are those 

TABLE III 

Values of e and (J used in the quantum­
mechanical calculations of the elastic con­

stants 

elk (K) (J(A) 

Neon 
Argon 
Krypton 
Xenon 

36.65 
119.00 
164.44 
231.08 

2.789 
3.400 
3.638 
3.961 
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Fig. 1. Adiabatic elastic constants for neon according to the Lennard-Jones 6-12 po­
tential in the quasi-harmonic approximation. Solid curves are the quantum-mechani­

cal calculation and the dashed curves are the classical calculation. 

calculated by Barron and Klein 18). We omit their neon results because they 
used different values of the potential parameters. 

The error introduced by anharmonicities not included in. the quasi­
harmonic approximation is about 5% near the triple point and about 
0.3% at 40 K for argon. Although we have not made Monte Carlo calcu­
lations for the other rare gases, the error in those cases woula. be about the 
same as that for argon for equal fractions of the triple-point temperature. 

We include in each graph both the quantum and classical calculations of 
the elastic constants. This displays the magnitude of the quantum effect in 
each case; increasing from xenon which is the most classical, to neon which 
is the most quantum mechanical of the four. It is interesting to note 
the quantum correction for C44 is much larger than that for Cf2 at poin 
near absolute zero. This is a little surprising, since one can estimate 
corrections 14) by means of the V\Tigner-Kirkwood expansion which 
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Fig. 2. Adiabatic elastic constants for argon according to the Lennard-Jones 6-12 po­
tential in the quasi-harmonic approximation. Solid curves are the quantum-mechani­
cal calculation and the dashed curves are the classical calculation. Intercepts at 

absolute zero are from ref. 18. 

Fig. 3. Adiabatic elastic constants for xenon according to the Lennard-Jones 6-12 
potential in the quasi-harmonic approximation. Solid curves are the quantum-me­
chanical calculation and the dashed curves are the classical calculation. Intercepts at 

absolute zero are from ref. 18. 

at least in the static-lattice approximation, that C44 and Cf2 will have 
. identical quantum corrections. 

The computer calculations bear out the observation 19) that solid-phase 
properties alone cannot be used to predict melting. The molecular-dynamics 
wor~20) ·of Hansen and Verlet shows that our highest temperature points 
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Fig. 4. Adiabatic elastic constants for krypton according to the Lennard-Jones 6-12 
potential in the quasi-harmonic approximation. Solid curves are the quantum-me­
chanical calculation and the dashed curves are the classical calculation. Intercepts at 

absolute zero are from ref. 18.. 

for argon lie fairly near the triple point. On the other hand, a common 
method for predicting melting is to look for the vanishing of a shear modulus, 
either C44 - P or t(Cl1 - C12) - P for cubic crystals. A long extrapolation 
of our results for the shear moduli suggests erroneously that the crystal 
remains 'stable to shear up to twice the triple point temperature. Thus it 
appears that the vanishing of the shear modulus is not related to the 
phenomenon of melting, which will occur when the Gibbs free energy of the 
liquid is less than that for the solid at the same pressure and temperature. 

6. Summary. In this paper we have compared calculated values of the 
thermodynamic properties of argon obtained from Monte Carlo calculations 
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and from two approximate models, the cell-model and the quasi-harmonic 
approximation. We have considered two different potentials for argon at 
three temperatures: 40 K, 60 K, and 80 K. Our comparisons confirm earlier 
reports 21) which show that the cell model provides an excellent approxi­
mation for the energy, pressure, specific heat, and Gnlneisen y. Our most 
important new result is that the quasi-harmonic approximation, which is 
not as good as the cell model in estimating other properties, actually does 
a good job of predicting the adiabatic elastic constants. Neither approxi­
mation provides an accurate estimate of the isothermal elastic constants. 

\Ve have calculated the adiabatic elastic constants for neon, argon, 
krypton, and xenon using quantum mechanics and the lattice-dynamics 
approximation for the full range of temperatures from absolute zero to the 
triple point at 0 pressure. Vie hope that these calculations will be useful to 
experimenters who wish to compare their results with the predictions of the 
Lennard-Jones 6-12 pair potentiaL In the future we hope to calculate 
adiabatic elastic constants for alkali-halide crystals. 

Acknowledgments. \Ve would like to thank D. R. Squire, M. Ross, 
and Z. VV. Salsburg for pertinent discussions. W. G. Cunningham helped 
with the computer calculations. R. :McLain prepared the figures . 

• Note added in proof. Since we submitted this paper, Gornall and Stoi­
cheff 22) have reported experimental value of the adiabatic elastic constants 
for xenon. We have plotted their results in fig. 3 for comparison with our 
calculated values. The agreement is excellent, and is improved if one makes 
anharmonic corrections by means of table 1. 
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