716

Reprinted from THe Journar or Cremicar Pmysics, Vol 43, No. 2, 375-392, 15 July 1965
Printed in U. 8. A.

Calculation of Virial Coefficients. Squares and Cubes with Attractive Forces*

Wirriam G. Hoover anp Francis H. REg

Lowrence Radigiion Laboratory, Universily of California, Livermore, California

(Received 14 August 1964)

A general combinatorial formulation of the star integrals occurring in calculations of virial coefficients is
presented. The usefulness of the formulation is demonstrated by the exact calculation of the first five virial co-
efficients for gases of hard parallel squares and cubes with attractive forces.

For these gases the three-, four-, and five-term virial series are examined, and each series is found to have
a critical point. Most of the critical properties of these truncated virial series are sensitive to the number of
terms included, but the preduct P,V . remains nearly constant as more terms are added.

It is shown that any two- or three-dimensional square-well virial coefficient is negative at low temperature,
Despite this, the low-temperature contribution of the complete star integral can be either positive or negative.

I. INTRODUCTION

TATISTICAL mechanics provides an interpreta-
tion of macroscopic thermodynamic properties in
terms of microscopic particle properties. Thus, temper-
ature, pressure, and internal energy can be expressed
as functions of the microscopic particle velocities and
forces. Such a correlation of bulk with particle prop-
erties is found in the number density expansion of the
compressibility (virial series):

PV /NI =14 Bop-Byp*t- Byp+- Bsp?

deees p=N/V.O(1)
P, V,and T are the thermodynamic variables pressure,
volume, and temperature, respectively. &V is the number
of particles in the system, and % is Boltzmann’s con-
stant. The virial coefficients B, in the series can be
determined not only from experiment,® by analyzing
compressibility data, but also from theory,*#® by cal-
culating star integrals which depend upon the inter-
particle potential-energy function, ¢(r). In principle,
one can learn the form of the real potential by adjust-
ing ¢(r) until the experimental and theoretical results
agree. There are difficulties in this scheme: the virial
coefficients, as determined experimentally, depend upon
the length of the truncated series to which the data are
fitted. Theoretical calculations of the third and higher
coefficients are also inaccurate, because they are based

* This work was performed under the auspices of the U. 8.
Atomic Energy Commission.

1 7. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liguids (John Wiley & Sons, Inc., New York,
1954). Determination of virial coefficients from experimental
data is described on pp. 134-156.

2 J. E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley & Sons, Inc., New York, 1940). Chapter 13 describes the
theoretical determination of virial coefficients.

¢ G, E. Uhlenbeck and G. W. Ford, in Studies in Statistical
Mechanics, edited by J. De Boer and G. E. Uhlenbeck (North-
Holland Publishing Company, Amsterdam, 1962), Vol. 1, Part B.

upon the approximation of pairwise additivity to avoid
the complications of the many-body force problem,
These difficulties, both experimental and theoretical,
serve to limit the accuracy of interparticle potentials
derived from compressibility data.

Aside from its use in correlating and interpreting
experimental data, the virial series (1) is associated
with some interesting theoretical questions. How do
the individual coefficients behave at high and low tem-
perature? This is generally unknown, as virial co-
efficients beyond the fourth are not well characterized
for realistic systems. We provide a partial answer to
this question by proving that any virial coefficient for
systems of two- or three-dimensional square-well
particles becomes negative at low temperature. Only
at high temperature and low density is the virial series
known*® to converge. Does the series converge near
the more interesting critical region? We find that P,V,,
the pressure-volume product at the critical point, is
given accurately by a truncated virial series, for po-
tentials of the kind considered here.

Although fast computers make possible the calcula-
tion of virial coefficients through the fourth or fifth
by Monte Carlo integration, such numerical results
lack the accuracy and ease of manipulation of analytical
results. A general analytical method for calculating
virial coefficients is introduced in the next section, and
is later applied to potentials simple enough to allow
exact calculation of the first five virial coefficients. The
effect of adding successive terms to truncated virial
series is then assessed by comparing the critical prop-
erties obtained with three-, four-, and five-term series.

4 J. Groeneveld, Phys. Letters 3, 50 (1962). This is the first of
many papers in which quantitative radius of convergence bounds
are considered.

5 The present best bounds on the virial series radius of conver-
gence are a bit disappointing. For hard spheres it can be shown
only thaf the series converges at volumes greater than about 40
times the close-packed volume [J. L. Lebowitz and O. Penrose, J.
Math. Phys. 5, 841 (1964) 7.
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Fre. 1. The square-well and Ising-well potentials used in the
text, The hard core {¢= =)} is shaded. The surrounding well
(¢p=-—8) is outlined. (a) Two dimensions; (b} three dimensions.

II. GENERAL ANALYTICAL METHOD

Mayer's recipe? for calculating the nth virial co-
efficient B, in the series (1) is

1_
B=—'% f Sy(r) der .
%

n!

(2)

where the sum includes all of the labeled stars® of »
points, and the lines {; in these stars are related to the
pairwise-additive interparticle potential function ¢(r)
by the definition

f(r)= exp[ ~o¢(r) /R T]-1. (3)

Recently, Mayer’s recipe was simplified” from the com-
putational viewpoint, making possible the calculation
of the first six virial coefficients for hard spheres. Both
B; and B were calculated by Monte Carlo integration,®
because the evaluation of the star integrals is so difficult.

In a more favorable case, hard parallel cubes, the
first seven virial coefficients have been calculated
analytically.#% This was possible because the hard-
cube | function is a product of one-dimensional | func-
tions, {(x, ¥, 2)={(a){(y){(z). Both the hard-sphere

§ Stars are called ““at-least-doubly connected irreducible graphs”
in Ref. 2.

" T, H. Ree and W. G. Hoover, J. Chem. Phys. 41, 1635 (1964},
This paper reformulates Mayer’s recipe for B,, substantially
reducing the number of integrals needed for B.»; and thereby
increasing the accuracy of approximate (Monte Carlo} virial
coefficient calculations.

