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I. INTRODUCITON 

It has been evident ever sL~ce the formulation of statistical mechanics 

that progress toward a quantitative theory of liquids is limited by mathema­

tical and not conceptual difficulties. The advent of large-scale computers 

has vastly increased the power of numerical, if not mathematical, techniques 

and it is therefore natural to ask what additional contribution to the under­

standing of liquids can be made trwough the corr~uter. In this review we 

wish to discuss the impact the numerical methods have had ln a general way, 

referring to the literature or future publications for most details. The 

numerical method principally referred to is the molecular dynamic calculation 

although comparisons will be made to Honte Carlo calculations. 

This impact can be discussed only if the essential limitations of the 

computer schemes are kept in mind. Oni; of these is that the potential of 

interaction bevNeen the particles making up the system is pair-wise additive. 

Although this is not a necessary restriction, all the investigations so far 

have employed it because of the great simplification that ensues. Another 

enormous complication that has not been effectively overcome is the description 

of systems that behave quantum mechanically. Although schemes to deal with 

this situation can be formulated, they are al: cumbersone, particularly in 

taking the wave-function symmetry requirements of quantum statistics ~lto 

account. Another limitation concerns the relatively small number of degrees 

of freedom that can be dealt with on even the largest conceivable computer. 

This limitation does not turn out to be serious most situations and can 

in fact be turned to advantage by studying how various properties dep~ld on 

the number of degrees of freedom. Finally, the relatively short physical 

time for whic~ molecular dyna~cs calculations can be pursued limits 

tions to processes 'having short relaxation times, thus, for exa1.'cple, exclu­

ding studies in hydrodyr.~ics. 
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With these limitations, the computer can be in essentially two It]ays 

after restricting the subsequent discussion to classical systems. Although 

these two ltlays are not really distinct, is necessary to distinguish be­

tween them because of the present lack of quantitative knowledge alx.mt the 

potential interaction. One can either determine the natun~ the actual 

intermolecular potential by cOmparL'1g c()IT,puter results with experiments or, 

alternatively, introduce simple idealized potentials to test and impnwe 

theories. In most situations the computer calculations a glven 

potential are at least as accurate as the available data, any quantitative 

comparison to experiment is necessarily limited by the accuracy with which 

the potential known. Hence under these circumstances the best way to use 

the computer is to find effective pair potential that the data. l 

This is a familiar process ill statistical mechanics, previously used whenever 

analytical expressions irlere as, for in the solid 

2 3at low temperature and in the dilute gas The permits ex­

tension of this process over the entire phase diagram ,md to either trclJ1i:-;port 

or equilibrium data. The effective potential so obtained can then bfJ 

compared with pair-wise additive potentials obtained either ically 

. . 1 or by direct scatterlng experlments. For insulators, such as argon, the 

difference between the effective potential and additive potential 

appears to be srrall; an aC9urate analysis required to discover the devia­

tions. For lonlC , such as salts, and especially metals, the 

potential much more from the pair potential. In any case, 

the use of computer it possible to reduce the quantitative descriptio;; 

of actual systems to a quantum-r:;echanical calculation of the effective 

potential as a function of and density. Although this 

is difficult to calcula-::e, itpalr 
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function with which to correlate varlOUS properties under given conditions. 

The alternate use of the computer, to be explored here, is to abandon 

temporarily comparison with experiment and instead to study systems which 

are simple enough to aid theoretical developments. The simplification can 

only involve the choice of a particular form of a strictly pair-wise additive 

potential) which nevertheless contains essential features of a INten­

tial. The then generates the properties of this system (comparal1le 

to experimental data) together with much rrore detail about the microscopic 

behavior than any canceivable experiment could obtain. This extra detail is 

most valuable in checking models and developing rrore accurate approximations. 

As far as the of liquids is concerned these computer experiments can 

accurately the properties of a rrodel which serves as an "ideal"':>-"IUI-'..I."'­

liquid comparable to the perfect gas and harmonic solid abstractions. 

the lack of such a model amenable to treatment that has 

description of so difficult. The computer generation of detailed 

properties of "ideal lf liquid can then looked uINn as tabulation 

functions with which further analytic developments can be mBde. These functions 

can be used as +=" • 4.~or expanslons, Just as h ft e per ect gas 1" .lmlt serves as 

a basis for the coefficient expansion. 

What should "ideal" liquid be? It clear from past work 

neither the nor the harmonic an accurate enough 

tation of the state to serve even as a good zero--order approxirrBtion. 

This is evident the later discussion which shov.JS that the cell 

frequently used the liquid state in the hope that a solid-like 

is adequate, are exact only in the limit where a pa......-rticle is completely con­

fL,ed to its site. 6 This means theories are accurate 

te.rnperatu.."'€, at density so that 

kinetic energy a small fraction of the total free energy. In other' ".lords 

5 
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cell theories correct limiting expressions under conditions far from 

the liquid state. Although, as will be seen, series expansions of thermo­

dynamic properties from the exact limiting behavior of cell theories 

can be made, series do not oonverge into the liquid state. An addi­

tional difficulty associated with this is that the coefficients 

have not yet been theoretically formulated. 

For the gas , the expansion away from ideal state long 

1been knot;.l11 as the virial In spite of much effort only a few 

cients have been calculated. Many rrore tenns would be required to describe 

liquid state adequately, because the perfect state is so rerroved 

from the liquid state. M additional problem is that convergence of this 

expansion into the liquid state is not assured even the terms could 

calculated. 	 Convergence of the series has been established only for a 

8 very dilute Although efforts to evaluate the general ternl in the ex­

pans10n have not yet led to concrete , the carl and ~een 

to evaluate a few higher coeff1Clents; t.lese ca cu at10ns W1" 9 1 1 l' 'II 

be discussed detail in a later section. Their relevance to a theory of 

liquids mostly in the establisrment of an exact expansion with 

approximate calculations can be compared, However, even this comparison 

can lead to since an approximation which does not do well at low 

density can be quite adequate at high densitylO and versa. As far 

as using the virial coefficients to obtain information on the intermolecular 

potential concerned, the calculation of higher virial coefficients 

has outstripped the experL~ntal to obtain them accurate~y. 

Since neither the solid nor the 1S an basis for ideal 

liquid one be terr9ted to describe the ] a drrixttlY'€ 

of the ha.rm:Jnic solid and the perfect gas, 11 This 

SL'1Ce no 	 Y":!alistically the rrtCist 

a flu:::'d. SUD'1 SD'1e.7.eS should be leeked upon as interpolation 

http:SD'1e.7.eS
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the and solid state with empirically detenmined values of the amount of 

admixture so as to reproduce some liquid properties. These interpolation 

schemes can then be useful in predicting other liquid properties. 

The hope left now is that the one remaining extreme state, at high tem­

perature and high density, can serve as an ideal liquid. There is indeed 

exper:iJr..ental evidence to support this hope. The primary piece of evidence 

is that at ·constant density the structure of a fluid, as measured by the pair 

12distribution function with x-rays, nearly independent of temperature. 

Thus, the high-temperature behavior of, a fluid can be used as the "ideal" 

state, which brings with it the great simplification that only the repulsive 

part of the potential need be considered determining the structure and 

many other properties of the fluid. The attractive part of the potential, 

if it contributes at all to a given property, need be considered only in the 

rough sense that it contributes some mem, field. Further support for this 

mean field contention can be obtained by observing that the pair distribution 

function is nearly independent of the type of attractive forces. For example: 

even the structure metallic and ionic systems is nearly the same as that 

of insulating materials at corresponding densities. For these systems ~..Jith 

greatly different attractive forces but similar repUlsive forces not only is 

the structure nearly the same but so exarr~le, the viscosity or mass 

' ff'·· 13diffus~on cae Thus the crucial idealization of all liquids~Clen~. 

that their primary behavior determined by the steep repulsivf2 potential, 

which can best be itself idealized by an infinitely steep one, namely a hard 

sphere potential. 

