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I. INTRODUCTICN

It has been evident ever since the formulatioﬁ of statistical mechanics
that progress toward a quantitative theory of ligquids is limited by mathema-
tical and not conceptual difficulties. The advent of large-scale computers
has vastly increased the power of numerical, if not mathematical, techniques
and it is therefore natural to ask what additional contribution to the under-
standing of liquids can be made through the computer. In this review we
wish to discuss the impact the numerical methods have had in a general way,
referring to the literature or future publications for most details. The
numerical method principally referred to is the molecular dynamic calculation
although comparisons will be made to Monte Carlo calculations.

This impact can be discussed only if the essential limitations of the
computer schemes are kept in mind. On¢ of these is that the potential of
interaction between the particles making up the system is pair-wise additive.
Although this is not a necessary resfriction, all the investigations so far

have employed it because of the great simplification that ensues. Another

enormous complication that has not been effectively overcome is the description

of systems that behave quantum mechanically. Although schemes to deal with
this situation can be formulated, they are all cumbersone, particularly in
taking the wave-function symmetry requirements of quantum statistics into
account. Another limitation concerns the relatively small number of degrees

of freedom that can be dealt with on even the largest conceivable computer.

This limitation does not twm out to be serilous in most situations and can

in fact be turned to advantage by studying how various properties depend on

the number of degrees of freedom. Finally, the relatively short physical

time for which molecular dynamics calculations can be pursued limits applica-
tions to processes having short relaxation times, thus, for example, exclu-

ding studies in hydrodynamics.
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With these limitations, the computer can be used in essentially two ways
after restricting the subsequent discussion to classical systems. Although
these two ways are not really distinet, it is necessary to distinguish be-
tween them because of the present lack of quantitative knowledge about the
potential of interaction. One can either determine the nature of the actual
intermolecular potential by comparing computer results with experiments or,
alternatively, introduce simple idealized potentials to test and improve
theories. Since in most situations the computer calculations for a given
potential are at least as accurate as the available data, any quantitative
comparison to experiment is necessarily limited by the accuracy with which
the potential is known. Hence under these circumstances the best way to use
the computer is to find the effective pair potential that fits the data.l
This is a familiar process in statistical mechanics, previously used whenever
analytical expressions were available as, for example, in the solid phase
at low temperature2 and in the dilute gas phase.3 The computer permits ex-
tension of this process over the entire phase diagram and to either transport
or equilibrium data. The effective pair potential so obtained can then be
compared with pair-wise additive potentials obtained either theoretically
or by direct scattering experiments.l For insulators, such as argon, the
difference between the effective potential and pair-wise additive potential
appears to be small; an accurate analysis is required to discover the devia-
tions. For ionic systems, such as salts, and especially metals, the effective
potential differs much more from the pair potential. In any case, through
the use of the computer it is possible to reduce the quantitative deécription
of actual systems to a quantum-mechanical calculation of the effective pair
potentizl as a function of temperature and density. though this =2ffective

pair potential is difficult to calculate, it represents a us:eful intermodizato
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function with which to correlate various properties under given conditions.

The alternate use of the computer, to be explored here, is to abandon
temporarily comparison with experiment and instead to study systems which
are simple enough to aid theoretical developments. The simplification can
only involve the choice of a particular form of a strictly pair-wise additive
potential, which nevertheless contains the essential features of a real poten-
tial. The computer then generates the properties of this system (comparable
to experimental data) together with much more detail about the microscopic
behavior than any conceivable experiment could obtain. This extra detail is
most valuable in checking models and developing more accurate approximations.
As far as the theory of liquids is concermed these computer experiments can
accurately establish the properties of a simple model which serves as an "ideal"
liquid comparable to the perfect gas and harmonic solid abstractions. It is .
the lack of such a model amenable to analytical treatment that has made the
description of liquids so difficult. The computer generation of detailed
properties of this "ideal" liquid can then be looked upon as tabulation of
functions with which further analytic deQelopments can be made. Thesé functions
can be used as bases for expansions,q just as the perfect gas limit serves as
a basis for the virial coefficient expansion.

What should this "ideal" liquid be? It is clear from past work that
neither the perfect gas nor the harmonic solid is an accurate enough represen-
tation of the fluid sta;e to serve even as a good zero-order approximation.
This is evident from the later discussion which shows that the cell theories,s
frequently used for the liquid state in the hope that a solid-like descripticn
is adequate, are exact only in the limit where a particle is completely con-
fined to its lattice site.6 This means that cell theories are accurate only
at 0°K or; at any finite temperature, ét high enough density sc that the

kinetic energy is a small fraction of the total free energy. In other words,
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cell theories give correct limiting expressions under conditions far from
the liquid state. Although, as will be seen, series expansions of thermo-
dynamic properties starting from the exact limiting behavior of cell theories
can be made, these series do not converge into the liquid state. An addi-
tional difficulty associated with this expansion is that the coefficients
have not yet been theoretically formulated.

For the gas phase, the expansion away from its ideal state has long
been known as the virial series‘? In spite of much effort only a few coeffi-
cients have been calculated. Many more terms would be required to describe
the liquid state adequately, because the perfect gas state is so far removed
from the liquid state. An additional problem is that convergence of this
expansion into the liquid state is not assured even if all the terms could
be calculated. Convergence of the series has been established only for a
very dilute gas.8 Although efforts to evaluate the general term in the ex-
pansion have not yet led to concrete results, the computer can and has been
used to evaluate a few higher virial coefficiem:s;g these calculations will
be discussed in detail in a later section. Their relevance to a theory of
liquids lies mostly in the establishment of an exact expansion with which
approximate calculations can be compared. However, even this comparison
can lead to pitfalls since an approximation which does not do well at low
density can be quite adequate at high densitylo and vice versa. As far
as using the virial coefficients to obtain information on the intermolecular
potential is concerned, the calculation of the higher virial coefficients
has far outstripped the experimental ability to obtain them accurately.

Since neither the sclid nor the gas is an adequate basis for the ideal
liquid cne might be tempted to describe the liquid as a judicious admixture
of the harmonic solid and the perfect g&s.ll This 1s not very satisfactory
either since no admixture represents realistically the rmost probable state of

-
H

a fluid. Such scheres should be looked upon as interpolation formulae Letweer
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the gas and solid state with empirically determined values of the amount of
admixture so as to reproduce some liquid properties. These interpolation
schemes can then be useful in predicting other liquid properties.

The hope left now is that the one remaining extreme state, at high tem-
perature and high density, can serve as an ideal liquid. There is indeed
experimental evidence to support this hope. The primary piece of evidence
is that at.constant density the structure of a fluid, as measured by the pair
distribution function with x-rays, is nearly independent of temperature.l2
Thus, the high-temperature behavior of a fluid can be used as the "ideal
state, which brings with it the great simplification that only the repulsive
part of the potential nzed be considered in determining the structure and
many other properties of the fluid. The attractive part of the potential,
if it contributes at all to a given property, need be considered only in the

rdugh sense that it contributes some mean field. Further support for this

mean field contention can be obtained by observing that the pair distribution

function is nearly independent of the type of attractive forces. TFor example.

even the structure of metallic and ionic systems is nearly the same as that
of insulating materials at corresponding densities. For these systems with
greatly different attractive forces but similar repulsive forces not only is
the structure nearly the same but so is, for example, the viscosity or mass
diffusion coefficient.13 Thus the crucial idealization of all ligquids is
that their primary behavior is determined by the steep repulsive potential,
which can best be itself idealized by an infinitely steep one, namely a hard
sphere potential. |

The above description of a fluid is one of the oldest in existence, and

S . . 4
1s commonly associated with the name van der Naals.l The van der Waals

picture of a fluid corrects the perfect gas theory by teking into account

two factors. One of these is that the volume occupied by the particles themselves

.
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-at liquid densities can no longer be neglected compared to the volume of

the system, so that the accessible volume is the total volume diminished by a
covolume, Nb. The other factor is that the attractive energy can be simply
treated as a constant cchesive energy,:so that the pressure is diminished

by the internal pressure corresponding to this attractive energy density.

The applicability of van der Waals' model of fluids to transport theory
has not been so widely recognized. Here again the computer had and will
have a central role in establishing the transport properties of the 'ideal"
hard sphere fluid. The total attractive potential, to the extent that it
is uniform, will not affect relaxation processes at all. The van der Waals
Vpicture corresponds simply to the kinetic theory picture of transport, where,
however, at higher density the collisional flux due to intermolecular forces
can no longer be neglected relative to the kinetic flux due to molecular
streaming. The Enskog theoryls of hard spheres treats both kinds of fluxes
but, inasmuch as it involves basically an extension of the Boltzmann equation
to high density, the molecular chaos approximation is invoked. The numerical
consequence of this approximation can at present be aséessed only by computer
studies.