8 F, H, Ree and W. G. Hoover, J. Chem. Phys. 40, 939 (1964),

¥ Bs: W. G. Hoover and A. G. De Rocco, J. Chem, Phys. 34, 1059
(1961},

0 Be: W. G. Hoover and A. G. De Rocco, ], Chem. Phys. 36,
3141 (1962).
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and hard-cube potentials are considerable simplifica-
tions; in order to treat more complicated potentials,
a general method for the evaluation of virial coefficients
is introduced below.

Any pairwise-additive interparticle potential de-
pends upon the continuous variables ay(=x—x),
vi4, and zy;. For our purposes it is convenient to use
instead the grid of discrete variables ay;, Bi, vis, the
integer parts of xy, ¥i, and z;;, respectively. We con-
sider potentials of the special form ¢(xy, vy, 24)=
¢, Bijy vi). This “grid potential” is particularly
suited to potentials of the square-well type. In prin-
ciple any continuous potential could be represented
in this way, either by making the mesh of the grid
sufficiently small, or by extending the range of the
potential relative to a fixed mesh. To avoid the intro-
duction of a symbol for mesh size into many of our
equations, we adopt the fixed-mesh viewpoint and de-
fine the potential in the following way:

&(1) = d(@ij, ¥isy 8e)) =&z, Bag, ¥i5) = E @i, Big, Fos),

(4a)
ay=[x;),  Buy=[yy)  vi=las], (4b)
&ij: max<a€f> a}'é) 3
Bi= max(8i;, Bje),

Fo= max (v, Vi) - (4c)

The square brackets [ 1in (4b) indicate the greatest
integer function. The max (for maximum) functions
in (4c) ensure that the potential function is symmetric,
(1) =¢(r;). The quantities E(&y, Bij, F4) are con-
stants which define the grid potential.

Although the potential defined in (4) is reminiscent
of a so-called “lattice gas,” it should be emphasized
that the particle coordinates here are not restricted to
grid points. The usual parallel hard-cube potential,
for example, could be defined by setting Z(000) equal
to o, and all other E(&;, B, 74) equal to zero. Be-
cause owr grid potential is defined with unit mesh size,
the cubes would have unit sidelength—the hard core
of the potential would be as shown in Fig. 1.

In order to evaluate the star integrals which con-
tribute to the virial coefficients, we introduce the |
functions,

{(@us, By, ¥i3) = expl — E(&ss, Bij, 74) /R T]—1. (5)

Each of the star integrals occurring in {2) can now be
written as a sum of restricted integrals, each such re-
stricted integral corresponding to a particular choice of
the sets {ay), (8], and {v;;}. Notice that the ay;
(and B;; and v,;) are not all independent. We want to

nSee T. L. Hill, Statistical Mechanics {McGraw-Hill Book
Company, Inc., New York, 1956). “Lattice gases” are described
in Chap, 7.
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include only those ey} (and {B4) and {y;}) which
are self-consistent. From (4b) we have the inequalities
au<xgEa;—r<ey+1; then the identities x;+x;,=0
imply the restrictions

aitaiit1=0. (6)
Similarly, from the identities xy—x;—2=0, we find
the additional restrictions

(7)

aﬂc—aij—a:j;;:() or 1.

ng{rﬂ} dr=1= Z;E ITitais, Biy 5:) fdx“_lfd}’“'l

v Sk
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The restrictions {6) and (7}, together with analogs
for 8;; and vy, are both pecessary and sufficient. It is
easy to prove that sets {ay}, {8:], and {v4] which
satisfy (6) and (7) [and the analogs of (6) and (7)
for {841 and {v;} ] for all distinct 4, 7, and % less than
or equal to % do correspond to actual configurations of
# particles.

Indicating such acceptable sets of ey, Bi, and vy
by «, 8, and v, respectively, the integral over an #-point
star Si(r”*) can be written:

>< / T T 10— 0xs) 014 cesi— )0 (yi5—Bs)

<5

where the notation Si under the first product indicates
that all { functions in the star S;(r?) are included in
the product. The restrictions (4b) imposed by a par-
ticular choice of @, 8, and v [recall that «, 8, and ¥
are each sefs of n(n—1) elements ] are implemented by
the step functions, 8(x), defined as 1 for x positive and
0 for a negative.

So far we have written one complicated integral as
a sum of many integrals which appear equally hard
to handle. Appearances are deceiving, for each of
the restricted integrals is equal either to zero or to
[(n—1) 1T To see this we prove the following theorem.

Theorem: Consider the integral [« [dag « <dx,, which
15 {0 be performed under the set of restrictions {o;<xy<
a1}, where the «i; are arbitrary integers. If the in-
legral 1s nonsero, ils value is [ (n—1) 1L

Proof: First, observe that the integral is zero if it
is never possible for the x,; to satisfy all of the n(n—1)
restrictions simultaneously. If the restrictions can be
satisfied, the set {e;} s acceptable, and each of the
quantities x;—ay; is confined to the open interval be-
tween zero and one. Now, change the variables of in-
tegration from x; to £;=aj—ay;. The integral becomes

1 1 n
f - ‘[d&‘ cde ] T —Eitany—ani—avsg)

0 0 i<y

X9(1 _Eﬁ‘ Ei“alﬂLau‘f‘aij) } .

Following our assumption that the set {as;] is ac-
ceptable and thus satisfies (7}, the combination ey;—
o= Ay must be either O or 1. If Ay is O the
term for that 7 and j in the product of # functions can

=~ be replaced by 8({§;—E), ignoring #(1—§¢,-+E:) because

XO(1+Bo—yii) 0(zs—ri) 0 (1+v—25)},  (8)

its argument is always positive. If Ay is 1, the 45 term
can similarly be replaced by 6(&;~%;). Thus, either of
the possible values of A;; serves to order the coordinates
£, and ;. Because this is true for each 7 and 7 the effect
is to order the whole set of integration variables. Thus
the integral is equal to the restricted integral

1 1
j-...fgg’zo--dg’n with  {£: <&},
0 0

which has the value [ (n—1) 1], and the theorem is
proved.