The above description of a fluid is one of the oldest ~ existence, and 

14is cOITr.Dnly associated with the nalle van der tvaals. Tne van \.Jaa.ls 

picture of a fluid corrects the perfect gas theory by taking into account 

two factors. One of these is that the.volUIT£ occupied by the 
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'at liquid densities can no longer be neglected compan::d to the vohHr~2 of 

the system, so that the accessible volume the total vol1..llTe diminished by a 

covolume, Nb. The other factor that the attractive ~~ergy can be simply 

treated as a constant cohesive energy, so that the pressure is diminished 

by the internal pressure corresponding to this attractive energy density. 

The applicability of van der t-oJaals' rrodel of fluids to transport theory 

has not been so widely recognized. Here again the computer had and will 

have a central role in establishing the transport properties of the II ideal" 

hard sphere fluid. The total attractive potential, to the extent that it 

is uniform, will not affect relaxation processes at The van der Waals 

picture corresponds simply to the kinetic theory picture of transport, where, 

however, at higher density the collisional flux due to intermolecular forces 

can no longer be neglected relative to the kinetic flux due to rrolecular 

15streaming. The Enskog theory of hard spheres treats both kinds fluxes 

but, inasmuch as it involves basically an extension of the Boltzma.li.'1 equation 

to high density, the rrolecular chaos approximation is invoked. The numerical 

consequence of this approximation can at present be assessed only by computer 

studies. 

The overall impact of the computer studies is then to P2vive TIlO very old 

rrodels, van der vJaals! and E.jskog! s, for calculating the equil ibr'ium and trans·­

port properties of fluids, In the subsequent sections it is shO\oJl1 ill rrcre 

detail how various computer experiments have helped to confirm the bas physical 

notions be!u.J1d these early hypotheses and how these rrodels need to be improve:.:::. 

It is interesting to comment that many the fluid theories proposed 

years were motivated primarily by the fact that the model could be represented 

by a relatively simple mat~ematical form and that once this restriction to 

simple lI'athematics is removed through the use of the computer, it becomes 

sible to find out what physical processes are irrlportallt contributors to various 

properties. 
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II. THE VPN DER WAMB' MODEL 

The van der Waals' equation can be written in the following form 

from which it can be seen that EY_ made up of two terms. The first one,NkT 


Vb' is the purely geometric covolume factor, which accounts for the packing
v-
of particles J.n a container. It is th:':.s term which the van der Waals I theory 

approxirP.ates very crudely and which can 	now be replaced, through the data 

pV 16
from computer studies, by the value of NkT for hard spheres. The second 

factor accounts for the change in pressure due to the fact that the cores 

can be considered as being immersed in a constant attractive potential, - ~. 

The aOOve form of the van der Waals I equation and the physical basis 

on which it is derived both suggest what a theoretical derivation shows ex­

plicitly, namely that an expansion in powers of the reciprocal temperature 

is being represented with the square and higher terms left out. The theoretical 

4
derivation of the van der 1iJaals' equation is based on treating the attractive 

potential as a perturbation on the hard core potential. In this derivation 

the expansion parameter is the strength of- the attractive potential relative 

to kT. First order perturbation theory leads to a theoretical expr€ssion 

for a. Insofar as the expansion parameter small, the higher terms ca~ be 

neglected and the van der Waals' equation is correct in assuming that the 

attractive energy does not modify the structure of the fluid as detemined 

by the hard sphere interactions alone. Because the pair distribution function 

is found to be nearly temperature independent, it can be anticipated that 

the higher-order expansion terms are quite small. . An alternative way to derive 

the va~ der , equation rigorously; to rnak'" the assumption that the 

17
attractive forces CLY'€ "~JeaJ( and long range. 
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the higher terms in the expansion do not appear. The long-range condition 

is necessary to make ~ constant. If the attractive potential is of long 

enough range, the potential energy will not vary frum one configurat ion of 

the particles to another, making rigorous the concept of a mean field leading· 

to a constant e~ergy density. 

In order to verify the van der Waals' equation experimentally, the con-

ditions under which lS expected to be accurate must be established. Inas­

much as the maximum depth of the potential corresponds to a temperature 

slightly smaller than the critical temperature, the weak condition satis­

fied down to a temperature somewhat in excess of the critical one. Further­

more, the potential can be considered long range whenever the density 

high enough so that the particles are on the average separ'ated by a distance 

less than the of the forces (so that the attractive potentials of neigh­

boring particles all overlap). Under these ciI'Cumstances the attractive 

potential energy not differ for most of the more probable configurations. 

Since the range of the forces typically 1.5 times the diameter for the 

rare gases, the attractive forces vJill all overlap when the volume is 

than (1. 5) 3 times OaK crystalline volume. This crystalline volume does 

not differ much from the liquid volurne at the melting point. Since the 

critical volume is roughly 3 times the melting volume for the rare gases, 

van der v1aals I theory should be accurate at densities and temperatures 

greater than the critical density and t~TPerature. 

It now to verify the applicability of the van der \.-7aals I 

model by c..hecking upon tm~e of predictions. First of all, a plot of 

~ vs. ¥should give at high enough densities a straight line down to terll­

perat1JI'E:S near the critical and the infinite 

cept should be the ha..n:i sphere equation of state. can be 

best by computer studies because a repulsive can be n1:roc:ucec: that 
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has a ~~ core. In actual systems the repulsive potential is somewhat 

soft,l so that the effective core size shrinks as the temperature increases, 

causing deviations from straight line behavior. Furthermore, extrapolation 

to infinite temperature not to taken literally for actual systems, 

because the system disintegrates at high temperatures into electrons and 

nuclei. Nevertheless, in order for the van der Waals I rrodel to be useful) 

the concept of an effective core size must be definable over a considera.ble 

temperature and density interval. Fig. 1 demonstrates that the straight-

line prediction of van der Waals verified for a squa.I~-well potential on 

the computer down to temperatures near the critical temperature and that de­

viations even down to liquid temperatures are not very large. This system 

had a square-well potential with a range of 1.5 times the hard core diameter, 

a critical temperature, T, '* of arout I, 3 well depths, and a critical volume 

relative to the close-packed volume, viv , of arout 4.5. For actual systemso 

the equivalent graph, Fig. 2, shows a slight curvature at high ta~peratures, 

which can be traced to the arove mentioned effect of a decreasing core 

with increasing temperature; the latter effect was estimated from the approxi­

mately known pair interaction potential in relationship to the kinetic energy. 

Although the effective core size was found to be dependent on teTlperatur~, it 

was independent of density, as it must be in order for the concept to have 

meaning. In practice, the, effective core size is determined by a comparison 

of the high temperature intercept of ~ at a given density with the knov-JI1 

ha.rd sphere equation of state. The computer thus rrade an essential contribu­

tion by calculating accurate hard sphere equilibrium properties whic..h could 

replace vaIl der ltJaals I crude approximation. 

The next prediction of va.l) der Waals that a is consta,l)t, not only inde­

pendent of temperature but density as Hell, could also be investigated 
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computer calculations. Perturbation theory gives an expressl.On for a jn­

volving an integral of the product of the hard sphere radial distribution 

f unctlon· an t e b'dh pertur atlon potentla'1 . 
4 

The hard sphere radial di stribu­

tion function has been tabulated from computer runs at various densities, and 

the attractive part of the square-well potential was taken as the perturba­

tion potential. The straight line draWn in Fig. 1 ooI'I'€sponds to the value 

of a calculated in this way. The agree.ment with the points at high tempera­

tures (obtained directly through the virial theorem) merely illustrates 

consistency bet'vJeen the two different types of computer calculations. Table I 

then shows how this value of ~ varies with density. The column labeled a isl 

the above mentioned L'1tegral representing the excess L'1ternal energy due to 

the attractive perturbation potential. If a were independent of densityl 

the van der Waals ~ occurring in the equation of state, a 2 , would be identical 

to a and therefore also a constant. Table I then shows that to a goodl 

approximation a is a constant over the entire density range of the systeml 

from infinite dilution to the close-packed solid. The approximation is even 

more accurate in the restricted range of densities appropriate to the van der 

Waals' model, namely densities greater than critical (v/v < 4.5), For poten­
o 

tials of longer range, a was found to be, as expected, more nearly constantl 

over a larger density interval as Table I shows. 