The overall impact of the computer studies is then to revive two very old
models, van der Waals' and Enskog’s, for calculating the equilibrium and trans-
port properties of fluids. In the subsequent sections it is shown in mcre
detail how various compﬁte; experiments have helped to confirm the basic physical
notions behind these early hypotheses and how these models need to be improvec.
It is interesting to comment that many of the fluid theories proposed 1n recent
years were motivated primarily by the fact that the model could be represented
by a relatively simple mathematical form and that once this restriction to
simple mathematics is removed through the use of the computer, it becomes fea-
sible to find out what physical processes are important contributors to varicus

properties.
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IT. THE VAN DER WAALS' MODEL

The van der Waals' equation can be written in the following form

pV v a

NKT ~ v-b = vkT

from which it can be seen that §§T~is made up of two terms. The first one,

;gs, is the purely geometric covolume factor, which accounts for the packing

of particles in a container. It is this term which the van der Waals' theory

approximates very crudely and which can now be replaced, through the data

from computer studies, by the value of —%%T for hard spheres.16 The second

factor accounts for the change in pressure due to the fact that the cores

can be considered as being immersed in a constant attractive potential, - %u
The above form of the van der Waals' equation and the physical basis

on which it is derived both suggest what a theoretical derivation shows ex-

plicitly, namely that an expansion in powers of the reciprocal temperature

is being represented with the square and higher terms left out. The theoretical

devivation“ of the van der Waals' equation is based on treating the attractive

potential as a perturbation on the hard core potential. In this derivation

the expansion parameter is the strength of the attractive potential reiative

to KT. First order perturbation theory leads to a theoretical expression

for a. Insofar as the expansion parameter is small, the higher texrms can be

neglected and the van der Waals' equation is correct in assuming that the

attractive energy does ﬁot modify the structure of the fluid as determined

by the hard sphere interactions alone. Because the pair distribution function

is found to be nearly temperature independent, it can be anticipated that

the higher-order expansion terms are quite small. - An alternative way to derive

the van der Waals' equation rigorously is to make the assumption that the

. : 17 . .
attractive forces are weak and long rangs. The weal conditinn insures that
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the higher terms in the expansion do not appear. The long-range condition

is necessary to make a constant. If the attractive potential is of long
‘enough range, the potential energy will not vary from one configuration of
the particles to another, making rigorous the concept of a mean field leading’
to a constant energy density.

In order to verify the van der Waals' equation experimentally, the con-
ditions under which it 1s expected to be accurate must be established. TITnas-
much as the maximum depth of the potential corresponds to a temperature
slightly smaller than the critical temperature, the weak condition is satis-
fied down to a temperature soméwhat in excess of the critical one. Further-
more, the potential can be considered long range whenever the density is
high enough so that the particles are on the average separated by a distance
less than the range of the forces (so that the attractive potentials of neigh-
boring particles all overlap). Under these circumstances the attractive
potential energy does not differ for most of the more probable configurations.
Since the range of the forces is typically 1.5 times the diameter for the
rare gases, the attractive forces will all overlap when the volume is less
than (1.5)° times the 0°K crystalline volume. This crystalline volume does
not differ much from the liquid volume at the melting point. Since the
critical volume is roughly 3 times the melting volume for the rare gases,
the van der Waals' theo?y should be accurate at densities and temperatures
greater than the critical density and temperature.

It is now possible to verify the applicability of the van der Waals'

model by checking upon three of its predictions. First of all, a plot of

%;T-vs.'%»should give at high enough densities a straight line down to tem-

peratures near the critical temperature and the infinite temperature inter-
cept should be the hard sphere equation of state. This can be demonstrated

best by computer studies because a repulsive potential can be introduced that
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has a hard core. In actual systems the repulsive potential is somewhat
Soft,l so that the effective core size shrinks as the temperature increases,
causing deviations from straight line behavior. Furthermore, extrapolation
to infinite temperature is not to be taken literally for actual systems,’
because the system disintegrates at high temperatures into electrons and
nuclei. Nevertheless, in order for the van der Waals' model to be useful,
the concept of an effective core size must be definable over a considerable
temperature and density interval. Fig. 1 demonstrates that the straight-
line prediction of van der Waals is verified for a square-well potential on
the computer down to temperatures near the critical temperature and that de-
viations even down to liquid temperatures are not very large. This system
had a square-well potential with a range of 1.5 times the hard core diameter,
a critical temperature, T,* of about 1.3 well depths, and a critical volume
relative to the close-packed volume, vao, of about 4.5. For actual systems
the equivalent graph, Fig. 2, shows a slight curvature at high temperatures,
which can be traced to the above mentioned effect of a decreasing core size
with increasing temperature; the latter effect was estimated from the approxi-
mately known pair interaction potential in relationship to the kinetic energy.
Although the effective core size was found to be dependent on temperature, it
was independent of density, as it must be in order for the concept to have
meaning. In practice, the effective core size is determined by a comparison
- of the high temperature intercept of %gT-at a given density with the known
hard sphere equation of state. The computer thus made an essential contribu-
tion by calculéting accurate hard sphere equilibrium properties which could
replace van der Waals' crude approximation. , ;

The next prediction of van der Waals that a is constant, not only inde-

pendent of temperature but density as well, could also be investigatad threough
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computer calculations. Perturbation theory gives an expression for a in-
volving an integral of the product of the hard sphere radial distribution
function and the perturbation potential.u The hard sphere radial distribu-
tion function has been tabulated from éomputer runs at various densities, and
the attractive part of the square-well potential was taken as the perturba-
tion potential. The straight line drawn in Fig. 1 corresponds to the value
of a calculated in this way. The agreement with the points at high tempera-
tures (obtained directly through the virial theorem) merely illustrates
consistency between the two different types of computer calculations. Table I
then shows how this value of a varies with density. The column labeled a; is
the above mentioned integral representing the excess internal energy due to
the attractive perturbation ﬁotential. If a, were independent of density

the van der Waals é_occurring in the equation of state, a5, would be identical

to a, and therefore also a constant. Table I then shows that to a good

1

approximation a, is a constant over the entire density range of the system

1
from infinite dilution to the close-packed solid. The approximation is even
more accurate in the restricted range of densities appropriate to the van der
Waals' médel, namely densities greater than critical (vao < 4,5). TFor pofen—
tials of longer range, a; was found to be, as expected, more nearly constant
over a larger density interval as Table I shows.

At low densities a1 has been evaluated by substituting the known virial
expansion of the hard sphere radial distribution function in the integrand.

At high densities a, approaches the value of half the number of particles

1
which lie within the range of the forces of a given particle. At intermediate
densities the integral was evaluated numerically. Inasmuch as ay is nearly
constant the agreement with the value of a, and its near constancy is to be

expected. ~ Strictly speaking, however, a4 is only constant within the range

of the second virial coefficient and hence ay and a, agree only exactly in
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the low density limit. Nevertheless, the van der Waals' assumption of a con-
stant energy density is well justified.

The third prediction of van der Waals, that the coefficient of the next -
term in the expansion in powers of the reciprocal temperature is small com-
pared to a, could also be verified. The graph in Fig. 1 shows that the de-
viations from the van der Waals equation are small even at low temperatures
indicating that the sum of the contributions of all the terms beyond the
ones included in the van der Waals theory is small compared to a. That this
should be so can also be made reasonable on physical grounds. The terms
omitted by van der Waals depend on the lack of uniformity of the attractive
potential sea, that is on the fluctuations in the attractive potential energy.
These fluctuations are in turn related to the compressibility of the system.
Inasmuch as a liquid is quite incompressible, the omitted terms should be
small.

The exact expression from perturbation theory for the coefficient of the
square term in the expansion in reciprocal temperatures involves the quadru-
plet distribution function and therefore, for evaluating its order of magni-
tude, the superposition approximation has been utilized. This leads to the

following equations of state at various densitiesl8

= PV - y.g3 - 1:88 _0.04
v/vo 5.136 e - 88 = 5
T T
v/v, = 3.196 po=2.67 - 22 000
T T
v 5.35  0.35
v/v = 2.097 Mor 7 4,38 - T -
T T
v/v_ = 1.728 PV = 5,56 - S5t 042
o NkT T T e

These expressicns utilize the superposition approximation for all the terms,
which is sufficiently accurate for present purposes. The perturbation poten-

tial is the attractive part of the lennard-Jones 12-6 potentialj; the hard
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core diameter corrésponds to the distance at which the potential changes sign.
The van der Waals' a term, corresponding to the middle term on the righthand
side, can be rewritten in the same units as before (the coefficient of
[T*(%wJ]-l) as 9.7, 10.5, 11.2, 11.3, respectively, in order of decreasing
Volumg. This not only demonstrates the constancy of van der Waals a but also
its near independence of the nature of the attractive potential (by comparison
to the numbers given for the square-well potential in Table 1) as long as

the range of the forces is comparable. The major point of the above equa-
tions is, however, to show that the coefficients of the last term are an
order of magnitude less than those of the van der Waals a term.

