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Modern computers can accurately simulate the behavior of idealized systems of several hundred particles, 
but they have trouble in studying the melting process in which small-system surface effects make the 
transition irreversible. It is here suggested that a thermodynamically reversible path linking the solid and 
fluid phases can be obtained by using a periodic "external field" to stabilize the solid phase at low density. 
The properties of the artificially stabilized solid at low density are studied theoretically, and two practical 
schemes are outlined for determining the melting parameters by using computer-calculated entropies. 

1. INTRODUCTION 

Monte Carlo\'2 and molecular dynamicH calcula­
tions are two popular computer methods for obtaining 
thermodynamic data under conditions in which exact 

'( statistical-mechanical calculations are difficult. In pure 
phases, either fluid or solid, the computer techniques 

- can measure pressure and energy to within a percent 
of limiting thermodynamic values. In or near density­
temperature regions where two phases can coexist, the 
computer calculations become inefficient. Distortions 
due to boundary effects become important in a two­
phase system. Both density and energy fluctuations 
become large. In addition, the decay time for such 
fluctuations increases by orders of magnitude so that 
convergent thermodynamic averages cannot easily be 
obtained. 

Volume and temperature are the usual independent 
variables for Monte Carlo computer work; volume and 
total energy are the independent variables for dynamic 
calculations. In either case the pressure, calculated from 
the virial theorem, together with the energy or tem­
perature averages can be put in the form of an equa­

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

I W. W. Wood and J. D. Jacobson, Proc. Joint Computer Conf. 
San Francisco, March 1959, 261 (1959). 

I W. W. Wood, "Monte Carlo Calculations of the Equation of 
Slate of Systems of 12 and 48 Hard Circles," Los Alamos Sci. Lab. 
Rept. LA-2827, 1963. 

3 E.. J. Alder and T. E. Wainwright, J. Chern. Phys. 33, 1439 
(1960), 

CB.]. Alder and T. E. Wainwright, Phys. Rev. 127,359 (1962). 
I A. Rahman, Phys. Rev. 136, A405 (1964). 

tion of state relating E, T, P, and V. Such an equation 
of state can be measured accurately only for pure 
phases. 

In order to calculate the conditions under which two 
phases coexist, the ETPV relations for the pure phases 
are not enough; the difference between the entropies of 
the two phases is also required.6 Calculating entropy 
differences between two different thermodynamic states 
requires an integration of dS=(1/T)dE+(P/T)dV 
along a thermodynamically reversible path linking the 
two states. To connect the gas and liquid phases, one 
can use a path which avoids the two-phase region by 
going above the critical point in temperature. To con­
nect the fluid and solid phases is not so easy. The melt­
ing transition persists even at high temperature, and 
unlike the gas-liquid transition, cannot be avoided by 
heating the system. 

Computer "experiments" with systems of a few hun­
dred particles show distortion in the melting-freezing 
transition.2- 4 If one slowly decreases the density of a 
solid-phase system, then the system will change sud­
denly, at constant volume, from solid to fluid. Often 
this change is not reversible; i.e., going the other way, 
compressing a fluid to higher densities, leads not to a 
crystalline solid, but to a glassy state instead (see 
Fig. 1). Assuming that at high density a solid phase, 
not a glass, is thermodynamically stable, failure to 
observe the solid can only be due to surface effects.7 

6 See Gibbs' interesting discussion of this point in The Coll~ted 
Wllf'kl of J. Willard Gibbs (Yale University Press, New Haven, 
1957), Vol. 1, p. 37. 

7]. E. Mayer and W. W. Wood,]. Chern. Phys.42, 4268 (1965). 
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FIG. 1. Excess entropy S' as a function of density p a~ fixed 
energy. For intinite thermodynamic systems, only the flt:ld and 
solid phases can be ohserved, and the two phases can coexIst over 
a density range near the intersection of the two curvcs. In comput~r 
calculations with small systems, attempts to compress the i1Uld 
to solid· phase densities result in metastable glassy states. In the 
text it is explained how generating the artificial solid states, indi­
cated by dashes, can locate the melting transition. The prope.rties 
of the artificial solid can be related to those of the real one cither 
by following the entire dashed line or by converting the artificial 
solid to a Iluid (A->A') by using an external field. The figure was 
drawn using approximate data for the hard-sphere system (the 
entropy excess was measured relative to an ideal gas at the same 
density and temperature, and volume units were chosen such that 
p = 1 at close packing) . 