At low densities a has been evaluated by substituting the krlOIA'!1 viriall 

expansion of the hard sphere radial distribution function in the integrand, 

At high densities a approac..'l.es the value of half the nurnl:€r of particlesl 

which lie within the range of the forces of a given particle. At interr::ediate 

derlsities the integral was evaluated numerically. Inasmuch as a nearlyl 

constant the with the value of a ai'l.d its near constancy is to 1::e2 

expected.' Strictly speaking, hOl',vever, a is only consta.'l.t within the rangel 

the second virial coefficient and hence a and a 2 agree only exactly inl 

http:expressl.On
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the low density limit. Neverthel(~ss, the van der Waals I assumption of a COfl­

stant energy density is well justified. 

The third prediction of van der Waals, that the coefficient of the next 

te:nn in the expansion in powers of the reciprocal temperature is small com­

pared to ~, could also be verified. The graph in Fig. 1 shows that the de­

viations from the van der Waals equation are small even at low temperatures 

indicating that the sum of the contributions of all the terms beyond the 

ones included in the van der Waals theory is small compared to~. That this 

should be so can also be made reasonable on physical grounds. The terms 

omitted by van der Waals depend on the lack of uniformity of the attractive 

potential sea, that is on the fluctuations in the attractive potential energy. 

These fluctuations are in turn related to the compressibility of the system. 

Inasmuch as a liquid is quite incompressible, the omitted terms should be 

small. 

The exact expression from perturbation theory for the coefficient of the 

square term in the expansion in reciprocal temperatures involves the quadru­

plet distribution function and therefore, for evaluating its order of magni­

tude, the superposition approximation has been utilized. This leads to the 

following equations of state at various densities18 

v/v
0 

:: 5.136 ~-NkT - 1. 83 - 1.88---r:­
T 

- 0.04 
"!t2-­

T 

v/v
0 

:: 3.196 ~-T - 2.67 - 3.29---r:­
T 

0.06 - 1':2­
T 

v/v
0 

:: 2.097 ~-
NkT - 4.33 - 5.35 

-
0.35
-7:2 
T 

v/v
0 

:: 1. 728 ~-NkT - 5.56 - 6.54-----r:­
T 

0.42 -~ 
T 

These expressions utilize the superposition approx1Tation for all the te~s, 

WhiD'l sUfficiently accurate for present purposes. The perturbatior: poten­

tial is the attractive pCk~ of the Lennard-Jones 12-6 potential; the 
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core diameter corresponds to the distance at which the potent changE's 

The van der Waals' ~ term, corresponding to the middle term on the righthand 

side, can rewritten in the same units as before (the coefficient 

[T*(~)J-l) as 9.7, 10.5, 11.2, 11.3, respectively, in order of decreasing 
o 

volume. This not only demonstrates the constancy of van der Waals ~ but also 

its near independence of nature of the attractive potential (by comparison 

to the numbers given for the square-well potential in Table I) as long as 

the range of the forces is comparable. The major point of above equa­

tions is, however, to show that the coefficients of the last term are an 

order of ffi3.gnitude less tha'1 those of the va'1 der vlaals a term. 

Now that the successes of van der Waals theory have been enumerated, 

what are its failures? Its greatest failure is that it is unable to predict 

accurate normal liquid properties. The reason for that the near cancella­

tion of the hard sphere term by the internal pressure term at low pressures 

and temperatures, as the above given equations of state clearly show. At 

temperatures of the order the well depth (T'*~l) the two terms nearly 

cancel, so that the preSS1..JTe is determined by the higher order terms in spite 

of fact that were shown previously to small. In other words, 

whenever the pressure is s~ll, an exceedingly accurate solution to the rrany­

body problem is required before quantitative results can be obtained; a feat 

not achieved by any theory. However, this near cancellat of the t:'wo 

terms in the vaIl der v,laals' equation does not occur for thermodynarni c r.T",","'Y'> 

properties, such as the internal energy, nor, as shall seen, for the tr~~s-

port properties. For these the van der v.laals I theory is accurate e'len under 

normal conditions. This, for example, accounts for the success of Hilderbrard's 

· 1 l' 19theory of solubility Yihia.'1 based on denslty ca_cu atlons. the 

equation of state, the van der Waals I theory should be used only at high terr.­

perature. In prediction of high temperature properties as successful 
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a theory as any, provided account is taken of the changing diameter due to 

the softness of the repulsive intermolecular potential. 

The van der Waals' theory also appears to fail in the very SlTlr:::l11 reglon 

of long-range correlations and large-scale fluctuations surrounding the 

critical point. This failure not surprising in view of the previous re­

marks that the corrections to the van der Waals' theory depend on the extent 

of the fluctuations. The computer calculations cannot shed any light on this 

point, since, in the finite systems studied, the fluctuation ~; seriously 

distorted. In fact, a preliminary analysis of the critical point for square-

well molecules indicates that the computer systems most probably orey van der 

Waals' equation very accurately. Not only do the computer calculations pre­

dict within the present accuracy a parabolic coexistence curve but they also 

give a van der Waals' loop in the coexistence region for the microanonical 

ensemble used. This effect, due to the surface tension, is to be expected 

for such systems unless the number of particles and the volume are allowed 

to go to infinity. Inasmuch as the Maxwell equal area rule can be rigorously 

justified for a van der Waals' system,17 the establishment of the coexistence 

region from the computer runs presents no problem. Finally, it must be pointed 

out that although the theory fails in the tiny region surrounding the critical 

point, the van der Waals' equation gives a more accurate value of ~f at the 

critical point than many more sophisticated theories. 5 

Previous to the computer studies, the van der Waals theory's greatest 

failure was thought to be the absence of the melting transition. That phase 

transition could only be contaL~ed within the hard sphere p~~ of the va~ der 

Waals' equation, if that theory was to predict meltL~g. The computer studies 

have made it exceedingly plausible that hard spheres do indeed have such a 

.. 20
Phase transltlon. 'This the single most important contribution 
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have made to the understanding of equilibrium proper'tie~,. Together with 

the other factors mentioned before, the computer transition ha,} reconfinll<:~d 

the van derWaals! picture of a fluid. Before discussing melting in detdi 11 

the van der Waals! picture as applied to fluid transport coefficients ",Jill 

be discussed in the next section. After that, the discussion of melting 

will naturally lead to a discussion of the behavior of high density systems 

in the solid phase. Finally, a special section devoted to the region where 

the van der Waals I equation is inapplicable, namely the low density region, 

will discuss the virial series and the calculation of virial coefficients by 

an efficient Monte Carlo procedure. 