The systematic use of the foregoing theorem enables
us to write the chief result of this section, a formulation
of the star integral problem in terms of a combinatorial
problem:

f Sp{r)dret

=[(p—1)1 3 ZT’;Z J;I {(@us, Bisy 7. (9)

Notice that the summand depends upon only those
&, for which {;; is in the star Si. Let us introduce the
symbol @ to represent such a restricted set of &
We of course also insist that &;=&;, for all elements in
@ The number of elements in each & is twice the num-
ber of { functions in the star Si. The symbols §; and
75 are used to represent analogous restricted sets of
Bi and §4. In general, even for potentials of short
range, there will be many different sets @, B, and i
for which the summand in (9) is nonvanishing (ex-
amples of such sets are given in Appendix I.)
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Because the summand in (9) depends only upon
s, B, and ¥, it is natural to use these sets as summa-
tion variables in place of &, 8, and . In order to make
this change of variable we must count the number of
sets a, @, and ¥ which correspond to particular choices
of &, Bk, and % (Such distinct sets o, 8, and 7y cor-
respond to different regions in n-particle configuration
space which have in common the same values of the
summand.) To solve (formally) the counting problem
we introduce the “one-dimensional weights” o® (&) :

(n—=Dle® (a) =2 [ 8{max(e;, e:) —dy}, (10)
e Sy

where the factor of (r—1)! is introduced for future
convenience. In (10) e={e;} is a dummy set of n{n—1)
integers satisfving analogs of (6) and (7) and § is the
Kronecker delta. The weights defined in (10) count
all sets « which correspond to a particular set & As-
suming definitions of @™ (8,) and ™ ({:) analogous to
(10) we can now change the summation variables in
(9) from By to @B¥ and write our final expression for
the star integrals:

f Sy(r7) dret

=222 2w (&) o (Br)w® (i) H {(@, Bis, Fis) -
@i Br T Sk

(11)

It should be emphasized that the general method
can be applied to any interparticle potential. In the
next section we consider two different potentials for
which the calculation is easily carried out through the
fifth virial coefficient.

III. SQUARE-WELL AND ISING-WELL
POTENTIALS

The general formulation of the star-integral problem
in terms of a combinatorial problem is now applied to
two specific interparticle potential functions, the
square-well and the Ising-well potentials (the potentials
are illustrated in Fig. 1. As mentioned previously the
hard-cube potential can be represented by setting
E(000) equal to infinity, and the other E’s equal to
zero, We define the square-well potential by setting
the potential at grid points adjoining the hard core
to —8&:

E(000) = o ;
E(001) = E(010) = E(011) = E(100) = E(101)

=E(110)=E(111) = —&. (12)

G. HOOVER AND F. H. REE

This is exactly the usual square-well potential®:

psw(r)=w for 0<r<1,
pswir)=—8 for 1<r<2,
gsw(r)=0  for 2<r<on, (13)

provided that 7 is defined as the maximum of the ab-
solute values of the interparticle separation in the %, ¥,
and z directions:

riy= max(| %y |, | ¥ ], [ 20 1) (14)
This corresponds to a gas of hard parallel cubes of unit
sidelength, each of which is surrounded by a cubic
field. The field is attractive if & is positive, repulsive
if & is negative. If 8§ is set equal to — oo, the result is
again a hard-cube potential, but with a larger core.
Now consider the integral of a particular #-point star,
using the potential (13}

j Se(r)drmt= 3™ (&) 2 e® (B) 2_w® (74)
Pr e

G
X]; f(max[ &y, Bis, 7571, (15)

Notice that the only @, §r, and 4 for which the
summand in (15) is nonvanishing are those which
have each element equal to either O or 1. This i3 a con-
sequence of the short-range square-well potential (13).

In order to simplify the summation in (15) it is
convenient to introduce the dummy sets &, each of
which has elements é,;=¢;=0 or 1. As before, the %
subscript indicates each set & has an element &; if and
only if {; appears in the star Sk Ior each set & we
define the square-well ‘‘three-dimensional weight”
wew® (&) as follows:

wsw® (8) = 2ot (&) 2w (Bi) oW ()

Ar B Vi
X E&[max(&ﬁ, By ¥ii) —&i).  (16)
&

These weights group together terms in the sum (15)
which have a common value of the summand. Using
the weights allows us to write (15) in more convenient
form:

] Se(r)drt= 3 usw® (&) g (COREEY)
€ &

12 (With a special choice of well size.) The general result for By
is given in Ref. 1, p. 158, Accurate results for B; (partly analytical,
partly Monte Carlo) appear in J. A, Barker and J. J. Monaghan,
J. Chem, Phys. 36, 2538 (1962).
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For the two-dimensional square-well problem (see
Fig. 1) the equations analogous to (15), (16), and (17}
are

[ 5 a5~ Fu () D B

&y i

X y f(max(a i) ], (18)
k
wsw® (&) = D_w® (&) Zwm (Br)
a A
X ITe[max(as;, B =), (19)
Sg

f Sp{rmydr—i= Zwswiz)(gk)g (&), (20)

One can easily prove that the two-dimensional weights
can be used’to obtain the three-dimensional weights:

wsw® (&) = 2 o® (&) Zwswm (B
&}: ﬁk

X Hé[max(&z:j, Bu)—&5l, (21
Sk

so that the three-dimensional calculation is no more
difficult than its two-dimensional analog.

In order to test the dependence of our results on the
form of the potential chosen we define an additional
potential, the Ising-well potential (see Fig. 1), so
called by virtue of its resemblance to the potential
used in the Ising lattice problem.® In terms of the
s the potential is given by

E(000) =0;  E(001)=E(010) = £(100) = —§&,

(22)

and all of the other E(&;, B, ¥:) are zero. This po-
tential corresponds to a gas of hard cubes of unit side-
length, each of whose sides has an attractive or re-
pulsive field attached to it, as shown in Fig. 1. Using
the same definition of 7 as in the square-well case, and
introducing sy= min(| x5 |, |y, |24 ]), the Ising-
well potential is described by the following equations:

orw(r,s)=o for 0<r<1l and 0<s<1,
drwl(r, s)=—8 for 1<r<2 and O<s<1,
¢rw(r,5)=0 for 1<r<oe and 1<s<e., (23)

The Ising-well relations analogous to (19), (16), and
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(21) are, respectively,

wrw® (&) = 2_o® (&) 2o (Be) [ 18(ay+Bi—y),
i B St

(24)
wrw® (&) = 2_w® (@) 2o (B 2_e® (%)
Vi

ar Br

wrw® (&) = 2w (@) 2erw® (Be) [ [8(au+By—es).
o Bk Sk
(26)

It should be noted that the extent of the attractive
part of the Ising-well potential in three dimensions is
only 2 that of the square-well potential, so that any
features common to the two kinds of particles are
mainly attributable to the presence of a core and an
attractive well, not the shape or size of the well.

For the square-well potential, sefting & equal to
—oo served to make a larger hard-core particle of the
same shape as the original hard core. This is not true
for the Ising-well potential, because the well and the
core are of different shapes. It is natural to ask what
the intrinsic shape of a hard particle is, once the ex-
clusion volume (potential) is given. The converse
question is more easily answered. As long as the par-
ticle shape is convex and centrosymmetric the exclu-
sion volume has the same shape as the particle.® For
example, as one spheré is rolled around another, its
center traces out a larger sphere, called the exclusion
sphere; similarly, if one cube slides around another,
their sides always parallel, an exclusion cube is traced
out.

For nonconvex or noncentrosymmetric particle
shapes the exclusion volume is not so simply deter-
mined. In two dimensions, for example, a hexagonal
exclusion volume can correspond either to particles
which are equilateral triangles or to particles which
are equilateral hexagons. Thus, the partition functien
and equation of state for a system of parallel equilateral
triangles are indistinguishable from those for a system
of parallel equilateral hexagons.'t

In the case of the Ising-well exclusion volume (when
& is set equal to —oo) one two-dimensional particle
shape (there might be others) is a rectangle twice as
long as it is wide, with a spike of zero width attached
at the midpoint of one of the long sides

8 This was pointed out to us by T. Einwohner.
¥ That By/By? is the same for equilateral triangles as for equi-
lateral hexagons was pointed out in Ref. 10, pp. 3157-3138,
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¥Fie. 2. The configuration space for three one-dimensional
square-well particles is shown. For this potential the quantities
E() and & (1) are » and —g, respectively. The three numbers
drawn in each triangular subregion of the figure are s, cus, and
as, Tespectively. The subregions are defined by oy <amej <agy+1.
Particle 1 is at the origin. The value of the star-integral integrand,
fuefisfas, is indicated by shading: black indicates —1, shaded -/,
and white —j?, where f= exp(8/k7)—1. The value of the star
integral corresponding to this figure is —3+-3/—6/%

In three dimensions the corresponding particle shape
is a parallelepiped with two squares of zero thickness
attached

i
These shapes interact to produce the Ising-well ex-
clusion volume. (In the three-dimensional case there
is a small discrepancy of zero measure caused by the
overlap of two parallel squares).

Knowledge of one version of the particle shape is
useful in determining the close-packed volume. For
the Ising well (with & set equal to —eo) this close-
packed volume is twice the number of particles. This
is in marked constrast to the square-well results where
the close-packed volume is two, four, and eight times

the number of particles in one, two, and three dimen-
sions, respectively.

IV. CALCULATION OF VIRIAL COEFFICIENTS

In order to calculate virial coefficients for the square-
well and Ising-well potentials it is necessary to com-
pute the one-dimensional weights «® (). We illus-
trate the procedure by finding the one-dimensional
weights necessary for the evaluation of the three-point
star integral

[ dxgdxa fm fm fzs

G, HOOVER AXND F. H. REE

The three-particle configuration space within which
the integrand is nonvanishing is shown in Fig. 2; this
hexagonal region is divided up into 24 triangular sub-
reglons, each corresponding to a particular choice of
the {asy}. In accordance with the theorem proved in
Sec. I1, each of these subregions has area 4. The values
of as, cus, and e in each subregion are shown. Because
the oy and «j; are related by {6), the one-dimensional
weights can be written down by inspection:

w®(000) =3;
w®(011) =2;

w®(001) =1;

w®W{111)=0; etc, (27
Thus, the integral is equal to —3+43/—6/% and the
one-dimensional third wvirial coefficient is 1-—f4-2f*
[where f= exp(&/kT)—17]. The calculation of the
two-dimensional weights, for both the square- and
Ising-well cases, is carried out in Table I(A).

In the general case, the w®{&,) can be determined by
an extension of the subintegral technique.® For a par-
ticular star of » points we consider separately each of
the n! orderings of the points, determining the number
of acceptable sets oy for each ordering; these are then
summed up and divided by (#n—1)! to produce the
one-dimensional weights. {(Acceptable sets and weights
are given in detail in Appendixes I and II, respec-
tively.) The particular simplicity of the weights asso-

TapLe 1. Calculation of the two-dimensional weights «'® (ay)
and third virial coefficients from the appropriate one-dimensional
weights. The & are indicated graphically, using a line when &;;
iz one, and no line when & is zerc. In those cases where the
weights differ, the square-well weights appear above the Ising-well
sveights in parentheses. The two-dimensional ax follow from
Eqgs. (19) and (24) in the square-well and Tsing-well cases, re-
spectively.

Part A, Product of one-dimensional weights.

e 03] ool ) o i D) ¢ al 1) e 2} Sotzd AA2)
.'.ta)i'.:s; a3 o Nul3) (3] A6l Zate) Ao
ool 11] o 3) | omal 0} o011 Lat 1} outD) LotB]
Nl N0 N A ABI A 2
Lol e et S J’.(o;o’k(z;
N2 o) Ai onia] i) §33
L2l a6 Lol Aiay Lol B A
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Part B. Resuliing two-dimensional weights and values of By

“..:CO\O”.ALAA

Square well 9 7 7 7 26 26 26 36
Tsing well 9 6 6 6 14 14 14 12

By (SW) =3—T74+26/2—12/2
By(IW) =36/ 14f2—4f¢
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Tasrg IT. Virlal coeflicients for the models described in the text. The quantity fis defined in terms of the well-depth &,
F=exp(8/kTy —1. The volume of the hard core is unit volume for each model.

Two-dimensional square well
By=2-—0f, By=3-Tf+26f2—12f,
B4=32+21f— 274 f2—58% 3+ 1465 /4 — 584 5 — 23 5,

By=333-4 1485 f— 8028 2+ 4214 f— 57324 — 60028 i+ 119584 f0— 20084 17— 3057 fi— £ 1°.

Two-dimensional Ising well
By=2—4f, =3—6f1+14f2—4f3,
84=32,_§f+%,f2_42f3+432f4,__8f§_.ﬁ

By=3313--113f— 50832+ 11034 S+ 2055 f1 — 26441 5+ 1505 o — 1542 f1— & 5,

Three-dimensional square well
Bg=4——28f, B3=9--37f-}242f>—288f%,
=113+9535f — 13433 2+ 31314 4+ 16305 f*—
B5~3n4—r111§§§f+1617§82ﬁ 813124 A — 48548
—052034% % — 942443/ — 51245 /2

Three-dimensional Ising well

By=4—12f,  By=9—27f+72f2—38f2,

94048 f5 —

6T3Lf°,

S e ' 262000448 — 49314435 /5 — 44054648517

By=111+282f— 148/~ 838 fit 543 f4— 3222 f— 15375,

144+167%§f

— 305 o — 2o,

6T4LE S 2404358 1 — 480452 '+ 4313 i+ 66655 f5 — 33505 5f7 — 408225

ciated with the complete star, where @ is the same as
ay, led us to the theorem proved in Sec. 1L

With the one-dimensional weights calculated, a com-
puter is programmed to calculate the two- and three-
dimensional weights as is illustrated, for three particles,
in Table I. These weights are next combined to
give the star integrals. The values of the star integrals
(in one, two, and three dimensions) are collected in
Tables VI-X of Appendix III. These can be used
either to find virial coefficients according to any of
the popular integral equations,”® or to study new ap-
proximations?® to the coefficients. The exact virial co-
efficients, using all of the star integrals, are listed in
Table I1.

Because the virial-coefficient calculation just de-
scribed is rather lengthy, it is important to have checks
on it. As a first check we evaluated the one-dimensional
welghts by direct integration, not using the sub-
integral technigue. This was done by computing,
through the four-point integrals, the doubly rooted

1 See W, G, Hoover and J. C. Poirer, J. Chem. Phys. 38, 327
(1962) for calculations of this kind.

8 Some new virial-coefficient approximations are mentioned in
Ref. 7,

integrals contributing to the potential of mean force.?
We include the results in Tables XTI and XIT of Appen-
dix IV. These same integrals can be used to work out
the first three terms in the number density expansion
of the radial distribution function. We have also in-
cluded, in Table XIIT of Appendix IV, one five-point
integral; this, together with the lower-point integrals,
makes possible the calculation of all the one-dimensional
weights except those associated with the complete
star integral. That integral is conveniently treated
separately, by direct integration. All of the one-dimen-
sional weights have been checked in this way.

As a second check, the one-dimensional results can
be compared with those derived from Gilrsey’s exact
equation of state for the one-dimensional model:

{(14-f) exp(P/kT)

=f(2Pp—P+pkT)/(Pp—P+pkT). (28)
Equating like powers of p in the expansion of both

sides of (28) gives the first five virial coeflicients as

7 F. Glirsey, Proc. Cambridge Phil. Soc. 46, 182 (1950).
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Tasre ITT. Virial coefficients in the limiting case, f=—1, 8= — o (extended hard core). The hard-disk and hard-sphere resultss
are given for comparison.

2Dsw 201w Disks 3Dsw 301w Spheres
B;/B# 0,7500 0.7500 0.7820 0.5625 0.5703 0.6250
BBy 0.4383 0.4537 0.5322 0.1771 0.1876 0.2869
B;/B# 0.2326 0.2172 0.3338 0.0123 0.0164 0.1103

& See Ref, 8; J. 8. Rowlinson, Mol. Phys. 7, 593 (1964); and P. C. Hemmer, J. Chem. Phys. 42, 1116 (1965).

follows:
By=1 '—fr

By=1—7+21%
Bi=1=3iHi= 5P,
By=1-+¥— 54— 2fF 1474

These results agree with those calculated from our one-
dimensional weights (see Table VI of Appendix ITI;.

As a third check, the square-well results can be ex-
amined in the limit that corresponds to an infinitely
high mound surrounding the core, f==—1. This limit
corresponds to extending the hard core. In the case of
d-dimensional square wells the nth virlal coefficient
is multiplied by (2d)** when f is changed from zero
to —1. '

Because the Ising-well potential outside the hard
core does not have the same shape as the core, setting
& equal to — o (so that fis —1) does not scale the
virial coefficients is a simple way; instead, virial co-
efficlents are obtained for a system of hard particles
whose exclusion shape was described in Sec. TI1. In
reduced units, Bs==1, these “Ising-core” wvirial co-

(29)

Tagre IV. Critical properties derived from truncated virial
series. The Boyle temperature T’y at which B, vanishes Is given
for each model.

No. of
Potential model terms Pe rT./6  PV./NE
Two-dimensional 3 0,1705 1.194 0.398
square well 4 0.1365 1.123 0.392
{(kFTp/6=23.48) 3 0.0705 0,950 0.386
Two-dimensional 3 0.1490 0.865 0,288
Tsing well 4 0.0730  0.723 0.271
(kTp/6=2.47) 5 0.0385 0.615 0.262
Three-dimensional 3 0.1546 3.134 1.045
square well 4 0.2175 3.394 1.009
(Ts/6=17.49) 5 0.1195 2.994 1.096
Three-dimensional 3 0.1476 1.561 0.520
Ising well 4 0.1274 1.493 0.514
{kTp/6=23.48) 5 0.0978 1.403 0.516

efficients are smaller, in two dimensions, and larger,
in three dimensions, than the corresponding square
and cube virial coefficients. The coefficients are listed
in Table IIT along with the results for hard disks®
and spheres. 318

V. TRUNCATED SERIES AND THE CRITICAL
POINT

Whether or not the virial series converges at all
densities lower than the critical density is unknown
for a continuum gas.!® For the two-dimensional lattice
gas problem worked out by Onsager the series is not
convergent at the critical point.® To investigate this
question we have located the “critical points” of the
truncated virial series P,, defined by the equation

P, & .
JU—--1 -nd 3
7= 2B (30)
The critical pressures, temperatures, and densities were
found numerically. These critical quantities are given
in Table IV, and the critical isotherms from P, Py,
and Py are plotted in Fig. 3. Although there is con-
siderable change in P, p., and T, with the number
ol terms retained, PV, V€ is virtually constant, for
the Ising-well and square-well potentials in two and
three dimensions. This suggests that the series does
converge near the critical point, and that PV, as
estimated from a truncated series gives an accurate
estimate of 2.V, from the full series. To test this con-
jecture we calculated the critical constants for spheri-
cally symmetric square-well particles using the three-
term virial series.”? As the width of the attractive well
is varied, the critical properties change quite a bit.
When the width of the well is exactly hall the core
width one finds P,V,/N&=0.441 using the three-term
series.

This same system has been Investigated extensively
by means of molecular dynamics® with the result,
PV, /NE=044; This excellent agreement supports

# S, Katsura and Y. Abe, J. Chem. Phys. 39, 2068 (1963).

1% The lower bounds in Ref. 5 are well below the critical density.

2 We are indebted to B. J. Alder for giving us this information
prior to publication,
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F16. 3. Critical isotherms from truncated virial series for the models discussed in the text. The curves terminate at the critical point
and are labeled according to the highest virial coefficient retained in the truncated series. PV /N8 is plotted vs p to show the near
constancy of P.V./N8& as higher terms are added to the three-term series. The intercept (at p=0) of each curve is £7,/8.

our view that useful information about the critical
point can be obtained from truncated virial series. Of
course, we considered only one potential, the square
well. Using experimental data for argon together with
the critical point for a three-term Lennard-Jones series
gives a 309, discrepancy.®

It should be noticed that the behavior of lattice gas
virial series is unlike that of the continuum gases we
have considered. For the two-dimensional square lattice,
the truncated series Pi, Py, and P; show no critical
points. Some differences between lattice and continuum
gases with hard cores alone have recently been pointed
out.? In the next section we see that adding a square-
well attraction to the core produces another difference:
the continuum virial coefficients (beyond the first)
are all negative at low temperature, while some of the
lattice virial coefficients are not.®

VI. LOW-TEMPERATURE VIRIAL COEFFICIENTS

Whether or not the virial coefficients beyond the first
all become negative as the temperature is lowered is
a question that has been raised often,® but never satis-

2t The potential parameters and Lennard-Jones virial coefiicients
given in Ref. 1 were used.

2 W, G. Hoover, B. J. Alder, and F. H. Ree, J. Chem. Phys.
41, 3528 (1964).

% The two-dimensional square Ising lattice virial coefficients
By, Bs, By, and Bs approach —2f, 447, —3f%, and +32f° re-
spectively, as the temperature goes to zero.

# S, Katsura, Advan. Phys. 12, 391 (1963} and Ref. 2, p. 306.

factorily answered. At present it appears impossible
to settle this question in a rigorous way for general
potentials. We can, however, prove that all virial co-
efficients beyond the first do become negative at low
temperature for the two- and three-dimensional po-
tentials considered in this paper~—we see this fact ex-
plicitly for B; through Bj in Table II. The remainder
of this section is devoted to an outline of the proof,
followed by some general comments on the result,

A. Physical Stars

At low temperature it is clear that thermodynamic
properties will depend strongly upon the attractive
forces between particles. We expect this to be true for
the virial coefficients as well. In order to study the
effect of low temperature, one can consider the po-
tential to be made up of two parts, one wholly attrac-
tive, the other repulsive. To make a similar separation
in terms of the Mayer | function we can write

()= () +i(1). (31)
For square-well and Ising-well particles i+ is equal to
/ when the particles interact attractively and 0 other-
wise; { is equal to —1 whenever the particles overlap
hard cores and 0 otherwise.

Introducing the definition (31) into each { function
of each of the labeled stars Si(r") produces a large set
of graphs containing both {+ and {~ functions. We group
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together all of those graphs in this set which have
common sets of f+ functions. From the n-point stars
we get 27012 such groups. As a particular example,
one of the 64 groups obtained by expanding the set of
four-point stars is

friaftus el e Traat Tria s e Fasfhos ae.

Observe that whenever the {* functions in such a group
form an #-point star, the |~ functions can all be col-
lected in the form of a product [ (1+§;), where the
product runs over all pairs #f such that {*; is not in the
group. We call such groups “physical stars” Pg(r").
One of the 10 physical stars produced by the expan-
sion of the four-point stars is

Pi(rt) = Traftasffata (14 7e) (14-2). (32)
These groups are called physical stars because they are
nonvanishing only for those configurations in which
no hard cores overlap. Physical stars correspond to
configurations for clusters of » particles which are
physically possible.

In addition to the various Pi(r?) we have other
groups from the expansion of {Si(r")}. Each of these
latter groups can be written as a product of lower-point
physical stars multiplied by a sum of products of {~
functions which link the physical stars together. One
such product term in the expansion of Si(r®) is

[Treftesftaafta (14 118) (1 20) I %5
K AT+ o+ s Fsf et sl
+ i—za f_ss‘f“ ]._mf—zs f-:-;ﬁ } .

Now consider the nth virlal coefficient with all of
the Si{rr) expressed in terms of physical stars Pp(r%)
and products of lower-point physical stars:

(1—n) u
Bn—"—"—nr—f{zpzc(f )

-terms with products of Pi(rm<#)}dr 1. (33)
Because all of the n-point physical stars are products
of nonnegative functions their sum makes a negative
contribution to B, [the sign change comes from the
factor of (1—#) multiplying the integral] We show
next that for square-well and Ising-well particles at
low temperature the m-point physical-star term dom-
inates the right-hand side of (33) and that B, is there-
fore negative.

B. Dominance of B, by n-Point Physical Stars

At low temperature Inj approaches &/kT in the at-
tractive well and the most important integrals in (33)

AND F. H. REE
are those nonvanishing®™ terms with the greatest number
of {* functions. For any nonvanishing product term
in (33) it is always possible to exhibit a nonvanishing
n-point physical star with a greater number of f+
functions. In order to demonstrate this in the general
case one must consider a product term composed of
v isolated points, v two-point physical stars, »; three-
point physical stars, +++ »,y(#n—1)-point physical
stars. To avoid the cumbersome notation this would
entail, we consider below a special case from which the
general method can be induced.

Consider a nonvanishing contribution to B, of the
form

ka(rl- L) P (Lo o1,) 3 [ [ isdtye - +dr,.

The summation includes [20D&—m—17 different
products, f= each of which links one or more
particles in the set 1, «++, (m—1) to one or more par-
ticles in the set (m+1}, +++, #n. Suppose that Py con-
tains {&f* functions and Py contains ¢ {+ functions.
Our task is to construct a nonvanishing #-point physi-
cal star with at least ({e+&r=+1) I+ functions. In order
to do so we consider two separate sets of particles,
{1, -=»-, m} and {1, ««+, (n—m+1)’}. The unprimed
set is characterized (in three dimensions) by sets
{oij}, 1By}, and {vy} for which Py is nonvanishing,
and the primed set is characterized by sets {ww;},
{Bus}, and {yop} for which P, is nonvanishing. By
examining the elements of {a;} and {ap;y} we can
determine the rightmost particle in the unprimed set
and the leftmost particle in the primed set, and relabel
the particles such that these distinguished particles
are 1 and 1’ respectively. Then, switching to the rela-
tive ordered coordinates £/=x;—ay; and Ep=ay ;o jr
used in the proof of our theorem in Sec. 11, we can re-
strict our attention to configurations in which Particles
2, »++, m are to the left of 1 with xy; less than —1,
while Particles 2/, «-+, {n—m-+1)" are to the right
of 1" with xy-5 greater than 4, (We can do so because
each of the relative coordinates £ and &5 is bounded
by 0 and 1, and because we can choose restricted non-
vanishing ranges for these coordinates 0<§;<3 and
$<Ep <1, over amy finite interval between 0 and 1.)
Now we “merge” the two groups, identifying Particle
1 with Particle 1”. This step reduces the total number
of particles considered from n-+1 to #n. Among the »
particles there can be no hard-core overlaps because
particles to the right and left of number 1 are separated

% The stipulation “nonvanishing” is important because many of
the integrals are zero when # is large, This is a general consequence
of a finite-range potential with a hard core and is nof restricted to
square-well and Ising-well particles. ¥or hard spheres with a
sufficlently short-range attraction, for example, the integral

5
/ if([g_fﬂjdrz' (Y75

is identically zero.
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by at least unit distance in the x direction. Now we
gradually relax the restrictions on the & and & Ii,
after allowing all of these ordered coordinates to range
from 0 to 1 we still have created no new attractive
bonds (we are guaranteed that as the restrictions are
relaxed we will get attractive bonds rather than repul-
sive bonds because the attractive potential has longer
range), we can consider the same merging process after
first reflecting the primed group in either the xy or xz
plane or both. If none of these mergers produces an
attractive bond (§+ function) it can then be shown that
the removal of Particle 1, if followed by the shift of all
other particles in the unprimed group unit distance in
the -+« direction, gives an (z—1)-point physical star
with at least (&-+éw—1)f+ functions. The removed
particle, 1, can then be attached to the periphery of
the group, forming at least two more {* functions, and
the demonstration is complete.

In the foregoing way one can show that the dominant
terms in B, at low temperature come from n-point
physical stars. Although this result is undoubtedly
true for spherically symmetric particles too, it is not
an easy task to generalize the proof to that case.

C. General Comments

We have shown that at sufficlently low temperature
B, is dominated by the integrals of #-point physical
stars. This means that the low-temperature virial co-
efficients have the asymptotic form B,~f where ¢
is an “‘average coordination number” such that ¢n is
the maximum pumber of attractive bonds which can
be formed among = particles which do not overlap
hard cores. For our two-dimensional square-well par-
ticles, for example, if one assumes the particles’ lowest
energy state is a close-packed lattice, then by varying
the shape of a large n-particle cluster at fixed area one
derives the minimum energy —[ 5n—8(n)¥-216, so
that ¢ would be 5 in this case. Although this expression
was derived for large # it is remarkable that the values
for n=2, 3, «+-, 10, when rounded off to the nearest
integer, agree exactly with those found empirically by
considering configurations of 2, 3, +-+, 10 of these
particles.

In the past it has been stated that the low-temper-
ature behavior of the virial coefficients is determined
by the complete star integral.®® In general this is not
true. By dividing » particles into two nonoverlapping
groups it is easy to prove that, for large », the temper-
ature dependence of the complete star integral is
proportional to f4** (where 4 is a constant) for a
finite-range potential with a hard core. Thus, the low-
temperature dependence of the complete star integral,
fA4% s quite different from that of B, f. For virial
coefficients B, where » is of the order of the coordina-
tion number (or larger) the complete star integral is
offset by other star integrals. This cancellation can be

% S, Katsura, Phys. Rev, 115, 1417 (1939).
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seen in the virial coefficient results given in Table VIII
of Appendix III. The five-point complete star is pro-
portional to f? at low temperature for the two-dimen-
sional Ising-well model, but this term is cancelled out
so that By is itself proportional to 2 in this case.

VII. SUMMARY AND REMARKS

We have developed a general method for calculating
virial coefficients, using a combinatorial formulation
of the star integrals, based on the fact that certain
restricted many-body integrals have a common value,
With this method we calculated the first five virial
coefficients for the square-well and Ising-well models
and located the critical points of the resulting truncated
virial series. We found evidence that the virial series
can be used to predict some of the critical properties.

We were also able to show that the virial coefficients
for two- and three-dimensional square-well and Ising-
well gases are negative at low temperature, thus point-
ing out a qualitative difference between these gases
and one-dimensional and lattice gases. An important
problem remains: What is a good method for approxi-
mating the virial coefficients for gases near the critical
point? We have not yet found a way of picking out
those terms in the star integrals which are of particular
importance at the relatively low temperatures in-
volved. All that can be said so far is that the approxi-
mations which are very successful for the hard core
alone appear to be less accurate when an attraction is
added.

For spherically symmetric square wells we found that
PV at the critical point is determined accurately
(within about 1%) from second- and third-virial-co-
efficient data. Whether such an accurate determination
can be made for continuous potentials should be in-
vestigated. A complete equation of state for Lennard-
Jones particles is not yet available. Using popular
Lennard-Jones parameters for argon we find a dis-
crepancy of about 30% between P, V,/NE from B
and B; and from experiment; of course there is no
guarantee that argon behaves like a Lennard-Jones
fluid in the vicinity of the critical point.
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APPENDIX I

Acceptable sets of oy which contribute to the viria-
coefficients described in the text are listed below. To
eliminate redundancy we represent diagrammatically
only those sets such that ay; is nonnegative for ¢ less
than j. The particles are ordered from left to right:
1, 2, +++, n. For simplicity no line is drawn between
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Particles ¢ and j if &,; is zero. Otherwise, the cases &;=1, 2, and 3 are represented by plain, crossed, and wiggly

lines, respectively.
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APPENDIX II

One-dimensional weights ® (é&), defined by Eq.
(10), which contribute to the virial coefficients de-
scribed in the text are shown in Table V. Immediately
following each kind of star integral are columns headed
G, 0@, and g. In the & column are listed, for the star
integral in question, all of the topologically distinct
sets @ which contribute to the one-dimensional in-
tegral, The labeling of the points in this column is
taken to be identical with the labeling of the corre-
sponding star. As before no line is drawn if &, is zero,
and a plain line is drawn if &;; is one. In the @@ column
are listed the one-dimensional weights oW (&) from
Eq. (10) of the text. In the final column, headed g,
is the number of topologically identical sets of &, multi-
plied by the corresponding value of the one-dimensional
star-integral integrand

ITfs).
Sy

APPENDIX III

One-, two-, and three-dimensional star integrals
which contribute to the virial coefficients described in
the text are listed in Tables VI to X. The star integrals
Inm are given graphically in Table V of Appendix II,
The value of the Mayer | function inside the particle
well {(and outside the core) is equal to f. The entries
are multiplied by the number of ways each type of
star can be labeled.

APPENDIX IV

Some integrals which contribute to the potential
of mean force for square- (or Ising-) well particles in
one dimension are shown in Tables XI-XTIII. The white
points are Root points 1 and 2, separated by distance
7. The black points are integrated subject to the re-
strictions given in column headed & If &y is zero
(indicated by omitting the line joining Particles ¢ and 7)
then |7 | is restricted to lie between 0 and 1. If &;
is one (indicated by a plain 47 line) then |7; | ranges

e

-«
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388 W. G. HOOVER AND F. H. REE

Tasre VI One-dimensional square- or (Ising-) well integrals. P
“2B, =1, = 2-1+1] lang = 5[-23+ 61 - 138¢° 4 780 - Get 4 2f ]
E]
60I, , = 5[ 98 - 200¢ + 460f° - 46265 4 5
5 sa = - + 460£° - 462f° ¢ 24687 - 1021 1
-3B, = 1, ;= 3[-1+f- 267 :
3 3.1 2 3 4 5 6
10157, = S[ 16 - 30f & 78(% - 727 + 408" - 10f7 + 10f°)
3y =4l 4- T4 1507 - 357 4 36%) 105, , = 5[-15+ 230 - 62r°+ see> - sty s - 8]
61, 5 = 4[-7+ 9 - 208% 4 1685 - a5t 601, 5 = S[-87 + 1431 - 3268° + 4126° - 2926% + 13267 1
Loy=4 1= £4 260~ 3% 4 4] 301, o = 5(-41+ 676 - 1a7% + 20967 - 1218 4 536% - 18¢°)
. 2 3 4 5 6
-8B, = -2+ f- 3f2+ 1053 ] 3015’7 = 5[ 38 - 52 4+ 114f% - 16217 + 1826" - 78f” + 12£°]
x 2 3 LA 5 6
1515 o= 5[ 18 - 256+ 49f° - 89>+ 6eet - 30 4 126
10T, o= 5[-11+ 13t = 25t% 4 456« 456ty 27 - 10£%]
H
Loo=5 1- £+ 28 3t st ae®y f)
~30Bg =50~ 6- £+ 504 1267 - gart ]
Tasre VII. Two-dimensional square-well integrals.
~2B, =1, = 2[-2 + 61}
2 3 A~
“3By =1y = 3[-3 4+ 74 2 266° + 1217]
31, =3 64 - 2730+ 11977 - 143167 ¢ 11336% ]
61, , = 30-98 + 2867 - 11206 + 19501 - 2244 + 5446 1
S :fg{ 12 - 26f + ?sz - 20953 + z33f4 - 19355 + 1756]
-8B, =322 - 136+ 165+ 3506 - ss0r® 4 3516° 4 176°)
5 2 34 5
121, | =-3-2645 + 177516 - 89818¢° + 1894620 = 257418(% 4 120026¢ 1
5 2 3 4 5 6
601, 5 =3l 9604 - 463326 + 206970¢ - 49362617 + 802734¢* - 6814740 + 217884 ]
101, = ol 1536 - 6660r + 3212667 - 7700887 + 1266406 - 912126 4 s58044£8 ]
1015, = 3(-1350 + 4630f - 21620% + 4388087 = 973366 & 937926% - 722086% + 1078457 ]
4 3¢ on 2 3 4 5 . [ = 7
OI, . = 5-7569 + 280657 - 112438¢% + 2782168 - 5041246% + 6037082 - 3569201° + 566241 ]
5 2 o3 4 - 3 & 7
301, , = 3l-3362 + 123826 - 4694167 4 12720567 - 214738¢" + 25888617 - 1563176 + 40841 ]
301, - Of 2888 - seear + 30830¢5 - 7552807 + lasbler’ - 211188 + 1749002% - 83014¢7 + 570068 1
15L, o= 3l 1296 - 3925+ 12233 - 3702765 + 652036 - 8955z° + 837946% ~ 3303267 &+ s7141° 1
10T, o=l ~726 + 1834f - 525162 + 148990 - 2830017 + 428942 - 49069£° + 3205907 - 104241 + 20017 ]
I o= 60- 1z6i+  350e - 817+ 20256t - 264t 4 38216% - 332007 4 1828¢° - 368°)
-30B, = 1 ~268 - 1043f+ 643165 - 303446 + 4130467 ¢ 432357 - 8e07Ir" ¢ 209426 + 28181° ