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Modern computers can accurately simulate the behavior of idealized systems of several hundred particles,
but they have trouble in studying the melting process in which small-system surface effects make the
transition irreversible. It is here suggested that a thermodynamically reversible path linking the solid and

I. INTRODUCTION

- Monte Carlo'? and molecular dynamic®* calcula-
¢ tions are two popular computer methods for obtaining
¢ thermodynamic data under conditions in which exact
% statistical-mechanical calculations are difficult. In pure
i phases, either fluid or solid, the computer techniques
' can measure pressure and energy to within a percent
of limiting thermodynamic values. In or near density—
temperature regions where two phases can coexist, the
computer calculations become inefficient. Distortions
due to boundary effects become important in a two-
phase system. Both density and energy fluctuations
become large. In addition, the decay time for such
fluctuations increases by orders of magnitude so that
convergent thermodynamic averages cannot easily be
. obtained.
7 Volume and temperature are the usual independent
: variables for Monte Carlo computer work; volume and
¢ total energy are the independent variables for dynamic
¢ calculations. In either case the pressure, calculated from
i the virial theorem, together with the energy or tem-
; perature averages can be put in the form of an equa-

* Work performed under the auspices of the U.S. Atomic Energy
;  Commission. .
i 1W.W. Wood and J. D. Jacobson, Proc. Joint Computer Conf.
San Francisco, March 1959, 261 (1959).

TW. W. Wood, “Monte Carlo Calculations of the Equation of
State of Systems of 12 and 48 Hard Circles,” Los Alamos Sci. Lab.
Rept. LA-2827, 1963.

(1; B. J. Alder and T. E. Wainwright, J. Chem. Phys. 33, 1439

260) ,
¢B.J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962).
! A. Rahman, Phys. Rev. 136, A405 (1964).
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fluid phases can be obtained by using a periodic “external field” to stabilize the solid phase at low density.
The properties of the artificially stabilized solid at low density are studied theoretically, and two practical
schemes are outlined for determining the melting parameters by using computer-calculated entropies.

tion of state relating E, T, P, and V. Such an equation
of state can be measured accurately only for pure
phases.

In order to calculate the conditions under which two
phases coexist, the ETPV relations for the pure phases
are not enough; the difference between the entropies of
the two phases is also required.® Calculating entropy
differences between two different thermodynamic states
requires an integration of dS=(1/T)dE+(P/T)dV
along a thermodynamically reversible path linking the
two states. To connect the gas and liquid phases, one
can use a path which avoids the two-phase region by
going above the critical point in temperature. To con-
nect the fluid and solid phases is not so easy. The melt-
ing transition persists even at high temperature, and
unlike the gas-liquid transition, cannot be avoided by
heating the system.

Computer “experiments” with systems of a few hun-
dred particles show distortion in the melting—freezing
transition.?~* If one slowly decreases the density of a
solid-phase system, then the system will change sud-
denly, at constant volume, from solid to fluid. Often
this change is no? reversible; i.e., going the other way,
compressing a fluid to higher densities, leads not to a
crystalline solid, but to a glassy state instead (see
Fig. 1). Assuming that at high density a solid phase,
not a glass, is thermodynamically stable, failure to
observe the solid can only be due to surface effects.

~ 8 See Gibbs’ interesting discussion of this point in The Collected
Works of J, Willard Gibbs (Yale University Press, New Haven,
1957), Vol. 1, p. 37.

7J. E. Mayer and W. W. Wood, J. Chem. Phys. 42, 4268 (1965).
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Fie. 1. Excess entropy S° as a function of density p at fixed
encrgy. For infinite thermodynamic systems, only the fluid and
solid phases can be observed, and the two phases can coexist over
a density range near the intersection of the two curves. In computer
calculations with small systems, attempts to compress the fluid
to solid-phase densities result in metastable glassy states. In the
text, it is explained how generating the artificial solid states, indi-
cated by dashes, can locate the melting transition. The properties
of the artificial solid can be related to those of the real one cither
by following the entire dashed line or by converting the artificial
solid to a fluid (4—A’) by using an external field. The figure was
drawn using approximate data for the hard-sphere system (the
entropy excess was measured relative to an ideal gas at the same-
density and temperature, and volume units were chosen such that
p=1 at close packing).

It takes so much free energy to form a surface be-
tween two phases that even in a system containing
500 particles, a solid-phase nucleus cannot be formed.

This paper develops two ways to avoeid the discon-
tinuous change from solid to fluid. The first method is
to prevent the melting transition from taking place at
all by applying an external field, stabilizing the solid
phase, at all densities. Each particle is held in a private
cell; this artificial constraint can be thought of as the
effect of an external field of infinite strength.8

The second method is to allow the melting transition
to occur, but to force it to take place gradually and
reversibly, instead of discontinuously, by a two-step
process: first, using the infinite-strength external field
already mentioned, the solid can be expanded to a
reasonably low density; then the field strength can be
gradually reduced to allow the system to “melt” in a
reversible way. Both methods permit the exact calcu-
lation of the solid-phase entropy.

The three-dimensional hard-sphere system has been
studied extensively by both the Monte Carlo and
molecular-dynamic techniques,® and the pressure has

——

8 7. G. Kirkwood, J. Chem. Phys. 18, 380 (1950), used a con-
strained system of this kind as the first step in bis derivation of the
Lennard-Jones-Devonshire cell theory.

* A summary of recent work will shortly appear in The Physics of
Stmple Liguids, H. N. V. Temperley, J. 8. Rowlinson, and G. 5.
Rushbrooke, Eds. (North-Holland Publ. Co., Amsterdam, to be
published).
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been accurately determined in the pure-solid and pure.
{luid phases. The hard-sphere model is of particular.
interest in the solid-fluid transition region, because

the model gives a qualitative description of meltingin

real systems.”® So far, however, computer attempts to
accurately locate the two-phase region for hard spheres
have failed. For the two phases to co-exist, it is neces-
sary to consider larger systems {or possibly make much

-

longer runs) than is now practical with present com-
puters. Because of the difficulty in treating the inter-
esting hard-sphere model, it is an appropriate test case -

for external-field calculations. In this paper we derive
the basic equations needed for the hard-sphere caleula-
tion and cvaluate the low-density limiting propertics

of the artificial hard-sphere solid. These latter results -
should prove valuable in extrapolating computer re- -
sults from intermediate densities to the low-density

limit. We expect to report on numerical work on the |

hard-sphere system at a later date,

II. ARTIFICIAL SOLID

The idea of locating the melting transition by study-
ing a system which cannot melt is not so strange as it

appears. By confining the center of each particle in an !

N-particle system to its own cell, of volume V/.V, at
all densities, the solid phase can be artificially extended
to cover the entire density range. Particles in the arti-
ficial single-occupancy solid can collide both with the
walls which confine each particle to its cell and with
other nearby particles. At high density, particles are
usually confined by their neighbors alone, rather than
by cell walls. Each particle stays near the center of
its cell, and the single-occupancy cell system faithfully
represents the properties of a perfect solid. At low den:
sity, collisions with cell walls become appreciable—
these collisions prevent the artificial solid from melt-
ing. That is, these collisions keep the particles ordered
within the lattice of individual cells and prevent the
diffusion throughout the entire system which is char-
acteristic of particles in a normal fluid. Instead of
melting, the cell system artificially continues solid-
phase thermodynamic properties to low density.

At low-enough density all of the thermodynamic
properties of either the constrained cell system or the
unconstrained real system can be calculated exactly.
We want to show how this low-density limit, coupled
with computer-generated thermodynamic properties for
the artificial cell system spanning the whole density
range, can be used to calculate the entropy in the real
solid phase.

To examine the differences between the artificial
solid and the real system in a quantitative way, we
first write down the configurational integrals which
connect the thermodynamic properties of these sys-
tems with the microscopic potential-energy function
&(r¥}, For the real system, the configurational inte-

1 7, 8, Rowlinson, Mol. Phys. 8, 107 (i964).
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MELTING TRANSITION

¢ral Qv has the form

Ow=exp[~ (®/kT)+(S/k) ]
= (Nt / exp (M) dr¥,

kT

The configurational entropy S and the average poten-
rial energgy @ can be evaluated from the configurational
integral On (7). The integration in Eq. (1) is carried
out over the coordinates of all & particles in the sys-
tem. The single-occupancy®t (‘onﬁgumtioml integral
(., for the artificial solid differs from Qu; the potvnu.ﬂ
encrgv in the single-occupancy system contains an
extra cell-wall term g, which constrains each particle
to lie within its own cell. This extra term modifies
both the average potential energy ¢ and the configu-
rational entropy S. Using A to indicate the difference,
real-system property minus artificial-solid property, the
single-occupancy configurational integral (., has the
form

(1)

Quw=expl— (B/RT)+ (S/k)+ (A%/kT) — (AS/E)]
¥ N
= | exp (—-q);; >) exp (-%2) drv. (2)

In the integration in Eq. (2}, each of the particles is
confined by the cell-wall potential to a particular cell.
Thus the factor of (V1) included in Eq. (1) has been
automatically offset in Eq. (2) by restricting the inte-
gration to only one of the N! different permutations
of the N particles in ¥ cells.

At low density both ® and A% approach zero; the two
configurational integrals approach limits Ga—{ Ve/N)}¥
and Qi (V/N)¥, and AS attains its maximum value

AS—NE. At high density the entropy difference, the

so-called “communal entropy,” goes to zero. Just how
AS changes with density is not known in detail. The
view that the entire communal entropy of Nk makes
its appearance at melting, thus “explaining” the en-
tropy of fusion, is by now obsolete1}

If the solid-phase configurational integral could itself
be measured by a computer, then there would be ne
point in introducing the single-occupancy system. In
principle the configurational integral could be calcu-
lated by taking random configurations of N particles
in a volume V and averaging exp(—®/kT") over these
configurations. I'n practice one cannot measure configu-
rational integrals at interesting densities, because al-
most all configurations of an N-particle system picked
at random will have two or more particles so close
together that the weight of that configuration is negli-
gibly small.¥® The larger the system under considera-

tion, the more serious this limitation becomes. It is, -

however, possible to determine accurate derivatives of

Q with respect to external parameters, (8 1nQ/6V)r

( ;V&; G. Hoover and B. T Alder, J. Chem. Phys‘ 45. 2361
1966 \
¥ E. Byckling, Phys:ca 27, 1030 (1961).
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and (8 1InQ/0T)v are proportional to the average pres-
sure P and the average potential energy ®. Both aver-
ages can be measured in computer experiments. Then,
knowing @ theoretically at low density, the derivative
can be integrated to the solid-phase density of interest.

The derivative of @ with respect to ¥ can be evahr-
ated numerically by a direct application of the virial
theorem.?? For a D-dimensional system with a pairwise-
additive/potential energy &= ¢{r:;), the virial the-
orem has the form

PV/NET=N-1(3100/0 V) r
=1-[{3 1 Vo(x1i5) )/ (WDET)].  (3)

All distinct pairs of particles 1<i<4< N are included
in the sum. The angle brackets correspond dynamically
to a time average. For a Monte Carlo calculation, the
time average is replaced by a configuration-space aver-
age. In the event that the forces are short range and
the density is high, so that particles interact effectively
only with z equivalent nearest neighbors, Eq.” (3) can
be simplified to

PV/NET=1~3z{x12° Vp(110) )/ (DET),  (4)

where z i{s the coordination number of the lattice, and
Particles 1 and 2 occupy nearest-neighbor cells.

Since the artificial cell walls partitioning the system
make no contribution to the pressure themselves, the
single-occupancy configurational integral can be cal-
culated from the pressure using either Monte Carlo
or molecular dynamics. The constraint of singly occu-
pied cells is taken into account by rejecting any Monte
Carlo moves which would take the center of a particie
outside its cell, or in the dynamic case, by reflecting
the component of velocity normal to a cell wall when-
ever the center of a particle reaches the wall.

To compute the entropy of the artificially stabilized
solid at any density, p=/N/V, simply compute the
integral, at constant energy,

- S(p) So(po) f
NE T NE T <p2kT>

where S, is the entropy at p,, chosen low enough so
that S, can be calculated. This does not mean zero
density. The low-density limit can be calculated ana-
Iytically by performing an f~function expansion® of the
integrand of Q. For nearest-neighbor interactions, one
finds the result

QEOW(V/&)N exp [%(Nz)p’ fidl‘;[dfaf;z

(5)

+higher-order terms] , (6)

.18 This kind of expansion has been considered before by many
authors, usually with the idea of calculating thermodynamic
propertxes at liquid densities! See, for some hard-disk calculations,

G. D. Cohen and B. C. Rethmeler, Physica 24, 959 (19358).
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Fic. 2. A “snapshot® picture of a typical Monte Carlo configura-
tion of 870 disks in the solid phase, expanded about 279, from
close packing. The figure shows clearly the absence of long-range
order in the two-dimensional solid phase. The displacement of the
disks from their “lattice sites” is large. The configuration shown
could not occur in the single-occupancy cell system. This figure
was kindly furnished by W, W. Wood (see Ref. 9).

where Particles 1 and 2 occupy neighboring cells and the
Mayer f-function fy; is equal to exp[—é(11) /2T ]—1.
For a short-range potential function ¢(r), the integral
in Eq. (6) is at low density® proportional to the area of
the cell wall separating Particles 1 and 2, ~(V/N) U2
in D dimensions,

The procedure just outlined for evaluating the solid-
phase entropy makes the assumption that the com-
munal entropy AS=S5-—3S,, is negligibly small in the
solid phase. This is certainly valid provided that in
the actual solid phase, particles remain localized within
half a particle diameter of their most likely position
at the cell center. The extent to which this localization
prevails depends very strongly on the number of dimen-
sions I2. In one or two dimensions,’® even at the highest
densities, particles are not localized but instead move
cooperatively back and forth over distances large with
respect to the nearest-neighbor spacing. Thus the mean-
squared displacement of a particle from its lattice site
should diverge in one or two dimensions, Striking con-
firmation of the irregular structure and lack of long-
range order, in the two-dimensional solid phase, can
be seen in one of Wood’s ‘“‘snapshot” pictures of the
computer-generated 870-disk solid, reproduced in Fig,
2. Of course, the fact that the mean-squared displace-
ment diverges does not necessarily mean that thermo-
dynamic properties calculated with a finite displacement
(forced on a system by using cells) will be very differ-
ent from those of a real system with a diverging dis-
placement. In fact, thermodynamic properties are not

# At low density the integral reduces to, apart from a propor-
tionality constant, a surface-tension integral considered and
v(rmrked out for hard spheres, by A. Bellemans, Physica 28, 493

1962).

%1, D. Landay and E. M. Lifshitz, Slasistical Physics (Per-

gamon Press, Inc., London, 1958), Sec. 125,
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very sensitive to these low-frequency motions. In the *

most extreme case, a one-dimensional hard-rod system,
the mean-squared displacement is proportional to the
number of particles ¥, and yet a comparison of Oy
and (,, for this system shows that both the entropy
and the pressure differences vanish near close packing tt
The discrepancy is small at high density and must be
much smaller in two or three dimensions; in our three-
dimensional applications we will ignore it.

Since three-dimensional solids generally melt at a
linear expansion of order 109, from an effective “close-
packed” volume, the root-mean-squared displacement
from the center of a cell should remain small with
respect to the cell diameter even at melting; in three
dimensions, the single-occupancy approximation should
be accurate throughout the solid phase, Experimentally,
the field-ion microscope pictures show that over periods
long with respect to a molecular vibration time, par-
ticles are localized in three-dimensional solids.”® Thus,
the single-cccupancy configurational integral, which
can be connected to low-density thermodynamic prop-
erties, should realistically represent a three-dimensional
system in the solid phase.

IIl. EXTERNAL FIELD OF VARIABLE STRENGTH

As an alternative to the cvaluation of the single
occupancy configurational integral at many densities,
one can instead connect the artificial solid phase with
the fluid phase at some convenient sufficiently low
density by using an external field of varying strength,
In Fig. 1 the thermodynamic path joining Points 4
and A4’ could be used to make the solid-fluid connec-
tion. The “external field” is chosen so that when turned
on at full strength, the system is forced into the single-
occupancy configuration, with one particle per cell. At
vanishing field strength the system behaves normally.
We expect then to be able to go reversibly between the
solid and fluid phases by varying the field strength.

To set up the field, imagine a cell structure of & cells
superimposed on the volume V. To stabilize singly oc-
cupied cells, as opposed to empty or multiply occupied
ones, we introduce an external field which furnishes
an absorption energy, —e, per singly occupied cell. The
absorption energy is added to the usual potential en-
ergy of the system ${r¥). The total absorption energy
for a configuration with » singly occupied cells is ~ve
Increasing the external field strength parameter ¢ in-
creases the average number of singly occupied cells 7.
For such a system the generalized configurational inte-
gral, depending on the field strength, can be written

On(e=(ND™T | exp (*@S;i)) exp (ﬂ%ﬁ) drv,
Q!

As ¢ approaches zero, Qn(e) reduces to the uncon-

¥R, H. Good, Jr., and E. W. Miilier, Encvclopedia of Physics,
S. Fliigge, Bd. (Springer-Verlag, Berlin, 1956) Vol. 21, p. 176.
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srained configurational integral for the real system
(. In the opposite limit, for e large, On (¢) approaches
;g?w/kz‘ Y0« as all ¥V cells become singly occupied.
The two special cases, e=0 and e+, can be used to
establish the useful identity

AP AS (Q}:) e (N—z)
— =N [ S =D (=
Y kT+ i n 0. (kT) L\ de, (8)

where 7=7(¢) depends on the field strength and tem-
perature. We expect that as long as the chosen density
is not too high, 7 could be determined by computer
calculations, and that the transition could be made to
occur reversibly, even for a small system. It seems
likely that there is a critical density (analogous to the
magnetic Curie temperature) below which the transi-
tion from artificial solid to fluid is continuous and
above which the transition is discontinuous. Assuming
that at sufliciently low density the transition from
wiid to fluid takes place reversidly for small systems,
one can calculate the entropy in the solid phase by a
two-step process: first, the single-occupancy pressure
is measured from solid-phase density down to a density
low enough for the field-induced transition to take
place reversibly; next, the external field is gradually
reduced in strength, at fived density, to zero. The en-
tropy changes for the two steps, added together, give
the total entropy difference between the initial solid-
phase state and lower-density fluid. The density at
which the transition becomes reversible would have to
be determined empirically. If it turns out to be ex-
tremely low, say one-tenth of close packing, then there
is no advantage in using a variable external field. If,
however, the transition becomes reversible at about
half of close packing, the amount of numerical calcula-
ton needed could be reduced by using a variable ex-
ternal field.

The field strength required to “frecze” a low-density
fluid should be of the order 2T and should decrease
at higher density when the cells are more likely to be
singly occupied even without the help of an external
feld, In the low-density limit, we can evaluate the
configurational integral in the presence of an external
field by the usual variational technique

Q=N UV/NY 3 expie/eT) TT LT,
©

where the sum is over all sets of NV, satisfying the re-
strictions Y_N;= 2 jN;=N. (N;is the number of cells
containing exactly 7 particles. Twe restrictions occur,
because we set both the number of cells Y_N, and the
number of particles » jN; equal to N, to make a
single-occupancy system occur when the external field
is strong.) The solution” of this problem, in the large-

¥ The same mathematical problem has no doubt been solved
many times before, For a mathematically more general case, see
N. G. Van Kampen, Phys. Rev. 135, A362 (1964).

1.0 Y 1.0
A5/ Nk
0.8 0.8
0.6 N !
; 0.6 21
z ps
S .
= o
3
1 0.4 i {4
: —
0.2 —0.2
0 I | i I 0
0 2 4 & 8 10
RS

1. 3. An exact low-density calculation shows how the entropy
difference AS{e) between an artificially stabilized solid and an
ideal gas varies with the strength of the stabilizing external field.
‘When the field is at full strength, all ¥ cells are singly occupied.
When the field is turned off, the artificial system reduces to the
real one, and the fraction of cells singly occupied /N is 1/e. The
shaded area is numerically equal to the communal entropy and
illustrates the low-density limit of the integration indicated by
Eq. (8} of the text.

system low-density limit, is

O () = (V/N)¥[exp(e/kT) +e—17%,

Ni/N={(j)[exp(e/kT)+e~1]}7, for j=1,
=exp(e/kT) [exp(¢/kT) +e— 1711, for j=1.
(10)

In Fig. 3 both the entropy and the number of singly
occupied cells are shown as functions of field strength.
Notice that even at zero density a field strength of
4£T is sufficient to make over 969, of the cells singly
occupied. At higher densities, weaker fields would be
adequate.

In numerical applications it is reasonable to expect
that the communal entropy, calculated in the way
just outlined, could be determined with an error of
order 0.01NV%. In typical applications this would allow
the phase transition pressure to be determined within
about 19,.

IV. APPLICATION TO HARD SPHERES

T'o the extent that attractive forces can be idealized
as forming a uniform background of negative energy
and repulsive forces can be replaced by an energy-
independent collision diameter, the hard-sphere system
can be used to represent real systems. The hard-sphere
system is probably the simplest which can reproduce
melting qualitatively and is therefore of particular the-
oretical interest.

Because of its simplicity and intrinsic interest, the
hard-sphere model has been extensively investigated
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by both the Monte Carlo and molecular-dynamic meth-
ods, So far, however, in systems containing up to 500
particles, it has not been possible to observe coexisting
solid and fluid phases, At linear expansions of about
149, from close packing, the solid phase melts irrevers-
ibly*® to the fluid, and attempts to compress the fluid
back to solid-phase densities have always resulted in
the generation of a metastable glassy phase.

The small size of the systems studied is responsible
for these unsatisfactory results. The dependence of the
transition on the number of particles has been esti-
mated, The deviation from the large-system thermo-
dynamic limit is reasonably small, of order (In¥N) /N
but without a definite value for the transition pressure
for some finite IV, the extrapolation to infinite systems
cannot be carried out. Instead, one must use entropy
estimates from slowly converging theories® or use ad foc
assumptions™ to connect the thermodynamic properties
of the solid and fluid phases.

A fiuid-phase equation of state for hard spheres, ac-
curate over the whole density range, is already avail-
able.® Thus, the entropy of the single-occupancy hard-
sphere system can be determined from Eq. (8) by
measuring the change in the number of singly occupiced
cells with Neld strength, Then an integration wlong
the single-ocaupancy isotherm (I'dS = PdV on a hard-
sphere isotherm) would establish the entropy of the
hard-sphere solid and allow the melting transition to be
accurately located.

At the low-density limit, the configurational integral
expansion indicated in Eq. (6) can be carried out
analytically for hard spheres, at least through the first
term. The integral corresponds to the average overlap
of two spheres occupying neighboring cells and is the
cell-system analog of the second virtal coefficient.

For one-, two-, and three-dimensional hard spheres,
respectively, one finds for the integral [drifdrsfie
-3, —FBe%r?, and — (7V2e%/16)x2*, where ¢ is
the sphere diameter, and «x is the density divided by the
density at close packing. Using the density expansion
of the configurational integral Oy, one can use these

¥ Some unpublished dynamic data, provided by B. J. Alder,
indicate that a 500-sphere system “melts” at an expansion of 509,
from close packing. The melting occurs in both the face-centered
and hexagonal versions of the hard-sphere crystal, The transition
is only “Irreversible” in the context of times short enough for
computer calculations, of course.

¥ W, (3. Hoover and B, J. Alder, J. Chem. Phys. 46, 686 (1967).

2 F. H. Stillinger, Z. W. Salsburg, and R. L. Kornegay, J. Chem.
Phys. 43, 932 (1965).

% M., Ross and B. J. Alder, Phys. Rev. Letters 16, 1077 (1966).

22 Lither the integral of the Padé approximant to the hard-
sphere pressure, or for simplicity, a Padé approximant to the
entropy itself can be used. The former approximant can be found
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AND F. 1.

o

RTE P

results to calculate the communal entropy in the low.
density limit

AS/Nk=1~—1.00000x—0(a%),
one dimension;

=1—1.813805+1.5306002~0 (22),

two dimensions; ;
=1-2.96192x+43.33216x4% — O (257},

three dimensions. (11} !

The low-density limiting cases, Eq. (11}, coupled with
Monte Carlo or dynamic values of the single-occupancy
pressure from low density to solid-phase densities wil] |
make it possible to determine the transition pressure »
and densities of the coexisting phases.

An investigation of the two-dimensional hard-disk
system probably would not yield any new thermo-
dynamic information, because the 870-disk transition
hag already been located* Tt would nevertheless be of
some interest to investigate the hard-disk single-occu-
pancy system in the solid phase to find out if the :
qualitative difference in mean-squared displacement be-
tween the real system and the artificial one causes |
noticeable differences between their thermodynamic
properties.

SR

V. SUMMARY

o

Two difierent ways have been suggested to locate
the melting transition accurately by using computer- |
generated thermodynamic properties of an artificial
single-occupancy solid. The first method is to caleu- ¢
late the pressure of the artificial solid over the whole :
density range and by integration to calculate the en-
tropy of the solid at high density, where the entropy |
difference vanishes between the actual solid and the !
artificial one. The second method avoids the low-density
part of the integration by connecting the artificial solid ;
to the real system at fixed density by turning on an :
external field reversibly, Computer results for the hard-
sphere system, augmented by the low-density limiting |
results described in this paper, should make it possible §
to accurately locate the hard-sphere melting transition '
and to determine how the communal entropy varies !
with density, If this program is successful it would be |
logical to try the same techniques for more general !
force laws and for more complicated solid-solid transi- *
tions.
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