III. TRANSPORT PROPERTIES 

Existing transport theories can be classified as low density 

theories, which attempt to make the equivalent expansion in powers of the 

density for the transport coefficients (from the low density Boltzmann limit) 

as was done for the thermodynamic properties by the virial series, or high 

density theories, which involve some postulated predominant relaxation 

mechanism. The low density theories have gotten entangled in the mathemati­

cal difficulty that transport properties cannot be expanded in powers 

. 21 l' d " of denslty; a more comp lcate expanslon lS Although this 

observation extremely interesting In its own the mechanism 

leading to this behavior does not to an important contI'ibutor 

relaxation processes at any The physical involves Lyclical 

collisions in whiD~ are correlated through having had common 

partners a chain events. TIle molecular dynamics calculation could be 

used to check upon the probability of such events as a function of 

by analyzL~g the sequence collisions closed 

The prevalent high density or fluid transport theories aSSUT:e 

that contradict the van del" Waals picture. Whereas the VaJ1 del" Haals I 

pr~dicts that the trajectory of a typical particle involves a of han: 



core collisions unaffected by the presence of the attractive forces, recent 

models for the calculation of the friction constaflt occu.rring in KirkwCX)d I s 

transport theory of liquids have postulated Brownian motion trajectories 

1 " 22between hard core col lSlons. The Brownian motion is said to be caused 

by many small momentum changes induced by soft collisions, that is by 

"oollisions" with the attractive part of the potential. Thus, instead of 

the typically linear or flight trajectory between hard core collisions 

of the van der Waals' model, a tortuous path involving many small changes ill 

curvature between the large moIT~ntum changes of the hard core collisions 

thought to be more representative, From a theoretical point of view the 

difference between these two models is the difference between completely 

uncorrelated successive hard core collisions and the van der Waals' correla­

ted collisions. Although , naturally, reality lies between those two extremes, 

molecular dynamics computation on the frequency of different types collisions 

strongly favors the van der vJaals' picture. 23 

Another view of a typical trajectory of a particle reqtures an activation 

24 ' energy for flow. The motion of a par~icle in this model could be abstracted 

as consisting of a large number oscillations ~ut some equilibrium posi­

tion in a cell made up of its immediate neighbors with a rare but large jump 

(comparable to its Oh'I1 diameter) to a new equilibrium position. The free path 

distribution obtained from rrDlecular dynamics 25 shows that this popular trans­

port mechanism does not contribute significantly to molecular flow in fluids. 

Even ill a situation favorable for this mechanism, namely in the solid phase, 

a study of interchanges between holes and particles by molecular dynar.ics has 

shown that large jumps do not have any significant probability, The inter­

cha,'1ges :'-lere, to be sure, found to be ra.J."'e, but this rarity need not be ascribed 

to an activation energy in the usual sense of the word. TI1e irnproDe..bi ty of 
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such an interchCL'1ge can be explained on the basis of the van der VJools! 

model on purely entropic grounds as due to the infrequency of highly corre­

lated motions among the neighboring particles to a hole which, by a 

succession of relatively moves, a particle can by its neighbors 

into the hole. 

On the positive side, the van der Waals model of transpor¥t was tested 

empirically with additional approximation rrolecular chaos; that 1S, 

for the transport theory, Enskog's hard sphere theory was used. 26 For a 

comparison with experiment) it was then only necessary to choose a ha...rd 

sphere diameter, using equilibrium data as described in the previous section. 

The numerical agreement within better than 10% for a completely ~ priori 

theory was remarkable. Furthermore, the deviations from experiment could 

be qualitatively understood in that at high temperatures corrections to the 

Enskog theory of hard spheres predominate whiJe at low temperatures these 

corrections are nearly cancelled by the ones due to the van der Waals 

approximation of a constant den'sity . The important point, however, 

that the corrections are small, and hence that the major contributor to 

flow is simply motion in small steps (of the order of the mean path) by 

a succession uncorrelated collisions between of particles. Any 

correlated motion or special mechanism superimposed on this major contri­

bution , and wakes a relatively small numerical contribution to the total 

flux. 'This state of implies that it easy to estimate the order 

of magnitude the transport , and that by numerical agreement 

with experiment it hard to prove or disprove particular mechanism of 

flow. Thus, rather accurate experiments, such as precise neutron diffroactlon 

experiments, are required to detect which of the many sp/~cidl mechan 

that could contribute fact do. It here that the method of moh~culdr 
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dynamics , with its better t:ime and resolution than any conceivable 

experiment, can be of enorrnous help. 

The only serious limitation of computer studies is that spacial 

correlations extending over much more than 10 nnlecular diarr.eters would be 

hard to into account, because only finite numbers of particles can be 

handled. Similarly, temporal correlations extending over periods greater 

than 1000 mean collision times would be hard to detect, because such calcu­

lations would take too long. Inasmuch as the relaxation time the pro­

cesses leading to the various transport coefficients are between one and 

two collision times, these limitations do not appear to be serious, Some 

prel LmLnary' , stu es27 h ave been rnade 0 t he vel'OClty autocorre1atlon f 'unctlondi f ' ' 

of hard spheres in order to discover the nature of significant correlated 

motion at various densities. Much nnre work is being carried out for this 

as well as for other autocorrelation functions and for different inter­

molecular potentials. 

The predominant deviation from a Markovian process that at 

high density an anticorrelating nntion previously termed "backscattering,,27 

It signifies the higher than random probability that a particle will have 

its direction of travel reversed at high density by being back by 

its surrounding The physical of this is to slow down 

forward flow of thus leading to a diffusion 

or increased constant. As mentioned , the comparison 

experiment with Markovian theory at high temperature and density 

indeed to predicted transport coefficients which were too high, Another and 

quantitatively important structure in the velocity autocorrelation 

function which t.'Jas recently observed B.t densities is a positively 

correlated motion OCCtLYTlng quite late, that after a tiw£ correspondL~g 

to about 10 mean times. It occurs when a hot particle 
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with neighbors, creating a hot and low density region which persists 

so long that the formerly hot particle upon being reflected back into that 

region still finds its density low, and hence preferentially travels on ll1 

that direction. This example a vivid derrDnstration of the details which 

a molecular dynamics calculation capable of exploring. 

The accuracy of the van der Vlaals' rrodel could be investigdted 

by canparing the velocity autocorrelation function for particles with an 

attractive potential with the hard sphere one at the same density. The van 

der Waals I prediction is that they will be nearly the same. This calculation 

has not yet been carried out. Instead, a more direct test was made in tenns 

of the number of soft versus hard core collisions. 23 At liquid density it 

was found that the majority of the collisions (about 60%) were hard core 

collisions nearly independently of the temperature. What did vary with tem­

perature at constant density was that as the temperature was lowered rrore 

and more pairs of particles were trapped; that is, their kinetic energy did 

not suffice to overcome the potential binding them. Furthennore , 

also in accord with van der Waals, the path distribution was shO'v'ln to 

be nearly indifferent to the presence of an attractive potential (see Fig. 3). 

From the free path distribution, also, it was not possible to pick out ~ly 

particularly preferrBd characteristic of motion at fluid 

relative to that at densities indicating the absence of a vastly different 

mechanism of flow at density. 
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IV. MELTING 

The van der Waals' model of necessity must associate melting with the 

hard sphere part of the equation of state. This geometric aspect of melting 

is another old idea incorporated into the empirical Lind~li1 law,28 which 

successfully accounts for the melting behavior of a very diverse group of 

substances. Lindema.rm' s law was originally put into the form that a sub;:; tance 

melts once the maximum displacement of an atom fran its regular lattice site 

can reach about 10% of the radius of the atom. A cruder way of saying the 

same thing is that most substal!ces melt upon expanding 30% in volurre from 

their close-packed or OaK volume. The strange behavior of hard spheres16 and 

hard disks20 found in the neighborhood of these volumes lends confidence both 

to ascribing the computer observed phenomena as melting and secondly, to the 

geometric interpretation of melting since it occurred in the absence of 

attractive forces. Other authors29 have also recently pointed out the close 

correspondence between melting of actual substances and the hard sphere 

transition. 

Lindemann's law usually written in terms of the potential energy at 

the maximum displacement of an atom in an harmonic oscillator relative to 

the kinetic energy, where the harmonic force constant is in turn related to 

the I€bye temperature. This expression can be misleading since it obscures 

the geometric aspect of melting and gives the impression that rrelting can 

occur in a purely harmonic force law syste.rn. Still another and theoretically 

suggestive way to express Lindemann's law is in terms of the probability 

of a density fluctuation of a given size. The main problem, however, in 

these equivalent "lays of looking at melting to obtain a theoretical 

justification for the single empirical constant contained in these proposals, 

namely, for ex~uple, the size of the density fluctuations 

http:syste.rn
http:Lindema.rm
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melting occurs. A physically sensible but difficult way to obtain this 

constant is through considerations of instability modes in the solid phase 

as a function of temperature and density. As is well known from the differ­

ences properties liquids and solids, the solid at 1mltine mu::;t bc:come 

unstable to a long wave length shear mode. 30 

The analysis in such a calculation involves determining instabilities 

in non-linear equations, the non-linearity being brought on by anhar­

nonic terms in the force law. Although it: is difficult to solve this problem 

analytically, it is possible by nolecular dynamic to confirm at least the 

validity of the suggested mechanism. For this purpose, first of all, a 

very simple model which incorporates this point of view vias proposed. This 

31ITDdel, called the correlated model, as opposed to the usual cell 

32node1 where all the neighboring particles are uncorrelated with the cen­

tral particle by being kept fixed at their lattice position, treats the 

central particle as completely correlated with some of its neighbors while 

the others are kept fixed at their lattice position. In a two-dimensional 

system of disks, the particles were arranged to so correlated that 

rows of atoms move relative to each other, row moVlTIg as a unit. The 

consequences this model could be worked out very simply analytically and 

led to a ~~rkably accurate description of the thermody71~ic propert 

of the solid phase, including melting. A van der loop vJas observed 

very near the PD'2ssure and density where the molecular dynarnics result a 

van der loop. This loop occured at a density in th(:! rr:odel when: 

atoms could just slip by the neighboring two rows of atoms ItJhich 

at density had all been interlocked. This model thus graphically 

cor:-oines the aspect of melting with a shear ( ) . 
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Striking confinnation of the occurrence of this slipping mode at the 

onset of comes from molecular dynamics studies of the t:? t dis­

tribution function in the hard disk phase. The singlet distribution 

fllilction is the probability of an excursion of a particle fram lattice 

site in a given direction by a given distance in a solid whose center of 

mass is fixed. As Fig. 4 shows, a particle has a small probability of being 

found at a neighboring lattice site at a solid density very close to melting. 

This jump to neighboring lattice C01YBslx:mds to a row of atoms co­

operatively sliding one notch relative to another row. At all densities 

slightly higher than the melting density this process becomes so improbable 

that no evidence of this phenomena can be observed in the distribu­

tion function which is, in fact, for all practical purposes found to be a 

spherically symmetric Gaussian. 

This spherical symmetry indicates first of all that no one-particle 

cell theory can adequately calculate the singlet distribution fllilction. 

The prediction of any such cell theory for hard disks would lead to a flat 

topped singlet distribution function with sharp sides having the symmetry 

of the The fact that this not correspond to the facts means 

that the distribution function is primarily determined by the low-

frequency fluctuations which are not sensitive to local structure. 

It is for reason that this distribution a delicate 

indicator melting. However, for th2 purposes of thenTodynaTic 

behavior of a , it is not to be precise about the low-frequency 

modes, thermodynamic properties are primarily dete~ined by the 

high-frequency modes. It is for reason that !1lelting comes as such a 

sudden when evidence is on thermodyna~c grounds just previous 

to melting. also for this reason that a cell theory C&i yie~d accurate 
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thermodynamic properties without leading either to a qualitatively cOr"n'~ct 

singlet distribution function or to melting. The correlated cell rrodel by 

adequately representing the high frequency behavior of a solid as well as 

allowing a low frequency instability thus is the crudest way to get both a 

fairly accurate thermodynamic description and melting of a solid without, 

however, a qualitatively correct singlet distribution function. A similarly 

successful model in three dimensions has not yet been found; the straight­

forward extension of the correlated cell model fails to predict a first-oreer 

melting transition. 

The conclusion that the singlet distribution function is sensitive to 

the low-frequency phonons was deduced previously33 from the elastic theory 

of solids, which should be accurate for long wavelengths. In fact, the singlet 

distribution function could be shown, due to these long wavelength modes, to 

have a half-width which becomes unbounded as the number of particles increases 

indefinitely in two-dimensional systems. In three-dimensional systems the 

half-width is bounded, and within the elastic theory each mode contributes 

equally to the second morrent of the singlet distribution function. There­

fore in three dimensions the singlet distribution in the solid phase is quali­

tatively different from the one iII the fluid phase, where it a constaTlt. 

Inasmuch as this distinction, however, does not apply to the two-dimensional 

fluid and solid, the featurE~ distinguishing between these two states of ma.tter' 

is best described theoretically by sticking to the previous point of view that 

a solid as opposed to a fluid ca'l support a transverse Have. The lack 

spacial localization in the two-dimensional systems indicates that a sufficient 

condition for the existence a solid merely involves relative ordering of 

the particles. 
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Previous theoretical ways of accounting for melting of hard spheres 

' al ' ha b . 1 l'abl 34 .f rom mtegr equations ve een notorlOUS y unre 1 e, Most integral 

equations either give no indication of melting, or, predict it to occur at 

unphysical densities. 35 The one integral equation which originally led to 

l8the suggestion of melting for hard spheres also shows the melting smgu­

larity in one ~lsion~ where it can be proven that no phase transition 

occurs. Lattice theories also have serious difficulties in describing 

melting in spite of their success in accounting for the vaporization process, 

This is because melting density is so high and hence the accessible con­

figurational phase space so complex and tenuously connected that lS no 

.. I b 'd 36I onger adequate to estlffiate ltS vo ume y a coarse grl . On the other hand, 

at the critical density, which is much lower, this coa...Y'Se network reasonably 

adequate. Because at the melting point is necessary to use a much finer 

mesh (interactions extend over many lattice sites), the prirrary advantage of 

the lattice model lost, namely, it is no longer possible to evaluate the 

model analytically. FurtheTIl'\.ore, it must be expected and indeed has been 

confirmed that extraneous, unphysical discontinuities 37 will be found as the 

mesh size is varied until the grid is fine enough to estimate the phase volume 

well. 

The computer experirrents are of course, not rigorous proof of the 

tence of the hard sp}1ere melting transition. They must be reg,Med only as 

a very suggestive indication, and judged on the basis of how this behavior 

would be reproduced by infinite systems. For this purpose the dependence of 

the phase transition behavior on the number particles ,-las studied. An 

analysis of the pressure at the transition shows that it shifts with the num­

38ber of particles, N, as the N-particle comrm.mal entropy. This means ~hat 

the predomLlant n~~er-dependent correction necessary to to the 

transition pressure for macroscopic syste~ s~ly the entropy difference 
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between N particles confined to a cell and an L~finite number at the same 

density. The usual cell theories, referred to previously, confine one 

particle per cell, and their one-particle conmunal entropy has often been 

cited as the origin of the melting enttDpy. This) however, not at all 

correct, in spite of the fact that in the solid a distinct particle lS con­

fined to a cell and in the fluid the entire volume of the container 

accessible to every particle. The conmunal entropy does appear sc:mer,.lhere 

20 38
between the perfect and the close-packed solid, but only gradually. ' 

A calculation shows that only a small fraction of it appears across the 

melting transition, (see Fig. 5). 

Another way to study the number dependence of the computer results 

to see how they extrapolate to the behavior of an actual macroscopic system. 

Canparison with Linderr.ann f slaw, cited already, suggests that such an ex­

trapolated equation of state will agree well with experiment. Indeed, choosing 

an interatomic potential which fits an isotherm for argon in both the pure 

solid and the pure liquid phase at densities removed from the melting con­

39dition leads to predictions of melting on the computer in close correspon­

dence to the argon melting line. 

In this comparison with experiment, the intemlOh~cular IX)tential cannot, 

of course, be strictly considered as having a hard core. The question hence 

arises as to whether any soft repulsive potential by itself would still lead 

to melting. The softest core that one can conceive of, the one obtained 

at extremely high temperatures and pressures where the nuclei repel each 

other by a CouloITb force law, and where all the electrons can be considered, 

because of their high zero point energy, to form a uniform bac.K:ground. The 

problem is then whether, under the conditions similar to those found in the 

interior of white dwarf stars, a solid still formed and hence 
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there would practically ever be a solid-liquid critical point analogous to 

the liquid-gas one. 	 The location of a melting transition for this pll.r€ly 

40repulsive Coulomb gas not only indicates the absence of a fluid-solid 

critical point for it, but also for any other substance, since all r'epul­

sive potentials lie in between the two extremes of the hard sphere and 

Coulomb repulsions. The melting transition for the pll.r€ly Coulombic repul­

sive potential is in poorer agreement with LindeJ'nalID' slaw, as might be ex­

pected, since this very soft repulsive potential blurs the geometric aspects 

of melting. 

V. THE HIGH DENSITY REGION 

Althougrl the high density or solid reglon not the proper subject of 

discussion in a book devoted to fluids " is worthwhile to make a few brief 

rema.rks to amplify the previous description of fluids and melting. The 

first rema.rk concerns consideration of the van der Waals' model as possibly 

a more accurate description of a high temperature solid near its melting 

point than the customary harmonic oscillator model. The question of which 

one the more accurate depends on the importance of harmonic forces in 

any real situation, The van der tvaals approximation is diametrically opposed 

to the harmonic oscillator approximati9n in that represents the completely 

anha:rm::mic extreme. From the point of view of representing an asymptotic 

limit, as well as containing melting, the consequences of the van der Haals' 

model should be and have been partially worked out in the solid phase. 

The Limit this rnodel equivalent to the 10\,] ter.1perature harmonic 05­

cillator limit the close-packed one, since in either case the particles 

localized at their lattice position r:md hence the usual 

6of state. 	 The properties at denstheories the exact 
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slightly lower than the close-packed density should be expressiblt! in a power 

serles the free volume
31 

(volume of the container the volume occ\'l'~ied 

by the particles theroBelves, v-v). Accordingly,o 


pV/NkT 


where 0 = (v-v ) Iv and D is the number of dimensions. The first tenn on o 0 

the righthand side the one that can be proven to be asymptotically exact 

in the limit of close packing (0+0). However, unlike the low density region, 

where a power series in l/et can be shown to exist, and where the coefficients 

in this virial expansion can be theoretically evaluated, at high densiDJ no 

such theory exists. The coefficients, c, have however, been obtained 

ica1ly on the computer; they are given in Table II. These coefficients CLre 

compared to the ones given by the usual cell theory and the correlated cell 

theory. The accurate agreernent with the correlated cell theory indicates 

that this model nearly quantitative in the solid phase. 

An equivalent expansion about the close-packed limit can be cCL~ied out 

in three dimensions for spheres either about the face-centered or hexagonal 

close-packed structure. An. effort to detect a difference in the solid equa­

tions of state failed within the accuracy of the numerical method, which was 

about 0.01%. This result not unexpected in viev] of the previous remarks 

on the importance of various wavelength modes to the ther1lYJdyn,;lmic pn)p~rties. 

Since these two close-packed structures have the SaJIle of first 

and second nearest neigh.bors as well as the sarne overall density, not only 

the low-frequency, but, more significantly, the high-frequency spectra as 

well must be the s~~~. Hence, since only the intepmediatefrequency spectrum 

differs bet-ween· the two structlLr<€S, their thennodynaIric properties carl110t 

differ very DUch. The lack of imrortance of t~e low frequer.cy spectru'T! to 

the thE\Yffi.)dyna;nic properties is shown by the small dependence thennodyna'l'ic 

http:frequer.cy
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properties on the number of particles used in the machine calculations. 37 

In the larger systems primarily the low-frequency spectrum is changed in­

asmuch as longer wavelength fluctuations are possible, while the high-

frequency spectrum is unaltered from smaller systems. TIlen, as long as 

systems of rrore than 100 particles are studied, the number dependence of the 

results hardly detectable. 

For very precise thermodynamic results it is, of course, necessary to 

take correlated longer vlavelength rrotions into account. This shows up 

clearly in the entropy calculation in the close-packed limit, which, unlike 

the equation of state, is not correctly given by the cell theory. The 

reason for this that the functional form of the partition function must 

be of the free volume type but the coefficient mUltiplying the free voluTIe, 

that is the absolute value of the free volume, is unK:nOIN11. Hence a deriva­

tive of the logarithm of the partition function, that ,for example, the 

pressure,is given exactly while the entropy is not. Since the absolute 

value of the free volume depends on the extent of correlated motions, the 

entropy is in turn a measure of that rrotion. Even though the e.'l.tropy 

not'exactly calculated by the cell theory, it again must be emphasized that 

· 41. kabl b' bt he entropy at c1ose-packmg lS remar y accurate. It lS. 0 talned y 

integrat~lg the wachine determined equation of state all the way from the 

perfect state across the melting transition to close-packing. Even in 

the one-diwensional hard rod system where correlated motion play a relatively 

rrore importallt tole, and where hence the biggest error the cell theory 

e8t1~ate of the entropy at close-packing occurs, can be exactly calculated 

to only O. 3 1'11<:. The error largest for that syst~~, in one-

dlr.ension particles are least localized by their neighbors. Thus does 

not requi;r'€ as improbable an event as to set up 

a long wa.velength fluctuation. Ll t'vJO arld three at 
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close-packing as calculated by the one-particle cell theory is In erP~r by 

about 0.1 Nk. There is some tmcertainty (of the order of O. 05 Nk) in this 

estimate due to the tmcertainty of where to locate the liquid-solid tie line. 

To account for this entrDpy by taking larger and larger into considera­

41tion seems a slowly converging process. Although little entropy is carried 

by the lower frequency modes, it is necessary to go to cells of the order of 

100 particles to account for the 0.1 Nk carried by them in entropy, as the 

number dependence of the machine calculations shows. It would have been 

nice to have an exact theory for the entrDpy at close-packing ~3ince then 

the tie line between the solid and fluid branch the equation of state 

determined by molecular-dynamics could have been drawn on thermodynamic 

grounds. 

VI. THE LOW-DENSITY REGION 

In the low-density region where the energy density fluctuates and 

collisions involving small clusters of particles predominate, van der Waals' 

mean-field theory not applicable. Fortunately, the exact virial series 

theory is available in that region. 7 The viria.l coefficients, B , in the 
n 

series expansion of the compressibility factor 

-
can describe a dense gas accurately if a sufficient nu~er of terms In the 

serles Recently the seventh virial coefficient for hard c~l~ay~c 

1 1 d . M Carl' . 9was c~cu ate ,USlng onte 0 lntegratlon. The resulting seven-term 

agrees with the molecular-dynamic equation of state , within the latter's 

1% accuracy, up to half the close-packed density. At higher densities ( 

hckrd-sphere fluid is stable up to about two-thirds the 

density) the truncated series belot.; the dynamic re.sul ts a:; much as 



-29­

10%, as can be seen In Fig. 6. 

A popular game is to extend the useful reglOn of the virial or ()ther 

series by representing it as a quotient of two polynanials. The coefficients 

in the polynomials are so chosen that the series expansion of the quotients 

reproduces the known coefficients in the represented series. An example of 

this polynomial representation, called a Pade approximant, 1S 

1 + 0.554683x + O.0197l6x2 + O.018l05x3 
pV/NkT =~----------------------=-----------~ 

1 - O.4453l7x - O.3l6972x2 + O.15l085x3 

where x 1S B2 eN/V) • The series expansion of this expression reproduces the 

first seven hard-disk virial coefficients. It is obvious that many different 

9Pade approximants can be constructed by varying the number of terms in the 

numerator and denominator. These different possibilities do not always agree 

well with one another. Thus, for example, approximants of the type represen­

ted above, which reproduce only six terms of the hard-sphere virial series42 

generally agree better with the machine-generated equation of state than do 

the approximants that reproduce all seven known terms. For the seven-term 

virial series the Pade approximant to another function involving the equation 

of state was found to be more accurate: 

(pV/NkT) (l-p) = 
1 + 	 L c. pj 

. 1 ]
J= 

where p = v Iv. Figure 6 shows that not only is this form more accurate but 
o 

also that the results do not depend so much on the nuwber of terms used, 

that is on the combination of I and J used to fit the first (I+J+l) virial 

coefficients. This can be seen from Fig. 6 where the I,J combinations 2,2; 

3,1; 3,2;~4,2; and 3,3, Which reproduce 5, 6, or 7 virial coefficients, all 
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lie within the width of the curve. Thus as a practical sugge~)tion the lt~dst 

sensitive fonn of a Pade approxirrant to a function is likely to be the best 

one to use. 