Now that the successes of the van der Waals theory have been enumerated,
what are its failures? Its greatest failure is that it is unable to predict
accurate normal liquid properties. The reason for that is the near cancella-
tion of the hard sphere term by the internal pressure term at low pressures
and temperatures, as the above given equations of state clearly show. At
temperatures of the order of the well depth‘(T*ml) the first two terms nearly
cancel, so that the pressure is determined by the higher order terms in spite
of the fact that these were shown previously to be small. In other words,
whenever the pressure is small, an exceedingly accurate solution to the many-
body problem is required before quantitative results can be obtained; a feat
not yet achieved by any theory. However, this near cancellation of the two
terms in the van der Waais' equation does not occur for other thefmodynamic
properties, such as the internal energy, nor, as shall be seen, for the trans-
port properties. For these the van der Waals' theory is accurate sven under
normal corditions. This, for example, accounts for the success of Hilderbrard's
theory of solubility which is based on energy density calculations.lg For the
equation of state, the van der Waals' theory should be ussd only at high tem-

perature. In its prediction of high temperature properties it is as successful
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a theory as any, provided account is taken of the changing diameter due to
the softness of the repulsive intermolecular potential.

The van der Waals' theory also appears to fail in the very small region
of long-range correlations and large-scale fluctuations surrounding the
critical point. This failure is not surprising in view of the previous re-
marks that the corrections to the van der Waals' theory depend on the extent
of the fluctuations. The computer calculations cannot shed any light on this
point, since, in the finite systems studied, the fluctuation are seriously
distorted. In fact, a preliminary analysis of the critical point for square-
well molecules indicates that the computer systems most probably obey van der
Waals' equation very accurately. Not only do the computer calculations pre-
dict within the present accuracy a parabolic coexistence curve but they also
give a van der Waals' loop in the coexistence region for the microanonical
ensemble used. This effect, due to the surface tension, is to be expected
for such systems unless the numbér of particles and the volume are allowed
to go to infinity. Inasmuch as the Maxwell equal area rule can be rigorously
justified for a van der Waals' system,l7 the establishment of the coexistence
region from the computer runs presents no prcblem. Finally, it must be pointed
out that although the theory fails in the tiny region surrcunding the critical
point, the van der Waals' equation gives a more accurate value of %%T»at the
critical point than many more sophisticated theories.5

Previous to the coméuter studies, the van der Waals theory's greatest
failure was thought to be the absence of the melting transition. That phase
transition could only be contained within the hard sphere part of the van der
Waals' equation, if that theory was to predict melting. The computer studies
have made it exceedingly plausible that hard spheres do indeed have such a

. 20 .. . . . .
hase transition. This 1is the single most important contribution computers
(ol P FY
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have made to the understanding of equilibrium properties. Together with
the other factors mentioned before, the computer transition has reconfirmed
the van der Waals' picture of a fluid. Before discussing melting in detail,
the van der Waals' picture as applied to fluid transport coefficients will
be discussed in the next section. After that, the discussion of melting
will naturally lead to a discussion of the behavior of high density systems
in the solid phase. Finally, a special section devoted to the region where
the van der Waals' equation is inapplicable, namely the low density region,
will discuss the virial series and the calculation of virial coefficients by

an efficient Monte Carlo procedure.

ITI. TRANSPORT PROPERTIES

Existing transport theories can be classified as either low density
theories, which attempt to make the equivalent expansion in powers of the
density for the transport coefficients (from the low density Boltzmann limit)
as was done for the thermodynamic properties by the virial series, or high
density theories, which involve some postulated predominant relaxation
mechanism. The low density theories have gotten entangled in the mathemati-
cal difficulty that the transport properties cannot be expanded in powers
of the density;zl a more complicated expansion is required. Although this
observation is extremely interesting in its own right, the physical mechanism
leading to this behavior does not appear to be an important contributor to
relaxation processes at any density. The physical mechanism involves cyclical
collisions in which particles are correlated through having had common collision
partners in a chain of events. The molecular dynamics calculation could be
used to check upon the probability of such events as a function of density
by analyzing the sequence of collisions for closed lcops.

The prevalent high density or fluid transport theories assune machanisms
that contradict the van der Waals picture. Whereas the van der Waals' model

predicts that the trajectory of a typical particle involves a series of hard



core collisions unaffected by the presence of the attractive forces, recent
models for the calculation of the friction constafit occurring in Kirkwood's
transport theory of liquids have postulated Brownian motion trajectories
between hard core collisions.22 The Brownian motion is said to be caused

by many small momentun changes induced by soft collisions, that is by
Yeollisions" with the attractive part of the potential. Thus, instead of

the typically linear or free flight trajectory between hard core collisions
of the van der Waals' model, a tortucus path involving many small changes inb
curvature between the large momentum changes of the hafd core collisions is
thought to be more(representative. From a theoretical point of view the
difference between these two modelé is the difference between completely
uncorrelated successive hard core collisions and the van der Waals' correla-
ted collisions. Although, naturally, reality lies between those two extremes,
molecular dynamics computation on the frequency of different types of collisions
strongly favors the van der Waals' picture.23

Another view of a typical trajectory of a particle requires an activation
24

‘energy for flow, The motion of a particle in this model could be abstracted

as consisting of a large number of oscillations about some equilibrium posi-

tion in a cell made up of its immediate neighbors with a rare but large jump

(comparable to its own diameter) to a new eguilibrium position. The free path

distribution obtained from molecular dynami0525 shows that this popular trans-
port mechanism does not.contribute significantly to molecular flow in fluids.

Even in a situation favorable for this mechanism, namely in the solid phase,

a study of interchanges between holes and particles by molecular dynamics has
shown that large jumps do not have any significant probability. The inter-

changes were, to be sure, found to be rare, but this rarity need not be ascribed

to an activation energy in the usual sense of the word. The improbability of
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such an interchange can be explained on the basis of the van der Waals'
model on purely entropic grounds as due to therinfrequency of highly corre-
lated motions among the neighboring particles to a hole in which, by a
succession of relatively small moves, a particle can slip by its neighbors
into the hole.

On the positive side, the van der Waals model of transport was tested
empirically with the additional approximation of molecular chaos; that is,
for the transport theory, Enskog's hard sphere theory was used,26 For a
comparison with experiment, it was then only necessary to choose a hard
sphere diameter, using equilibrium data as described in the previous section.
The numerical agreement within better than 10% for a completely a priori
theory was remarkable. Furthermore, the deviations from experiment could
be qualitatively understood in that at high temperatures corrections to the
Enskog theory of hard spheres predominate while at low temperatures these
corrections are nearly cancelled by the ones due to the van der Waéls
approximation of a constant energy density. The important point, however,
is that the corrections are small, and hence that the major contributor to
flow is simply motion in small steps (of the order of the mean free path) by
a succession of uncorrelated collisions between pairs of particles. Any
correlated motion or special mechanism is superimposed on this major contri-
bution, and makes a relatively small numerical contribution to the total
flux. This state of affairs implies that it is easy to estimate the order
of magnitude of the transport coefficients, and that by numerical agreement
with experiment it is hard to prove or disprove any particular mechanism of
flow. Thus, rather accurate experiments, such as @recise neutron diffraction
experiments, are required to detect which of the many special mechanisms

that could contribute in fact do. It is here that the method of molecular
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dynamics, with its better time and space resolution than any conceivable
experiment, can be of enormous help.

The only serious limitation of the computer studies is that spacial
correlations extending over much more than 10 molecular diameters would be
hard to take into account, because only finite numbers of particles can be
handled. Similarly, temporal correlations extending over periods greater
than 1000 mean collision times would be hard to detect, because such calcu-
lations would take too long. Inasmuch as the relaxation time for the pro-
cesses leading to the various transport coefficients are between one and
two collision times, these limitations do not appear to be serious. Some
preliminary studie527 have been made of the velocity autocorrelation function
of hard spheres in order to discover the nature of significant correlated
motion at various densities. Much more work is being carried out for this
as well as for other autocorrelation functions and for different inter-
molecular potentials.

The predominant deviation from a Markovian process that appears at
high density is an anticorrelating motion previously termed ”backscattering"27
It signifies the higher than random probability that a particle will have
its direction of travel reversed at high density by being scattered back by
its surrounding neighbors. The physical effect of this is to slow down the
forward flow of particles, thus leading to a decreased diffusion coefficient
or increased friction éonétant. As mentioned before, the comparison of
experiment with the Markovian theory at high temperature and density led
indeed to predicted transport coefficients which were too high. Another and
quantitatively less important structure in the velocity autocorrelation
function which was recently observed at intermediate densities is a positively
correlated motion occurring gquite late, that is, after a time corresponding

to about 10 mean relaxation times. It occurs when a hot particle collides
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with its neighbors, creating a hot and low density region which persists
so long that the formerly hot particle upon being reflected back into that
region still finds its density low, and hence preferentially travels on in
that direction. This example is a vivid demonstration of the details which
a mplecular dynamics calculation is capable of exploring.

The accuracy of the van der Waals' model could also be investigated
by camparing the velocity autocorrelation function for particles with an
attractive potential with the hard sphere one at the same density. The van
der Waals' prediction is that they will be nearly the same. This calculation
has not yet been carried out. Instead, a more direct’test was made in terms
of the number of soft versus hard core collisions.23 At liquid density it
was found that the majority of the collisions (about 60%) were hard core
collisions nearly independently of the temperature. What did vary with tem-
péfature at constant density was that as the temperature was lowered more
and more pairs of particles were trapped; that is, their kinetic energy did
not suffice to overcome the potential energy binding them. Furthermore,
also in accord with van der Waals, the free path distribution was shown to
be nearly indifferent to the presence of an attractive potential (see Fig. 3).

From the free path distribution, also, it was not possible to pick out any

- particularly preferred characteristic distance of motion at fluid densities

relative to that at gas densities indicating the absence of a vastly different

mechanism of flow at any density.
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IV. MELTING

The van der Waals' model of necessity must associate melting with the
hard sphere part of the equation of state. This geometric aspect of melting
is another old idea incorporated intoc the empirical Lindemann law,28 which
successfully accounts for the melting behavior of a very diverse group of
substances. Lindemann's law was originally put into the form that a substance
‘melts once the maximun displacement of an atom from its regular lattice site
can reach about 10% of the radius of the atom, A cruder way of saying the
same thing is that most substances melt upon expanding 30% in volume from
their close-packed or 0°K volume. The strange behavior of hard spheresls and

hard disks??

found in the neighborhood of these volumes lends confidence both
to ascribing the computer observed phenomena as melting and secondly, to the
geometric interpretation of melting since it occurred in the absence of
attractive forces. Other au‘t:hors29 have also recently pointed out the close
correspondence betwsen melting of actual substances and the hard sphere
transition.

Lindemann's law is usually written in terms of the potential energy at
the maximum displacement of an atom in an hammonic oscillator relative to
the kinetic energy, where the harmonic force constant is in turn related to
the Debye temperature. This expression can be misleading since it obscures
the geometric aspect of melting and gives the impression that melting can
occur in a purely harﬁcﬁic’force law system. Still another and theoretically
suggestive way to express Lindemann's law is in terms of the probability
of a density fluctuation of a given size. The main problem, however, in
all these equivalent ways of looking at melting is to obtain a theoretical
justification for the single empirical constant contained in these proposals,

narely, for example, the size of the density fluctuations required before
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melting occurs. A physically sensible but difficult way to obtain this
constant is through considerations of instability modes in the solid phase
as a function of temperature and density. As is well known from the differ-
ences in properties of liquids and solids, the solid at melting must became
unstable tc a long wave length shear mode.ao

The analysis in such a calculation involves determining instabilities
in non-linear equations, the non-linearity being brought on by the anhar-
monic terms in the force law. Although it is difficult to solve this problem
analytically, it is possible by molecular dynamic to confirm at least the
validity of the suggested mechanism. For this purpose, first of all, a
very simple model which incorporates this point of view was proposed. This
model, called the correlated cell model,gl as opposed to the usual cell
model32 where all the neighboring particles are uncorrelated with the cen-
tral particle by being kept fixed at their lattice positicn, treats the
central particle as completely correlated with some of its neighbors while
the others are kept fixed at their lattice position. In a two-dimensional
system of hard disks, the particles were arranged to be so correlated that
rows of atoms move relative to each other, each row moving as a unit. The
consequences of this model could be worked out very simply analytically and
led to a remarkably accurate description of the thermodynamic properties
of the solid phase, including melting. A van der Waals-like loop was observed
very near the pressure énd density where the molecular dynamics result gave a
van der Waals-like loop. This loop occured at a density in the model where
one row of atoms could just slip by the neighboring two rows of atoms which
at higher density had all been interlocked. This model thus graphically

ecmetric aspect of melting with a shear instability (slipping).
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Striking confirmation of the occurrence of this slipping mode at the
onset of melting comes from molecular dynamics studies of the singlet dis-
tribution function in the hard disk solid phase. The singlet distribution
function is the probability of an excursion of a particle from its lattice
site in a given direction by a given distance in a solid whose center of
mass is fixed. As Fig. 4 shows, a parﬁicle has a small probability of being
found at a neighboring lattice site at a solid density very close to melting.
This jump to neighboring lattice sites covresponds to a row of atoms co-
operatively sliding one notch relative to another row. At all densities
slightly higher than the melting density this process becomes so improbable
that no evidence of this phenomena can be observed in the singlet distribu-
tion function which is, in fact, for all practical purposes found to be a
spherically symmetric Gaussian.

This spherical symmetry indicates first of all that no one-particle
cell theory can adequately calculate the singlet distribution function.

The prediction of any such cell theory for hard disks would lead to a flat
topped singlet distribution function with sharp sides having the symmetry

of the lattice. The fact that this does not correspond to the facts means
that the singlet distribution function is primarily determined by the low-
frequency density fluctuations which are not sensitive to the local structure.
It is for this reason that this singlet distribution function is a delicate
indicator of melting. Howéver, for tha purposes of calculating thermodynamic
behavior of a solid, it is not necessary to be precise about the low-frequency
modes, since the thermodynamic properties are primarily determined by the
high-frequency modes. It is for this reason that melting comes as such a
sudden surprise when evidence is sought on thermodynamic grounds just previous

to melting. It is also for this reason that a cell theory can yield accurate
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thermodynamic properties without leading either to a qualitatively correct
singlet distribution function or to melting. The correlated cell model by
adequately representing the high frequency behavior of a solid as well as
allowing a low frequency instability thus is the crudest way to get both a
fairly accurate thermodynamic description and melting of a solid without,
however, a qualitatively correct singlet distribution function. A similarly
successful model in three dimensions has not yet been found; the straight-
forward extension of the correlated cell model fails to predict a first-order
melting transition.

The conclusion that the singlet distribution function is sensitive to
the low-frequency phonons was deduced previously33 from the elastic theory
of solids, which should be accurate for long wavelengths. In fact, the singlet
distribution function could be shown, due to these long wavelength modes, to
have a half-width which becomes unbounded as the number of particles increases

indefinitely in two-dimensicnal systems. In three-dimensional systems the

~ half-width is bounded, and within the elastic theory each mode contributes

equally to the second moment of the sihglet distribution function. There-

fore in three dimensions the singlet distribution in the solid phase is quali-
tatively different from the cone in the fluid phase, where it is a constant.
Inasmuch as this distinction, however, does not apply to the two-dimensional
fluid and solid, the feature distinguishing between these two states of matter
is best described theoretically by sticking to the previous point of view that
a solid as opposed to a fluid can support a transverse wave. The lack of
spacial localization in the two-dimensional systems indicates that a sufficient
condition for the existence of a solid merely involves relative ordering of

the particles.




~-23-

Previous theoretical ways of accounting for melting of hard spheres
from integral equations have been notoriously unreliable.au Most integral
equations either give no indication of melting, or, predict it to occur at
unphysical densities.3s The cne integral equation which originally led to

18 for hard spheres also shows the melting singu-

the suggestion of melting
larity in one dimensionEthere it can be proven that no phase transition
oceurs. lattice theories also have serious difficulties in describing
melting in spite of their success in accounting for the vaporization process.
This is because the melting density is so high and hence the accessible con-
figurational phase space so complex and tenuously connected that it is no

36

longer adequate to estimate its volume by a coarse grid. On the other hand,

at the critical density, which is much lower, this coarse network is reasonably

adequate. Because at the melting point it is necessary to use a much finer
mesh (interactions extend over many lattice sites), the primary advantage of
the lattice model is lost, namely, it is no longer possible to evaluate the
model analytically. Furthermore, it must be expected and indeed it has been

37 will be found as the

confirmed that extraneous, unphysical discontinuities
mesh size is varied until the grid is fine enough to estimate the phase volume
well.

The computer experimsnts are of course, not rigorous proof of the exis-
‘tence of the hard sphere melting transition.‘ They must be regarded only as |
a very suggestive indicatign, and judged on the basis of how this behavior
would be reproduced by infinite systems. For this purpose the dependence of
the phase transition behavior on the nunber of particles was studied. An
analysis of the pressure at the transition shows that it shifts with the num-
ber of particles, N, as the N-particle communal entrOQy.38 This means that

the predominant number-dependent correction necessary to extrapolate to the

transition pressure for macroscopic system is simply the entropy difference
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between N particles confined to a cell and an infinite number at the same
density. The usual cell theories, referred to previously, confine one
particle per cell, and their one-particle communal entropy has often been
cited as the origin of the melting entiopy. This, however, is not at all
correct, in spite of the fact that in the solid a distinct particle is con-
fined to a cell and in the fluid the entire volume of the container is
accessible to every particle. The communal entropy does appear somewhere
between the perfect gas and the close-packed solid, but only gradually.20’38
A calculation shows that only a small fraction of it appears across the
melting transition, (see Fig. §).

Ancther way to study the number dependeﬁce of the computer results is
to see how they extrapolate to the behavior of an actual macroscopic system.
Compariscn with Lindemann's law, cited already, suggésts that such an ex-
trapolated equation of state will agree well with experiment. Indeed, choosing
an interatomic potential which fits an isotherm for argon in both the pure
solid and the pure liquid phase at densities removed from the melting con-

dition leads to predictions of melting on the computer39

in close correspon-
dence to the argon melting line.

In this comparison with experiment, the intermclscular potential cannot,
of course, be strictly considered as having a hard core. The question hence
arises as to whether any soft repulsive potential by itself would still lead
to melting. The softes% core that one can conceive of, is the one obtained
at extremely high temperatures and pressures where the nuclei repel each:
other by a Coulomb force law, and where all the electrons can be considered,
because of their high zero point energy, to form a uniform background. The

preblem is then whether, under the conditions similar to those found in the

interior of white dwarf stars, a solid is still formed and hence whether
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there would practically ever be a solid-liquid critical point analogous to
the liquid-gas one. The location of a melting transition for this purely
repulsive Coulomb gas;"‘lo not only indicates the absence of a fluid-solid
critical point for it, but also for any other substance, since all repul-
sive potentials lie in between the two extremes of the hard sphere and
Coulamb repulsions. The melting transition for the purely Coulombic repul-
sive potential is in poorer agreement with Lindemann's law, as might be ex-
pected, since this very soft repulsive potential blurs the geometric aspects

of melting.

V. THE HIGH DENSITY REGION

Although the high density or solid region is not the proper subject of
discussion in a book devoted to fluids, it is worthwhile to make a few brief
remarks to amplify the previous descriétion of fluids and melting. The
first remark concerns consideration of the van der Waals' model as possibly
a more accurate description of a high temperature solid near its melting
point than the customary harmonic oscillator model. The question of which
one is the more accurate depeﬁds on the importance of harmonic forces in
any real situation. The van der Waals approximation is diametrically opposed
to the harmonic oscillator approximatipn in that it represents the completely
anharmonic extreme. From the point of view of representing an asymptotic
limit, as well as containing‘melting, the consequences of the van der Waals'
model should be and have been partially worked out in the solid phase.

The 1limit in this model equivalent to the low temperature harmonic os-
cillator limit is the close-packed one, since in either case the particles
are completely localized at their lattice position and hence the usual cell

theories give the exact equation of state. The properties at densities
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slightly lower than the close-packed density should be expressible in a power
series in the free volume ! (volume of the container less the volume occupied

by the particles themselves, vwvo). Accordingly,

_ 2
pV/NKT = D/a + cptojate,at Loy,

where o = (v~vo)fvo and D is the number of dimensions. The first term on
the righthand side is the one that can be proven to be asymptotically exact
in the limit of close packing (u+0). However, unlike the low density region,
where a power series in 1/o can be shown to exist, and where the coefficients
in this virial expansion can be theoretically evaluated, at high density no
such theory exists. The coefficients, ¢, have however, been obtained empir-
ically on the computer; they are given in Table II. These coefficients are
compared to the ones given by the usual cell theory and the correlated cell
theory. The accurate agreement with the correlated cell theory indicates
that this model is nearly quantitative.in the solid phase.

An equivalent expansion about theZCIOSe-packed limit can be carried out
in three dimensions for spheres éither about the face-centered or the hexagonal
close-packed structure. An effort to detect a difference in the solid equa-
tions of state failed within the accuracy of the numerical method, which was
about 0.01%. This result is not unexpected in view of the previous remarks
on the importance of various wavelength modes to the thermocdynamic properties.
Since these two close~packéd structures have the same arrangement of first
and second nearest neighbors as well as the same overall density, not only
the low-frequency, but, more significantly, the high-frequency spectra as
well must be the same. Hence, since only the intermediate frequency spectrum
differs between. the two structures, their thermodynamic properties cannct
differ very much. The lack of importance of the low frequency spectrum *o

the thermodynamic properties is shown by the small dependance of thermodynamic
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properties on the number of particles used in the machine calculations.37

In the larger systems primarily the low-frequency spectrum is changed in-
asmuch as longer wavelength fluctuations are possible, while the high-
frequency spectrum is unaltered from smaller systems. Then, as long as
systems of more than 100 particles are studied, the number dependence of the
results is hardly detectable. |

For very precise thermodynamic results it is, of course, necessary to
take correlated longer wavelength motions into account. This shows up
clearly in the entropy calculation in the close-packed limit, which, unlike
the equation of state, is not correctly given by the cell theory. The
reason for this is that the functional form of the partition function must
be of the free volume type but the coefficient multiplying the free volume,
that is the absolute value of the free volume, is unknown. Hence a deriva-
tive of the logarithm of the partition‘function, that is, for example, the
pressure, is given exactly while the entropy is not. Since the absolute
value of the free volume depends on the extent of correlated motions, the
entropy is in twrn a measure of that motion. Even though the entropy is
rnot ‘exactly calculated by the cell theory, it again must be emphasized that
the entropy at ciose—paokingul is remarkably accurate. It is obtained by
integrating the machine determined equation of state all the way from the
perfect gas state across the melting transition to close-packing. Even in
the one-dimensional hard réd system where correlated motion play a relatively
more important tole, and where hence the biggest error in the cell theory
estimate of the entropy at close-packing occurs, it can be exactly calculated
to be only 0.3 Nk. The error is largest for that system, because in one-
dirmension particles are least localized by their neighbors. Thus it does

2t

not require as iImprobable an event as in two or three dimensions to

jo

o}

]

a long wavelength fluctuation. In two and three dirensicns the entropy at



-28-

close-packing as calculated by the one-particle cell theory is in error by
about 0.1 Nk. There is some uncertainty (of the order of 0.05 Nk) in this
estimate due to the uncertainty of where to locate the liquid-solid tie line.
To account for this entropy by taking larger and larger cells into considera-
tion seems a slowly converging process.ul Although little entropy is carried
by the lower frequency modes, it is necessary to go to cells of the order of
100 particles to account for the 0.1 Nk carried by them in entropy, as the
number dependence of the machine calculations shows. It would have been

nice to have an exact theory for the entropy at close-packing since then

the tie line between the solid and fluid branch of the equation of state
determined by molecular-dynamics could have been drawn on thermodynamic

grounds.

VI. THE LOW-DENSITY REGION
In the low-density region where the energy density fluctuates and
collisions involving small clusters of particles predominate, van der Waals'
mean-field theory is not applicable. Fortunately, the exact virial series
theory is available in that region.? The virial coefficients, Bn’ in the

series expansion of the compressibility factor
P/NKT = 148, W/W)+B (/D743 (/%4 ...,

can describe a dense gas aécurately if a sufficient number of terms in the
series 1s used. Recently the seventh virial coefficient for hard spheres

was calculated, using Monte Carlo integration.g The resulting seven-term
series agrees with the molecular-dynamic equation of state, within the latter's
1% accuracy, up to half the close-packed density. At higher densities (the
hard-sphere fluid phase is stable up to about two-thirds the close-packed

density) the truncated series lies below the dynamic results by as much as
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10%, as can be seen in Fig. 6.

A popular game is to extend the useful region of the virial or other
series by representing it as a quotient of two polynomials. The coefficients
in the polynomials are so chosen that the series expansion of the quotients
reproduces the known ccefficients in the represented series. An example of
this polynomial representation, called a Padé approximant, is

3
3

1 + 0.554683x + 0.019716x> + 0.018105x
1 - 0.445317x - 0.316972x% + 0.151085x

pV/NKT =

where x is B2(N/V). The series expansion of this expression reproduces the
first seven hard-disk virial coefficients. It is obvious that many different
Padé approximants can be constructedg by varying the number of terms in the
nunerator and denominator. These different possibilities do not always agree
well with one another. Thus, for example, approximants of the type represen-
ted above, which reproduce only six terms of the hard-sphere virial seriesq2,'
‘generally agree better with fhe machine~generated equation of state than do
the approximants that reproduce all seven known terms. For the seven-term
virial series the Padé approximant to another function involving the equation
of state was found to be more accurate:

1+ ;% cipi

(PV/NKT)(1-p) = 131 -,

J
- 1+ .zz cjp
J=1

rwhere p = vo/v. Figure 6 shows that not only is this form more accurate but
also that the results do not depend so much on the number of terms used,
that is on the combination of I and J used to fit the first (I+J+1) virial
coefficients. This can be seen from Fig. 6 where the I,J combinations 2,2;

3,1; 3,25 4,25 and 3,3, which reproduce 5, 6, or 7 virial ccefficients, all
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lie within the width of the curve. Thus as a practical suggestion the least
sensitive form of a Padé approximant to a function is likely to be the best
one to use.

Machine calculation of higher virial coefficients is not a particularly
fast or easy way to generate numerical equations of state. The evaluation
of the seventh hard-sphere virial coefficient took weeks of computer program
writing as well as 25 hours of CDC 3600 computer time. In a comparable amount
of time it is possible to generate 5 high-density equation of state points,
within an accuracy of 1%, using either the molecular dynamic or the Monte
Carlo method.

The evaluation of the seventh virial coefficient represents about the
present practical limit of numerical work. The reason is that thennumber of
integralsua contributing to the nth virial coefficient is about 2 2>fn!, which
is over 6000 for n equals 8. The bookkeeping problem of classifying and oper-
ating on all of these graphs forms in itself a major part of the task. It is
chiefly this cumbersome classification pr-oble.ml‘L£+ which has so far prevented
the evaluation of the 8th and higher terms in those simplified models where

45,46

the integrals themselves are relatively easy to evaluate. The classifi-

cation problem for the seventh virial coefficient is already quite time-con-
suming, and accounted for a good deal Af the slowness assoclated with the

Monte Carlo hard-sphere calculation. For more general potentials, however,

the calculation of the ﬁultidimensional integrals themselves represents a

much more severe problem than the bookkeeping one. Here the computer can

be of great help by utilizing Monte Carlo techniques. The hard-sphere potential
is especially favorable for Monte Carlo application, because all the contribu-
ting regicns of configuration spacs have the same weight. In the presencs »f

an attractive potential it is necessary for the evaluation of the higher virial
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coefficients to introduce importance-sampling methods; that is sampling the configura-
tion space regions most often which contribute the largest part to the inte-
gral. This procedure is analogous to the modified Monte Carlo methodu? used
to generate configuraticn-space averages. The transition probabilities in

a Markov chain leading to the evaluation of virial coefficients would in-

volve Mayer f-functions rather than Boltzmann factors. Even for hard spheres,
where the integrals were evaluated not by a Markov chain but by the simpler,
completely random sampling method, an obstacle to numerical accuracy was
encountered because of the near calcellation of positive and negative integrais
in their contributions to the virial ccefficient. It was hence found expedient
to reformulate Mayer's original way of calculating virial ccefficients to
avoid much of this cancellation.ua The remainder of this section is devoted
to describing this reformulation in detail.

In Mayer's expressions for the virial coefficients the integration var-
iables are the particle coordinates while the integrands, which depend ex-
plicitly on the potential function, @(ri—rj), are products of Mayer f-functions,
fij = exp[—¢(ri—rj)/kT} ~1. In the nth virial coefficient all different pro-
ducts of f-functions occur which link fhe n particles together.7 Because f
is zero beyond the range of the interparticle forces, the integrand vanishes
unless all n particles are close together, hence the name cluster integrals.

For the hard-sphere example each f-function is -1 if the particles linked by
it overlap, and zero otherwise. |

A pictorial representation of the'integrals as "star graphs", using lines
to represent f-functions linking the particles (points in the graphs)'together,
was introduced by Mayer and has been adopted universally as a convenient and
compact shorthand notation. The virial coefficients through B¢ have the follow-

ing form in this notation:
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In writing these expressions contributions from topologically equivalent

C e [
graphs are grouped together; that is, 3 replaces +‘\§ +;£><i , for
© C - TR ¢

example. Only n-1 particle cocordinates appear as integration variables be-

L

cause the cluster integrals are independent of the location of the cluster.
The cancellation of the Mayer integrals for the hard-sphere {ifth virial
coefficient, for example, is illustrated by pointing out that five of the

42,43 An error of 1% in

ten integrals are positive, the other five negative.
each individual integral could lead to an error of over 50% in the final co-
efficient. The high dimﬁnsiohality of the integrals then represénts a problem
because so many grid points are required for accurate nurerical evaluation.

If the integration were carried out in a straightforward manner, a grid for

an n-particle numerical integration based on ten different values of each

3n-3

cocrdinate, would require 10 points in the grid. Even for n as small

as five this size grid is too large for present computers. Instead the use
of the Monte Carlo integration allows the higher dimensional integrals o be

evaluated more efficiently. Furthermore, reformulation of the virial seri

e
b

helps overccome the effects of canczllation and therelsy imorovesz the acourany
¥ ; y

of the results.
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The reformulation is carried out by observing that many of the inter-
particle distances are not restricted by f-functions. A restriction can
be imposed by introducing the function ¥ = exp(-¢/kT), which is 1 for non-
overlapping spheres and zero for overlapping spheres. If the identity
%‘+ (-f) = 1 is arbitrarily introduced for each pair of particles not connec-
ted by f-functions, graphs with two kinds of lines - the new function, %, is
indicated by a wiggly line - in which all distances are specified, are gen-
erated by multiplying out all the factors of [¥ + (-£)]. When this is done
the unexpected result is that about half of the integralé vanish aitogether.

The reformulated expressions for B, and B in terms of these "modified star

53

o
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integrals", are
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4778 d drhy TRy
(\w»} P

= -3 [f[ (-6 + us%f 60 ,st, i‘+ 10 TR+ 1250
5 30 ) N3 N ] A

P
d

]

vy}
t

Besides being less numercus, the modified star integrals also vary greatly

in magnitude whereas the Mayer integrals are all of the same order of magni-
tude. TFor one-dimensional hard rods all but one of the integrals contributing
to each virial coefficient are zero. The non~vanishing integral is the first
one shown in the above éxpressions for B, and B;; it contains no F-functions

and is called the "complete-star' integral. The complete-star integral in

one, two, and three dimensions now makes the largest contributicn to Bn through
at least the seventh virial coefficient, while in the Mayer f-function formu-
lation this same integral was the smallest contributor. All inteerals involving

the f-functions are smaller than the smallest Maysr integral. This shows That

n
N
3

PRV

cancellation iz a less serious problem in the reformulated expres
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All star integrals, with f-functions, or modified star integrals, with
f and ?—functions, can be calculated by a straightforward "Monte Carlo" pro-
cedure, as illustrated by the evaluation of ji/.fl2f13f23dx2dx3 for one-
dimensional hard rods of length o. Because the integrand is («‘-l,)3 when all
three pairs of rods overlap, and zero otherwise, the integral is (-1) times
the (two-dimensional) volume of configuration space in which all three rods
overlap. Random configurations in a sdmewhat larger volume of configuration
space, corresponding to the overlaps of pairs 12 and 23, with 13 not speci-
fied, can easily be generated. Particle 1 is placed, for convenience, at
the origin. Then random numbers distributed uniformly from -0 to +0 can
be used to place particle 2 sc that these two particles overlap. Particle
3 can then be placed anywhere between k2~0 and X,*0 so that f23 is also -1.
The diamond-shaped region of 3-particle configuration space corresponding
to these conditions is outlined in Fig. 7. The fraction of configurations
in which £y 4 is also -1 (configurations in the shaded hexagonal region of

Fig. 7) is then tabulated. The ratio of the shaded to the total area is

an estimate for the ratio of the two integrals:

[
’[jfl’zflsfmdxzdxg ‘jj [Oﬁb Jdr)dry
0
f j £ 587 59%,dx, g Jf [C& ldr,dr,

From the Monte Carlo estimate of the ratio and the known value of the denom-

. 2 Y . c
inator, 40”7, the numerator can be calculated. This same principle has been

used to calculate the hard-sphere integrals contributing to Be, By, and B

6)
Because each integral contributing to B involves at least the f{-funcrions
f12f23f3uf&5, each integral is a part of the volume in the 12-dimensiconal

5 Vv y 1 v Y yen TR 2 BT SR o RV
configuration space for which IrlQI, |r23f, [y, |y and [rp | are less than the
herd-sphere diameter, ¢. PRandom configurations are thus generated which sat-

i =f, .= f.  =£f .=~ n bseque r the fraction of totael con-
isfy f12 23 3 f45 1, and subsequently the fracticn of tota

igurations satisfying the restrictions ir ¢ he additiznal £ and “-functinns
figurat tisfying th strictions imposed by the additicnal £ and
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are tabulated. TFor example, the ratio
4

dr,dr_ dr dr [f C% dr,,dr.dr, dr
=23 =5 Jﬁj Q}”"GD -2 3Ty

equals the fraction of configurations with |r | less than ¢ and [rl3!,

EE Irqu, IPQS[, and |ry| greater than o. The errors in Monte Carlo

integration can be estimated accurately from the statistical fluctuations
since the relative error in the values of the integrals is inversely pro-
porticnal to the square root of the number of trials. Tt is clear that long
runs are needed to obtain four or five significant figures. The present
values of the First seven virial coefficients for disks and spheres are given
in Table II. The statistical errors in the 1853 Monte Carlo calculationsu7

of B, for hard spheres and hard disks were estimated to be *5%. Later more

42,49

5

accurate calculations showed that the errors were +4% for spheres and
-6% for disks. The simplicity and accuracy of error estimates is an advan-
tage of Monte Carlo integration over alternative techniques based on trun-
cating series expansions of the integrands.

To give a concrete example of the advantage of the ¢ recipe over Mayer's
recipe for numerical virial coefficient calculations, consider the calculation
of B, for hard spheres, using random configurations with the overlap restric-

tions f The various Mayer stars that can be gencrated

12 = fo3 7 £ 7 -1

from this starting condition are

@_,___,_.,, @ C N ‘ C e - .\L

et Nt
while in the refcrmulate lati nl nfigurati ~ontribu-
nil the formulated % calculations only those configurations contrib

)

, and

ting to

o qQ

and iﬂ%x
C a ;

are tabulated. The f-function exrression for B, has the form
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Expressing each of the integrals in this expression in terms of wiggly-line
integrals, gives the result

.2 | % W) - 2 e,
B,(f) = - -Q-f[ [3 + 1—% 2 X=X } - 2 K] Jdr,drydr,

By rewriting the f-function results one finds that the calculation includes

g3d§u .

)
-

a sum of three terms, shown in curly brackets, which is known to be exactly
zero. The error associated with this unnecessary work is eliminated by using

the reformulated version.
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TABLE I

Values of the van der Waals constant as a function of density for a

square-well potential

& i
vab al(l.S) aQ(l.S) al(l.S}
o 7.04 7.04 14.31
7.0 8.06 9.11 15.u44
4.0 8.82 10.43 15.98
3.0 9.31 11.09 16.18

2.5 9.63 11.28 —
2.0 9.91 10.65 15.85
1.7 3.91 -8.95 15.23
1.6 9,827 7.85 14.87
1.42 9.40

1.35 g.09

1.00 9,00

#The number in parenthesis indicates the range of the potential.
(o] &

al(l.S) = 7.035 + 7;§33 + 1.2492 ~ 6.0873 _ 4.976u vaQ > 1.6
o (v/v) (v/v ) (v/v_)
o o o
2a
a, = a, - (v/v.) 1
2 1 o) Bzv?vo5f
a (1.8) = 14.312 + g.1u45 B 7,452 + 9,774 + (0.889 /v > 1.6
1 v/v 2 3 i
o (v/vo) (V/Vb) (vao)

a, and a, in units of'a/avg, where € is the depth of the potential.
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TABLE II

High density expansion coefficients of the compressibility factor

pY/NKT, for disks.

o 1 2

Molecular dynamics 1.89 0.8 >0

Cell theory 1.586 -0.1 >0

Correlated cell theory 1.89 0.8 >0

TABLE III
The virial coefficients for hard spheres and disks<a)

2 3 4 5 b
82/b B3/b Bq/b BS/b Bﬁ/b B?/b
spheres  1.0000 0.62500 0.28695 0.1103 0.0386 0.0138
disks 1.00090 0.78200 0.53223 0.3338 0.1992 0.1141

a), . . . 1_2 . 2 3 . .
( b is the second virial coefflclent: 5 Tg for disks and 7m0~ for spheres.
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Fig. 1 The coﬁpressibility factor versus the reciprocal temperature
{reduced by the potential depth) for a squ;reuwell potential of a range

50% larger than the hard core diameter at v/v, of 2. The heavy curve with
the circles represents the computer data, while the light line represents

the theoretically calculated high temperature slope.

Fig. 2 The compressibility factor versus the reciprocal temperature
{degrees Kelvin) for argon at 35.7 cc. The circles represent experimental
data and the two straight lines are drawn as the slope of the curve at the
two extremes of the temperature range. The change of collision diaﬁeter

with temperature is illustrated in that the lower temperature interceﬁﬁ
corresponds to a diameter of 3.15 A while tﬁe high temperature one corres-

~ ponds to 3.06 Ka

Fig. 3 The free path distribution for a square-well potential at reduced
teﬁperatures of 1.4 and 0.6 divided by the free path distribution for hard
spheres at the same v/vo of 1.6 vs. the free path length measured in terms

of the kinetic mean free path, Ao' The T% of 1.4 curve is nearly in agree-
nentbwith the van der Waals' theory prediction of a horizontal line at one,
while the Tﬁ = 0.6 is in remarkable agreement with the simple hard sphere
kinetic theory prediction (dashed line). This Figure is taken from Ref. 23.
Fig. 4 The probability of an excursion of a hard disk from its lattice
site at AJAb of 1.26 in an- 870 particle system after 2,000,000 collisions as
a function of radial distance measured in ﬁnits of the interparticle distance.
The curve refers to a directional cone with an apex of one degree width pointed V
directly at the center of a neighboring particle. The circles refer also to
a wedge of one degree but pointed 15 degrees away from a line joining the
two neighbors while the one degree wedge represented by crosses points 30°

away from a line joining the two neighbors which means that it points exactly
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in betwsen two nearest neighbors to the central particle. The curve to
the left of the dotted line is the same for all these various one degree
slices. The ones to the right of the dotted line are continued but drawn
with a 100 times larger scale so as to see greater detail. The peak at an
interatomic distance in the curve and the lack of one in the wedge represen-
ted by the crosses indicates sliding in directions of lines of atoms.
Fig. 5 The solid and fluid branches of the hard sphere equation of state.
The horizontal line is a guess at the %ie line comnecting the two phases and
the dotted extensions of the solid and fluid branches represent metastable
states generated on the computer. The area of the rectangle bounded by the
two vertical lines at the ends of the tie line is then a measure of the en-
tropy of melting. The communal entropy of melting is approximately equal
to the hatched area, namely the difference between the entropy of melting
and the entropy if the system had remained a solid. It can be seen that the
communal entropy change is only a small fraction of the entropy of melting.
Fig. 6 The equation of state for a hard sphere fluid. The solid curve
widens at high density to cover the range of values calculated using 5, 6,
and 7 virial coefficients Padé approximants to pV/NKT (1-p). The open circles
represent molecular dynamic results. Values of pV/NkT calculated from the
truncated virial series of 1 through 7 terms at 2/3 of the close-packed
density are indicated by the filled circles labeled 1 through 7 near the
righthand side of the fipure.
Fig. 7 Configuration space for three hard rods of length ¢. The coordin- .

ates of particles 2 and 3 are measured relative to that of particle 1, which

iz at the origin. In the cutlined area le f23 i

5 non-vanishing; in the

hexagonal zrea f., is non-vanishing.

12 f23 f13



41—

REFERENCES
1M, Ross end B.J. Alder, to be published, J. Chem. Phys.
QE.A. Guggenheim and M.L. McGlashan, Proc. Roy. Soc. (London) A255, 456 (1960).

3"Molecular Theory of Gases and liquids', J.0. Hirschfelder, C.F. Curtiss, and
R.B. Bird, John Wiley & Sons, Inc., New York (1854).

*E.B. Smith and B.J. Alder, J. Chem. FPhys. 30, 1190 (1959).

S"Lattice Theories of the Liquid State™, J.A. Barker, The MacMillan Co.,

New York (1963).

82 W. Salsburg and W.W. Wood, J. Chem. Phys. 37, 798 (1962).

7"Statistical Mechanics", J.E. Mayer and M.G. Mayer, John Wiley & Sons, Inc.,

New Yori (1340).

BJ.L. Lebowitz and O. Penrcse, J. Math. Phys. 5. 841 (1964).

9F.H. Ree and W.G. Hoover, to be published, J. Chem. Phys.

105 5. Alder, Phys. Pev. Letters 12, 317 (1964).

.
l"H. Eyring and T. Ree, Proc. Natl. Acad. Sci. 47, 526 (1961).

lgA. Eisenstein and N.S. Gingrich, Phys. Rev. 62, 261 (13942).

134V, Grosse, Science 147, 1438 (1965).

14 . e e .
J.D, van der Waals, Over de continuiltelt Vanden gas-en vlicelstoftecestand

(Dissertation, leider, 1873).

|8 .o
l”D. Enskog, Archif for Matematik, Astronomi, och Fysik, 16,16 (1822).

lgB,J. Alder and T.E. Wainwright, J. Chem. Phys. 33, 1439 (1460).

17 i . . o R e
M. Kac, G.E. Uhlenbeck, and P.C. Hemwer, J. Math. Phys. 4, 216 (1381,



42

References (continued)

185.6. Kirkwood, V.A. Lewinson, and B.J. Alder, J. Chem. Phys. 20, 929 (1952).

Dupeguiar Solutions", J.H. Hildebrand (Prentice-Hall, Engelwood Cliffs, N.J.,

(1962).

205 7. Alder and T.E. Wainwright, Phys. Rev. 127, 359 (1962).

211(. Kowasaki and I. Oppenheim, Phys. Rev. 139, A1763 (1965).

22“The Statistical Mechanics of Simple Liquids", S.A. Rice and P. Gray,

Interscience, New York (1965).

23"Prediction of Transport Properties of Dense Gases and Liquids'", B.J. Alder,

UCRL~14891-T (13966); T. Einwohner and B. Alder, to be published.

248. Glasstone, K.J. Laidler, and H. Eyring, The Theory of Rate Processes

(McGraw-Hill Book Company, Inc., New York, 1941).

258.J. Alder and T. Einwchner, J. Chem. Phys. 43, 3399 (1965).

265 4, Dymond and B.J. Alder, J. Chem. Phys. 45, 2061 (1966).

27B.J. Alder and T.E. Wainwright, Transport Processes in Statistical Mechanics,

I. Prigogine (Interscience Publishers, New York) 1958.

“%F.A. Lindemann, Physik. Z. 11, 609 (1910).

2%, Rowlinson, Molec. Physics 8, 107 (1964).

C.H. Longuet-Higginsand B. Widom, Molec. Physics 8, 549 (1984).
E.A. Guggenheim, Molec. Physics 9, 43 and 199 (1965).

*%. Born, Proc. Cambr. Phil. Soc. 36, 160 (1340).

31, .

B.J. Alder, W.G. Hoover, and T.E. Wainwright, Phys. Fev. Letters 11, 241 (1563).

32 y . - .
R.J. Buehler, R.H. Wentorf, J.0. Hirschfelder, and C.F. Curtiss, J. Chem.

Phys. 13, 61 (1951).



-3

References (continued)

33L. Landau and E. Lifshitz, Statistical Physics, Pergamon Press (London)

Chap. XV (1958).

3“J. Yvon, Actualities Scientifiques et Industriel, Herman et Cie, Paris (1935);
M. Born and H.S. Green, Proc. Roy. Soc. {London) Al88, 10 (13u6).

35E. Thiele, J. Chem. Phys. 39, 474 (1963); M.S. Wertheim, Phys. Rev. Letters

8, 321 (1963), H.N.V. Temperley, Proc. Phys. Soc. 83, 565 (1964) and 84, 339 (1964).

36y.G. Hoover, B.J. Alder and F.H. Ree, J. Chem. Phys. 41, 3258 (1354).

37D.S. Gaunt and M.E. Fisher, J. Chem. Phys. 43, 2840 (1965); L.K. Runnels,

Phys. Rev. Letters 15, 581 (1965); A. Bellemans and R.K. Nigam, Phys. Rev.
Letters 16, 1038 (1966); F.H. Ree and D.A. Chesnut, to be published, J. Chem. Fhys.

38W.G. Hoover and B.J. Alder, to be published, J. Chem. Phys.

~39M. Ross and B.J. Alder, Phys. Rev. Letters 16, 1077 (1966).

*05.G. Brush, H.L. Sahlin, and E. Teller, J. Chem. Phys. 45, 2102 (1966).

qlW.G. Hoover and B.J. Alder, J. Chem. Phys. 45, 2361 (1966).

F.H. Stillinger, Z.W. Salsburg, and R.L. Kornegay, J. Chem. Phys. 43, 932 (1965).

“2F.H. Ree and W.G. Hoover, J. Chem. Phys. 40, 939 (1964).

*3R.J. Riddell and G.E. Uhlenbeck, J. Chem. Phys. 21, 2056 (1953).

*ME. Helfand and R.L. Kornegay, Physica 30, 1481 (1964).

L\lSG.E. Unlenbeck and G.W. Ford in Studies in Statistical Mechanics, edited

by J. de Boer and G.E. Uhlenbeck (North Holland Publishing Company,

fmsterdam, the Netherlands, 1962), Vol. 1, Part B.

4SW.G. Hoover and A.G. De Rocco, J. Chem. Phys. 36, 3141 (1362).



Ly

Re ferences (continued)

u7N.Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller,

J. Chem. Phys. 21, 1087 (1853); M.N. Rosenbluth and A.W. Rosenbluth, J. Chem.
Phys. 22, 881 (1954).

'an.H. Ree and W.G. Hoover, J. Chem. Phys. 41, 1635 (1964).

*9S. Katsura and Y. Abe, J. Chem. Phys. 33, 2068 (1963).

0 The precise statement is that the straightforward application of the
superposition approximation in triplet space as a product of three pair
distribution functionsleads to a singularity whether the Borm-Green
equation is linearized or not. The proper decomposition of the triplet
distribution function as a product of a two pair distribution functions

leads to the exact result in one dimension.

% Work performed under the auspices of the U.S. Atomic Inergy Commission.



L B4

L/ -
0S'0 G2 0 i
ﬂ |
~ 1
RN
°Ad
-2







£ 014

| | | | | | L0










N

o

1
l

PV/NKT—
»

00

z ; |

4
PADE

i

O DYNAMICS

|

o2

O]

p—-n—-

Fig. 6

0.3 04 05

06




20

-0

-20 |

....O"



T

Bp=- 2fff[exp tepip /KT)- ]dxzdyzdzz"“a" [O““O]drz;

3=“3‘ffwd"2dr3,
35 [l LT ve NI+ X7 a3
85~ 35 Jf[f 2P +60FF +0Kp+10%p +60G[p +30 Koy + 3055y +15 P +10 b + iy o dF3 o 7






1+ %+



| .wuwuwcml&u%@o:%8-@@3@@@\,@. 98 _-5g
o Zp | Tl e+ 30 2 ff 2= mapap Zo [ AHTKD - B0 Yo { IX0 + 5 - T e ff -

P



Sxp 2xp €y 2l ff

Sxp 2xp €2y £y 2y ff



w2l 13, 1[)/20 020 20| 8,11



RowiZ '3 N,






pgnp [ 5+ { [N+ DI Yor T 06) &



siszel Ko (] - e+ 3 R e



	part1
	p1
	p2
	p3
	p4
	p5
	p6
	p7
	p8
	p9
	p10
	p11
	p12
	p13
	p14
	p15
	p16
	p17
	p18
	p19
	p20
	p21
	p22
	p23
	p24
	p25
	p26

	part2
	p26
	p27
	p28
	p29
	p30
	p31
	p32
	p33
	p34
	p35
	p36
	p37
	p38
	p39
	p40

	part3
	p41
	p42
	p43
	p44
	p45
	p46
	p47
	p48
	p49
	p50
	p51
	p52
	p53
	p54
	p55
	p56
	p57
	p58
	p59
	p60
	p61