It takes so much free energy to form a surface be­
tween two phases that even in a system containing 
500 particles, a solid-phase nucleus cannot be formed. 

This paper develops two ways to avoid the discon­
timwus change from solid to fluid. The first method is 
to prevent the melting transition from taking place at 
all by applying an external field, stabilizing the solid 
phase, at all densities. Each particle is held in a private 
cell; this artificial constraint can be thought of as the 
effect of an external field of infinite strength.s 

The second method is to allow the melting transition 
to occur, but to force it to take place gradually and 
reversibly, instead of discontinuously, by a two-step 
process: first, using the infinite-strength external field 
already mentioned, the solid can be e:x-panded to a 
reasonably low density; then the field strength can be 
gradually reduced to allow the system to "melt" in a 
reversible way. Both methods permit the exact calcu­
lation of the solid-phase entropy. 

The three-dimensional hard-sphere system has been 
studied extensively by both the Monte Carlo and 
molecular-dynamic techniques,9 and the pressure has 

ij J. G. Kirkwood, J. ~hcm. Phys. 18, 38.0 Q950) I us;d a con­
strained system of this kind as the first step lU hIS denvation of the 
Lennard-Jones-Devonshire cell theory. 

, A summary of recent work will shortly appear i,n The Physics of 
Simple Liquids, H. N. V. Temperley, J. S. RowlInson, and G. S. 
Rushbrooke. Eds. (North-Holland Publ. Co., Amsterdam, to be 
published). 
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been accurately determined in the pure-soJifl and pure. gra
i1uid phases. The hard-sphere model is of particular 

interest in the solid-fluid transition region, because 

the model gives a qualitative description of melting in 

real systems.lO So far, however, computer attempts to 

accurately locate the two-phase region for hard spheres 

have failed. For the two phases to co-exist, it is neces­
 Th! 
sary to consider larger systems (or possibly make much I tial 
longer runs) than is now practical with present com­ int~ 
puters. Because of the difficulty in treating the inter. out 
esting hard-sphere model, it is an appropriate test case tern 
for external-field calculations. In this paper we derive Q.o
the basic equ;ltions needccl for the hard sphere calcula· ene 
tion and evaluate the low-density limiting properties ext! 
of the artificial hard-sphere solid. These latter results to j
should prove valuable in extrapolating computer re· botl 
sults from intermediate densities to the low-density rati 
limit. We expect to report on numerical work on the real 
hard-sphere system at a later date. 	 , sing 

forn
II. ARTIFICIAL SOLID 

The idea of locating the melting transition by study­
incr a system which cannot melt is not so strange as it 
ap~ears. By confining the center of each particle in an 
lV-particle system to its own ceil, of volume VjN, at .. 
all densities, the solid phase can be artificially extended In t 

conito cover the entire density range. Particles in the arti· 
Thuficial single-occupancy solid can collide both with the 

walls which confine each particle to its cell and with autc 
other nearby partieies. At high density, particles are grat 

of tlusually confined by their neighbors alone, rather than \. 
Aby cell walls. Each particle stays near the center of 

con,its ceU, and the single-occupancy cell system faithfully ~ 
andrepresents the properties of a perfect solid. At low den' 
t:,.s­sity, collisions with cell walls become appreciable­

these collisions prevent the artificial solid from melt­ SO-( 

t:,.Sing. That is, these collisions keep the particles ordered I 
within the lattice of individual cells and prevent the ! vie' 

itsdiffusion throughout the entire system which is char- \ 
acteristic of particles in a normal fluid. Instead of , troJ 

Imelting, the cell system artificially continues solid- ~ 
bephase thermodynamic properties to low density. . 
poiAt low-enough density all of the thermodynamIC 
priproperties of either the constrained cell system or the . 
latlunconstrained real system can be calculated exactly. ' 
in.We want to show how this low-density limit, coupled ~ 

with computer-crenerated thermodynamic properties for f cor 
ratthe artificial c~h system spanning the whole density ) 

range, can be used to calculate the entropy in the real me 

solid phase. at 

To examine the differences between the artificial 	 to~ 

gitsolid and the real system in a quantitative way, we 
tiofirst write down the configurational integrals which 
hoconnect the thermodynamic properties of these sys­
Qtems with the microscopic potential-energy function 


4'>( IN). For the real system, the configurational inte­
(1! 