Machine calculation of higher vir:~al ooefficients is not a particularly 

fast or easy way to generate numerical equations of state. The evaluation 

of the seventh hard-sphere virial coefficient took weeks of computer program 

writing as well as 25 hours of CDC 3600 computer time. In a comparable aJIDLUlt 

of time it is possible to generate 5 high-density equation of ,,,tate point~; I 

within an accuracy of 1%, using either the roolecular dynamic or HI',; Monte 

Carlo method. 

The evaluation of the seventh virial coefficient represents about the 

present practical limit of numerical work. The reason is that the number of 
(n) 

. 1 43 ib' h h" 1 ff" abo 2 2 I .. ch~tegra s contr utlng to tent Vlrla coe lClent lS ut n!, wnl 

is over 6000 for n equals 8. The bookkeeping problem classifying and oper­

ating on all of these graphs fonns in itself a major part of the task. It is 

chiefly this curnbersome classification problem44 which has so far prevented 

the evaluation of the 8th and higher terms in those simplified models wher~ 

45 46the integrals themselves are relatively easy to evaluate.' The class 

cation problem for the seventh virial coefficient 1S aln.:ddy (pJi 1:12 t im.:-ccn­

surning, accoLUltrc?d for a good deal of the associated with tl~~ 

Monte Carlo hard-sphere calculation. For more potentials, howevi~c, 

the calculation of the multidirr~nsional integrals the~selves represents a 

much more severe problem than the bookkeeping o:r.e. Here the computer can 

be of great help by utilizing Monte Carlo techniques. The hard-sphere 

is especially favorable for Monte Carlo application, because all the con 

tLl1g regions of configuration space have the same weight. In the presE;r-,c':: Qf 

an attractive potential is necessary for the evaluation of the 
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coefficients to introduce importance-sampling methods; that is sampling the cOI:figura­

tion space regions most often which contribute the largest part to the inte­

47gral. This procedure is analogous to the modified Monte Carlo method used 

to generate configuration-space averages. The transition probabilities in 

a Markov chain leading to the evaluation of virial coefficients would 1n­

volve Mayer f-functions rather than Boltzmann factors. Even for hard spht"~re~, 

where the integrals were evaluated not by a Markov chain but by the simpler, 

completely random sampling method, an obstacle to numerical accuracy Wd:3 

encountered because the near calcellation of positive and negative integrals 

in their contributions to the virial coefficient. It was hence found expedient 

to reformulate Mayer's original way of calculating virial coefficients to 

avoid much of this cancellation. 48 The rerra.inder of this section is devoted 

to describing this reformulation in detail. 

In Mayer's expressions for the virial coefficients the integration v~ 

iables are the particle coordinates while the integrands, which ?epEmd ex­

plicitlyon the potential function, ~(r.-r.), are products Mayer f-flli'1ctions,
1 J 

f.. 
1J 

exp[-~(r.-r. )/kT] -1. 
-1 -] 

In the nth virial coefficient all differcmt p,ro­

7ducts of f-functions occur Hhich link the particles together. Because fn 

is zero beyond the range of the interparticle forces) the L'Itegrand vanishes 

unless all n particles are close together, hence the name cluster 

For the hard-sphere example each f-function is -1 the particles linked by 

it overlap, and zero otherwise. 

A pictorial representation of the integrals as IIs tar graphs", USL'1g lines 

to represent f-fur.ctions lin.1.:.:ing the pClrticles (points in the graphs) together, 

was introduced by Mayer and has been adopted universally as a convenient and 

canpact shorthand notation. The virial coefficients tlyough B5 have the fo11G,\!­

ing form this notation: 
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In writing these expressions contributions from topologically equivalent 

graphs are grouped together; .that is, 3c:r---? replacesJ r +cy: + M , for
d---t c" ~" cV"i 

example. Only n-l particle coordinates appear as integration variables be­

cause the cluster integrals are independent of the location of the cluster. 

The cancellation of the Mayer integrals for the hard-sphere fifth virial 

coefficient, for example, is illustrated by pointing out that five of the 

ten integrals are positive, the other five negativc~.42,49 M error' (..if l't in 

each individual integral could lead to all error of over' 50 90 in the f cu­

efficient. The high dimensionality of the L~tegrals then 

because so rr.any grid poL~ts are required for accurate mllf.erical evaluation. 

If the integration were carried out in a straightforward ~ner, a 

an n-particle mlJnerical L~tegration based on ten different values of each 

. 3n-3 .. .coordlnate, would requlre 10 pomts ill the grld. Even for n as srr.all 

as five this size grid too large for present computers. Instead the use 

of the Monte Carlo integration allows the hig~er dimensional 

evaluated more efficiently. Furthermore, reformulaticn of the 

helps overcorre the effects of canc211ation and 

the results. 
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The reforrnulation is carried out by observing that many of the inter­

particle distances are not restricted by f-functions. A restriction can 

be imposed by introducing the function l' :: exp( -4>11<..1'), which i:> 1 for non<­

overlapping spheres a.'1d zero for overlapping sphen::s. If the identity 

l' + (-f) = 1 is arbitrarily introduced for each pair of particles not connec­

ted by f-functions, graphs with two kinds of lines - the new function, 1, is 

indicated by a wiggly line - in which all distances are specified, are gen­

erated by mUltiplying out all the factors of [1 + (-f)]. When this is done 

the unexpected result is that about half of the integrals vanish altogether. 

The reformulated expressions for B4 and B
5

, in terms of these "rrodified star 

integr'als", are 

] 

Besides being s numerous, the modified star integrals also vary greatly 

in magnitude whereas the Mayer integrals are all of the SaIT£ order of 

tude. For one-mTnensional hard rods all but one of the integrals contributing 

to each virial coefficient are zero. The non-vanishing is the 

one shown in the above expressions for B4 and B ; it contains no 1'-fW1ct
5 

and is called the "ccmplete-star" integral. The complete-star integral HI 

one, two, and three dimensions now makes the contribut to B 
-~-<- n 

at least the seventh virial coefficient, while ill the Hayer f~ fU.nct 

lation this same integral ,JaS the srrallest contributor. All 

the f-ftLTlctions are smaller than smallest t1ayer 

cancellation is a less serious pro':Jlem in the refo~1'wlated express 
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All star integrals, with f-functions, or modified star integrals, with 

f and 'f-functions, can be calculated by a straightforward "Monte Carlo" pro­

cedure, as illustrated by the evaluation of J J f12f13f23dx2dx3 for one-­

di.m::nsional hard rods of length o. Because the integn':ll1d (--1) 3 \..;hen all 

three pairs of reds overlap, and zero otherwise, the integral is (-1) timt's 

the (two-d.:i.Jre.nsional) volurn.e of configuration space in which all thn~e n:xlf, 

overlap. Random configurations JJ1 a somewhat larger volume of configuration 

space, corresponding to the overlaps of pairs 12 and 23, with 13 not speci­

fied, can easily be generated. Particle 1 placed, for convenience, at 

the origin. Then random nt.mJbers distributed uniformly from -0 to +0 can 

be used to place particle 2 so that these two particles overlap. Particle 

3 can then be placed anywhere between x2-0 and x2+0 so that f23 is also -1. 

The diamond-shaped region of 3-particle configuration space corresponding 

to these conditions is outlined in Fig. 7. The fraction of configurations .. 
in which f13 also -1 (configurations JJ1 the shaded hexagonal region of 

Fig. 7) is then tabulated. The ratio of the shaded to the total aT€a is 

an estimate the ratio of the two integrals: 

-JJf12f13f23cix2cix3 

=11 f12f13cix2cix3 

From the Monte Carlo estimate of the ratio and the kno",m v~ue of the denom­

2inator, 40 , the nurn.erator can be calculated. This sarre principle has been 

used to calculate the ha...-rd-sphere integrals contribut 

Because each integral contributing to 8 involves at least the f-funct
5 

a PClI't of the volurne Ln the 12 

configtly'ation 

o. Pandom configurations are thu~; gene!:.'dt:t~d '::h ich ':::::1t­

f45 = -1, and subsequently the o_f t/Jtci: ccr:­

figurations satisfYLlg the restric~ions L~posed by 
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are 

equals the fraction configurations with Irlsl less 

Ir141, Ir241, Ir2S I) and Ir3S1 greater than a. The errors in Monte Carlo 

integration can be estimated accurately from the statistical fluctuations 

since the relative error in the values of the integrals inversely pro­

portional to the root the number of trials. It is that long 

runs are needed to obtain four or five significant figures. present 

values of the first seven virial coefficients for disks and spheres are given 

in Table II. The statistical errors in the 1953 Monte Carlo calculations47 

of 8 for hard spheres and hard disks were estimated to be Later more
S 

42accurate calculations ,49 showed that the errors were +4% for spheres and 

-6% for disks. The s imp licity and accuracy of error estimates an advan­

tage Monte integration over alternative techniques on trun­

eating series expansions of the integra'lds. 

To a concrete example the advantage of the f' recipe over Hayer's 

recipe for numerical virial coefficient calculations, consider the calculation 

84 for hard spheres, using random configurations with the overlap 

tions f12 = f23 = f 34 = -1. The various i'1ayer stars that can be gery~t'C:lted 

from this starting condition are 

t r 17 n 7T K-f ~-c 
--® ' cW ,J5<{, L:{ ,and cV-(1 

while in the reformulated ~ calcuJ..ations only those config'..lrations con;:ribu­

tmg to Jxr and M 
are tabulated. f-function e~resslon for B4 has the form 
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Expressing each of the integrals in this expression in terms of wiggly-line 

integrals, gives the result 

By rewritL~g the f-function results one finds that the calculation includes 

a sum of t1.ree terms, shown in curly brackets, which is known to "be exactly 

zero. The error associated with this unnecessary work: is eliminated by using. 

the reformulated version. 
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TABLE I 


of the va.'1 del' ~vaa1s constant as a function of density for a 

square-vlell J:.;otentia1 

v/v a *' (1.5) a/loS)
0 l 

00 7.04 7.04 14.31 

7.0 8.06 9.11 15.44 
-----~ 

4.0 8.82 10.43 15.98 

3.0 9.31 11.09 16.18 

2.5 9.63 11. 26 

2.0 9.91 10.65 15.85 

1.7 9.91 8.95 15.23 

1.6 9.82 7.85 14.87 
~-

1.42 9.40 

1. 35 9.09 

1.00 9.00 

*'IDe number in pan::nthesis indicates the ra.nge of the potential. 

7.273 + 1. 249 6.087 4.976 a (1. 5) 7.035 + v/v > 1. t3= -V7Vl 0 
0 (v/v ) (v/v ) (v/v )

0 0 0 

aa
l = (v/v )a2 0 a(v/v ).

0 

+ 9.145 7.452 9.774 0.889a (1.8) = 1W..312 + + v/v > 1. 5
l 0(v/v ) (v/v ) (v/v )

0 0 0 

a.'1d 1-11 units of sv , where £ the depth the 
0 



-38­

TABLE 

High density expansion coefficients of the compressibility factor' 

pVfNkT, for disks. 

c o 

Molecular dynamics 1. 89 0.8 > a 

Cell theory 1. 56 -0.1 > 0 

Correlated cell theory 1. 89 0.8 > 0 

TABLE III 

The virial for hard spheres and disks(a) 

82fb 8 fb 2 
3 

8 Ib3 
4 

485fb 
c: 

Bib;:)
6 

B Ib6 
7 

spheres 1.0000 0.62500 0.28695 0.1103 0.0386 0.0138 

disks 1.0000 0.78200 0.53223 0.3338 0.1992 0.1141 

(a)b the second coefficient: 1 2 - no
2 for 2 3 

al1d "3 no 
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Fig. 1 The compressibility factor versus the reciprocal temperature 

(reduced by the potential depth) for a square-well potential of a range 

50% larger than the hard core diameter at vivo of 2. The heavy curve with 

the circles represents the computer data, while the light line represents 

the theoretically calculated high temperature slope. 

The compressibility factor versus the reciprocal temperat1.lre 

(degrees Kelvin) for argon at 35.7 cc. The circles represent experimental 

data and the two straight lines are dra'\NI1 as the slope of the curve at the 

two eXtremes of the temperature range. The change of collision diameter 

'W:i:th temperature is illustrated in that the lower temperature intercept 
o 

corresponds to a diameter of 3.15 A while the high temperature one corres­
o 

ponds to 3.06 A. 

Fig. 3 The free path distribution for a square-well potential at reduced 

temperatures of 1.4 and O. 6 divided by the free path distribution for hard 

spheres at the same vivo of 1. 6 vs. the free path length measured in terms 

of the kinetic mean free path, 71. ' The T* of 1. 4 curve is nearly in a.gree­
0 

ment with the van der Waals I theory prediction of a horizontal line at one, 

while the T* ::. 0.6 is in remarkable agreement with the simple hard sphere 

kinetic theory prediction (dashed line). This Figure is taken from Ref. 23. 

Fig. 4 The probability of an excursion of a harq. di sk from its lattice 

site at AlA of 1.26 in 
.~ 

an· 870 particle system after 2,000,000 collisions aso 

a function of radial distance measured units of the interparticle distance. 

The curve refers to a directional cone with an apex of one degree width pointed 

directly at the center of a neighboring particle, The circles refer also to 

a wedge of one degree but pointed 15 degrees away from a line joining the 

two neighbors while the one degree wedge represented by crosses points 30° 

away from· a line joining "the two neighbors which means that it points exactly 
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in between nIO nearest neighbors to the central. particle. The ctlr'Ve to 

the the line is same for all these va.r~ow:; one d('!i:r,.~e 

The ones to the right of the dotted line an.! o:..mtinul:d but drawn 

with a 100 larger so as to see greater detail. 1he peak at elI! 

interatomic distance the curve and the lack of one in the wedge represen-· 

ted by the crosses indicates sliding in directions of lines of atoms. 

The solid and fluid branches of the hard sphere equation of state. 

The horizontal line a guess at the tie line connecting the two and 

the dotted extensions of the solid and fluid branc..'1es represent metastable 

states generated on the computer. The area of the rectangle bounded by the 

two vertical lines at ends of tie line then a measure of the en­

tropy melting. The communal entrDpy of melting is approxiIIBtely equal 

to the hatched area, namely difference between entrDpy of melting 

and the entropy if the had remained a It can be seen that the 

communal entropy lS only a STall fraction of the entrupy of melting. 

The equation of state for a hard sphere 111e solid C!L.rve 

widens at density to cover the range of calculated using 5, 5, 

and 7 coefficients Pad2 approxi.Dants to pVIN'.rd' ( ). 1he circles 

represent molecular dynamic of pV IN}.;:T calculated from the 

truncated virial series of 1 through 7 terms at 2/3 of the 

density are indicated by filled circles labeled 1 through 7 near the 

righthand side of the figure. 

Configuration space for three ha....rd rodc-i G" The coo:r:'\.:i,n­

ates of 2 and 3 are measu....red relative to that of 1 
,Jc. 

is at origin. In the outlined area f12 3 lS non-\1anishirlg; in th'2 

non-vanishing. 
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0) 

82=-+ fff[exP(-cPI2/kT)-I]dxzdyz dZZ=-tf[O-O]df2; 
-0) 

83=-+ffl6Jdf2df3; 

84=-tIff +6 ~+ ~]df2dr;df4; 


85=- 310ffff[12 U +60~+'OR+'O* +6°*+302 +30~+15(*+ lomr+*J drz dr; df4 drs' 
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