10 J. S. Rowlinson, Mol. Phys. 8,107 (1964), I 
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MELTING 

"ral QN has the form 
b 

QN==exp[ -(1)/kT)+(S/k)] 

(N!)-1 f exp (_:~N)) drN. (1) 

The configu!ational entropy S and the average poten­
tial energy 4 can be evaluated from the configurational 
integral QN(T). The integration in Eg. (1) is carried 
out over the coordinates of all N particles in the sys­
trm. The sillg/c-ocCtl jJallcy~·lI configurational integral 
(i", for the artificial solid differs from {IN; the potential 
energy in the single-occupancy system contains an 
extra. cell-wall term <Pow, which constrains each particle 
to Jie within its myn ceIL This extra term modifies 
both the average potential energy ¢ and the configu­
rational entropy S. Using Ll to indicate the difference, 
real-system property minus artificial-solid property, the 
single-occupancy configurational integral Q.o has the 
form 

Q,o==exp[-(¢/kT)+(S/k)+(Llli>/kT) -(LlS/k)] 

E f eA~ ( - <P~~)) exp ( <P~~N)) drN. (2) 

In the integration in Eq. (2), each of the particles is 
confined by the cell-wall potential to a particular cell. 
Thus the factor of (N!)-l included in Eq. (1) has been 
automatically offset in Eq. (2) by restricting the inte­
gration to only one of the Nt different permutations 
of the N particles in N cells. 

I 

At low density both li> and Ll¢ approach zero; the two 
configurational integrals approach limits Q,\,..--';(Ve/N)N 
and Qso~(V/N)N, and LlS attains its maximum value 
AS-+Jfk. At high density the entropy difference, the 
so-called "communal entropy," goes to zero. Just how 
AS changes with density is not known in detail. The 
view that the entire communal entropy of Nk makes 
its appearance at melting, thus "explaining" the en­
tropy of fusion, is by now obsolete.4 •11 

If the solid-phase configurational integral could itself 
be measured by a computer, then there would be no 
point in introducing the single-occupancy system. In 
principle the configurational integral could be calcu­
lated by taking random configurations of N particles 
in a volume V and averaging exp( -<p/kT) over these 
configurations. In practice one cannot measure configu­
rational integrals at interesting densities, because al­
most all configurations of an N-particle system picked 
at random will have two or more particles so dose 
together that the weight of that configuration is negli­
gibly small,l2 The larger the system under considera­
tion, the more serious this limitation becomes. It is, 
however, possible to determine accurate derivatives of 
Q with respect to external parameters. (iJ InQ/iJVh 

11 W. G. Hoover and E, J. Alder, J. Chem. Phys. 45, 2361 
(1966). \ • 

12 E. Byckling, Physica 27. 1030 (1961). 
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and (a InQ/aT)v arc proportional to the average pres­
sure P and the average potential energy li>. Both aver­
ages can be measured in computer experiments. Then, 
knowing Q theoretically at low density, the derivative 
can be integrated to the solid-phase density of interest. 

The derivative of Q with respect to V can be evalu­
ated numerically by a direct application of the virial 
theorem.2.3 For a D-dimensional.:?lstem with a pairwise­
ndditivcipotential energy 4= L q,( r;;), the vidal the­
orem has the form 

PV/N/~T=N-l(a InQ/i! In V) T 

=1-[{.L: r;rVq,(r;j) )/(NDIIT)]. (3) 

All distinct pairs of particles ls.i<js.N are included 
in the sum. The angle brackets correspond dynamically 
to a time average. For a Monte Carlo calculation, the 
time average is replaced by a configuration-space aver­
age. In the event that the forces are short range and 
the density is high, so that particles interact effectively 
only with z equivalent nearest neighbors, Eq: (3) can 
be simplified to ­

PV/NkT= l--iz{r12' Vq,( r12) >/ (DkT), (4) 

where z is the coordination number of the lattice, and 
Particles 1 and 2 occupy nearest-neighbor cells. 

Since the artificial cell walls partitioning the system 
make no contribution to the pressure themselves, the 
single-occupancy configurational integral can be cal­
culated from the pressure using either Monte Carlo 
or molecular dynamics. The constraint of singly occu­
pied cells is taken into account by rejecting any Monte 
Carlo moves which would take the center of a particle 
outside its cell, or in the dynamic case, by reflecting 
the component of velocity normal to a cell wall when­
ever the center of a particle reaches the wall. 

To compute the entropy of the artificially stabilized 
solid at any density, p==NIV, simply compute the 
integral, .at constant energy. 

S(p) So (Po) jPO P 
. Nk= Nk + " (p2kT) dp, 

(5) 

where So is the entropy at po, chosen low enough so 
that So can be calculated. This does not mean zero 
density, The low-density limit can be calculated ana­
lytically by perforining anf-function expansion13 of the 
integrand of Qai;,- For nearest-neighbor interactions, one 
finds the result 

+higher-order terms J' (6) 

.. 13 This kind~ofexpansion-has been considered before by many 
authors, usually with the idea of calculating thermodynamic 
properties at liquid densities! See, for some hard-disk calculations, 
E. G. D. Cohen and B. C. Rethmeier, Physica. 24,959 (1958). 
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. F:c. 2 .•A "~nap~hot" pictlfre of a typical Monte Carlo configura­
bon of 8'9 dIsks lll_ the sohel phase, e:<;panded about 27% from 
dose I?ackmg. The llgure shows clearly the absence of long-range 
o:dcr III the two-dimensional solid phase. The displacement of the 
dIsks from their :'lattice .sites" is large. The configuration shown 
could .not occur. m the smgle-occupancy cell system. This figure 
was kmdly furnIshed by W. W. Wood (see Ref. 9). 

\-vhere Particles 1 and 2 occupy neighboring cells and the 
Mayer j-functionjI2 is equal to exp[-¢(r12)/kTJ-1. 
~or a short-range potential function ¢( r), the integral 
lD Eq. (6) is at low density14 proportional to thc area of 
the cell wall separating Particles 1 and 2, "'-' (VIN) HID 

in D dimensions. 
The procedure just outlined for evaluating the solid­

phase entropy makes the assumption that the com­
munal entropy /:;S = S - Sso is negligibly small in the 
solid phase. This is certainly valid provided that in 
the actual solid phase, particles remain localized within 
half a particle diameter of their most likely position 
at the cell center. The extent to which this localization 
p.revails depends very strongly on the number of dimen­
sIOns D. In one or two dimensions,15 even at the hicthest 
densities, particles are not localized but instead ~ove 
cooperatively back and forth over distances large ,'lith 
respect to the nearest-neighbor spacing. Thus the mean­
squared displacement of a particle from its lattice site 
should diverge in one or two dimensions. Striking con­
firmation of the irregular structure and lack of long­
~ange or;ier, in the two-dimensional solid phase, can 
be seen III one of Wood's "snapshot" pictures of the 
computer-generated 870-disk solid, reproduced in Fig, 
2. Of course, the fact that the mean-squared displace­
ment diverges does not necessarily mean that thermo­
dynamic properties calculated with a finite displacement 
(forced on a system by using cells) will be very differ­
ent from those of a real system with a diverging dis­
placement. In fact, thermodynamic properties are not 

• 14 A~ low density the integral reduces to, apart from a propor­
tIOnalIty constant, a surface-tension integral considered and 
worked out for hard spheres, by A. Bellemans, Physica 28, 493 
(1962). 

Ii L. D. Landau and E. M. Lifshitz, Statisekal Physics (Per­
gamon Press, Inc., London, 1958), Sec. 125. 

very sensitive to these low-frequency motions. In the 
most extreme case, a one-dimensional hard-rod system, 
the mean-squared displacement is proportional to the 
number of particles N, and yet a comparison of Q,y 
and Qso for this system shows that both the entropy 
and the pressure differences vanish near close packina.n 
The discrepancy is small at high density and must"be I 

much smaller in two or three dimensions; in our three­
dimensional applications we v{ill ignore it. 

Since three-dimensional solids generally melt at a 
linear expansion of order 10% from an effective "close­
packed" volume, the root-mean-squared displacement 
fro111 the center of a cell should remain small with 
[(:spect. to the cell diameter even at melting; in three 
dmlenslons, the single-occupancy approximation shou:d 
be accur~te th~oughout th.e solid phase. Experimentally, 
the fiel?-lOn mICroscope pictures show that over periods 
l?ng With respect to a molecular vibration time, par­
ticles ,are localized in three-dimensional solids,J6 Thus, ' 
the smgle-occupancy configurational integral, which 
ca~ be connected. to, low-density thermodynamic prop­
erties, should realistIcally represent a three-dimensional 
system in the solid phase. 

III. EXTERNAL FIELD OF VARIABLE STRENGTH 

As an alternative to the evaluation of the single- ) 
occupancy configurational integral at many densities 
one can instead connect the artificial solid 'phase with 
the fluid phase at some convenient sufficiently low 
densi~y by using an external field of varying strength. 
In FIg. 1 the thermodynamic path joining Points A 
and A' could be used to make the solid-fluid connec­
tion. The "external field" is chosen so that when turned \ 
on at full strength, the system is forced into the single· 
occupancy configuration, with one particle per celL At 
vanishing field strength the system behaves normally. 
We expect then to be able to go reversibly between the 
solid and fluid phases by varying the field strength. 

To set up the field, imagine a cell structure of N cells ' • 
sup~rimposed on the volume V. To stabilize singly oc­
cupIed cells, as opposed to empty or multiply occupied , 
ones, we introduce. an external field which furnishes 
an absorption energy, - E, per singly occupied ceIL The 
absorption energy is added to the usual potential en­
ergy of the system <p( rN), The total absorption energy 
for a configuration with II singly occupied cells is -Pt. 

Increasing the external field strength parameter E in­
creases the average number of singly occupied cells ii. 
For such a system the generalized configurational inte­
gral, depending on the field strength, can be written 

QN(e) == (N I)-i f exp (-.p~~)) exp (eYi;~)) drY. 

(7) 

As It approaches zero, QN(E) reduces to the uncon­

1Il~: H. Good, Jr", and E. W. Muller, Encyclopedia of Physics. 
S. Flugge, Ed. (Spnnger-Verlag, Berlin, 1956) Vol. 21, p. 176. 
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<rained configurational integral for the real system 
In the opposite limit, for f large, QN(f) approaches 

exp(tN/kT)Qso as all N cells become singly occupied. 
The two special cases, f=O and f-+OO, can be used to 
establish the useful identity 

f«>(N -)(kT)-l 0 "l;1J df, (8) 

where ii=jj(f) depends on the field strength and tem­
perature. We expect that as long as the chosen density 
is not too high, jj could be determined by computer 
calculations, and that the transition could be made to 
occur reversibly, even for a small system. It seems 
likely that there is a critical density (analogous to the 
r:mgnetic Curie temperature) below which the transi­
tion from artificial solid to fluid is continuous and 
above which the transition is discontinuous. Assuming 
that at suflicientlY low densitv the transition fr0111 

to t1uid take~ place reversibly for small systems, 
one can calculate the entropy in the solid phase by a 
two-step process: first, the single-occupancy pressure 
is measured from solid-phase density down to a density 
low enough for the field-induced transition to take 
place reversibly; next, the external field is gradually 
reduced in strength, at fixed density, to zero. The en­
tropy changes for the two steps, added together, give 
the total entropy difference between the initial solid­
phase state and lower-density fluid. The density at 
which the transition becomes reversible would have to 

I be determined empirically. If it turns out to be ex­
, tremely low, say one-tenth of close packing, then there 
t, !s no advanhtage in .u?ingba variable ext:rbnlal field · If, 

nowever, t e transitIOn ecomes reverSI e at about 
f half of dose packing, the amount of numerical calcula­
" don needed could be reduced by using a variable ex­

ternal field. 
The field strength required to "freeze" a low-density 

Iluid should be of the order kT and should decrease 
at higher density when the cells are more likely to be 
singly occupied even without the help of an external 
field. In the low-density limit, we can evaluate the 
configurational integral in the presence of an external 
field by the usual variational technique 

Q.v(f)-?N!(V/N)N L exp(N1E/kT) IT [(j!) Ni2V)J-l, 
INil i=O 

(9) 

i where the sum is over all sets of Ni satisfying the re­
strictions LNj =LiNj=N. (Ni is the number of cells 
containing exactly j particles. Two restrictions occur, 
because we set both the number of cells LNj and the 
number of particles LiNj equal to N, to make a 
single-occupancy system occur when the external field 
is strong.) The solutionl7 of this problem, in the large­

11 The same mathematical problem has no doubt been solved 
many times before. For a mathematically more general case, see 
N. G. Van Kampen, Phys. Rev. 135, A362 (1964) . 
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FIG. 3. An exact low-density calculation shows how the cntropy 
ditTcrence ~S(.) bctween an artificially stabilized solid and an 
ideal gas varies with the strength of the stabilizing external ficld. 
When the JleJd is at full strength, all N cells are singly occupied. 
When the field is turned off, the artificial system reduces to the 
real one, and the fraction of cells singly occupied iilN is lie. The 
shaded area is numerically equal to the co=unal entropy and 
illustrates the low-density limit of the integration indicated hy 
Eq. (8) of the text. 

system low-density limit, is 

QN(e) = (V/N)"I[exp(f/kT) +e-1JN, 

Nj/N= ((j!)[exp(E/kT)+e-1JI-t, for j~l, 

= exp( t/kT) [exp (t/kT) +e- for j= 1. 

(10) 

In Fig. 3 both the entropy and the number of singly 
occupied cells are shown as functions of field strength. 
Notice that even at zero density a field strength of 
4kT is sufficient to make over 96% of the cells singly 
occupied. At higher densities, weaker fields would be 
adequate. 

In numerical applications it is reasonable to expect 
that the communal entropy, calculated in the way 
just outlined, could be determined with an error of 
order O.OlNk. In typical applications this would allow 
the phase transition pressure to be determined within 
about 1%. 

IV. APPLICATION TO HARD SPHERES 

To the extent that attractive forces can be idealized 
as forming a uniform background of negative energy 
and repulsive forces can be replaced by an energy­
independent collision diameter, the hard-sphere system 
can be used to represent real systems. The hard-sphere 
system is probably the simplest which can reproduce 
melting qualitatively and is therefore of particular the­
oretical interest. 

Because of its simplicity and intrinsic interest, the 
hard-sphere model has been extensively investigated 



48i8 \Y. G, lIOOVER AND F. n, I~EE THE 

by both the :Monte Carlo and molecular-dynamic meth­
ods. So far, however, in systems containing up to 500 
particles, it has not been possible to observe coexisting 
solid and fluid phases. At linear e).."Pansions of about 
14% from close packing, the solid phase melts irrevers­
iblylS to the fluid, and attempts to compress the fluid 
back to solid-phase densities hreve always resulted in 
the generation of a metastable glassy phase. 

The small size of the systems studied is responsible 
for these unsatisfactory results. The dependence of the 
transition on the number of particles has been esti­
mated. The deviation from the large-system thermo­
dynamic limit is reasonably small, of order (InN) /N,19 
but without R definite value for the transition pressure 
for some finite X, the extrapolation to infinite systems 
cannot be carried out. Instead, one must use entropy 
estima tes from slowly cOl1Ycrging theories20 or use ad !loc 
assumptions21 to connect the thermodynamic properties 
of the solid and l1uid phases. 

A fluid-phase equation of state for hard spheres, ac­
curate over the whole density range, is already avail­
able.22 Thu..-, the entropy of the single-occupancy hard­
sphere system can be determined from Eq. (8) by 
measuring the <'hange in the numher of singly occupied 
rel1:-: wit h ncld strengt h. Theil all integration along 
the singlc,()('clIp:llIcy isotherm (Td.",·~" Pd V on a hard­
sphere isotherm) would establish the entropy of the 
hard-sphere solid and allow the melting transition to be 
accurately located. 

At the low-density limit, the configurational integral 
expansion indicated in Eg. (6) can be carried out 
analytically for hard spheres, at least through the first 
term. The integral corresponds to the average overlap 
of two spheres occupying neighboring cells and is the 
cell-system analog of the second virial coefficient. 

For one-, two-, and three-dimensional hard spheres, 
respectively, one finds for the integral fdrddrd12: 
-~a2, -%VJa4x-112, and -(1TV2a6/16)x-213, where a is 
the sphere diameter, and x is the density divided by the 
density at close packing. Using the density expansion 
of the configurational integral QN, one can use these 

IS Some unpublished dynamic data, provided by B. J. Alder, 
indicate that a 500·sphere system "melts" at an expansion of 50% 
from close packing, The melting occurs in both the face-centered 
and hexagonal versions of the hard-sphere crystal. The transition 
is only "irreversible" in the context of times short enough for 
computer calculations, of course. 

19 W. G. Hoover and B. J. Alder, J- Chem. Phys.46, 686 (1967). 
20 F. H. Stillinger, Z. W. Salsburg, and R. L. Kornegay, 1- Chern. 

Phys. 43, 932 (1965). 
21 ~I. Ross and B. J. Alder, Phys. Rev. Letters 16,1077 (1966). 
22 Either the integral of the Padc apprmdmant to the hard­

sphere pressure, or for simplicity, a Pade approximant to the 
entropy itself can be used. The former approximant can be found 
in F. H. Ree and W_ G. Hoover, J. Chern. Phys. 40, 939 (1964). 

results to calculate the COIr..rounal entropy in the low­
density limit 

!l.S/Nk = 1-1.00000x-O(x") , 

one dimension; j. 

two dimensions; 

= 1-2.96192x+3.33216x413_0(;t-613) , 

three dimensions. (11) The ( 
familiarThe low-density limiting cases, Eg. (11), coupled with i 
ExperinMonte Carlo or dynamic values of the single-occupancy 
can bepressure from low density to solid-phase densities will 
single,make it possible to determine the transition pressure ~ 
"skewecand densities of the coexisting phases. 
metric ( An investigation of the two-dimensional hard-disk 
attemptsystem probably would not yield any new thermo- : 
and the dynamic information, because the 870-disk transition 
been wehas already heen located.4 It would nevertheless he of 
the as)'!some interest to investigat e the hlml-disk single-occn- I• pid termpaney system in the solid phase to find out if the 
rclaxati(qualitative dilTerence in mean-squared displacement be- ') 
treatmetween the real system and the artificial one causes 

Thesenoticeable differences between their thermodynamic 
rather cproperties. 
ess. Gla 

V. SUMMARY "defects 
probabi: 

Two different ways have been suggested to locate "
j 

that ma 
the melting transition accurately by using computer­ reorient 
generated thermodynamic properties of an artificial orient r 
single-occupancy solid. The first method is to calcu· stable t 
late the pressure of the artificial solid over the whole framewe 
density range and by integration to calculate the en­ fusion e 
tropy of the solid at high density, where the entropy , model t 
di fference vanishes between the actual solid and the ~ ing reS1I
artificifalhon:. The s~conbd method a:voidshthe l?fiw~delnSi:)d-' siona! c 
part 0 t e lI1tegratlOn y connectmg teart! cIa soh the reOJ 
to the real system at fixed density by turning on an cules w 
external field reversibly. Computer results for the hard· parame' 
sphere system, augmented by the low-density limiting I presume 
results described in this paper, should make it possible ~ 

1 For ato accurately locate the hard-sphere melting transition 
for exam and to determine how the communal entropy varies (1961) . 

with density. If this program is successful it would be 2D.W 
(1951) . logical to try the same techniques for more general 3D. W

force laws and for more complicated solid-solid transi­ 4 K. S. 
tions. °K.W 

6W.A 
7W. Ki 3S_ H.) 
9 J. E. 

(1967). 
laB. I. 
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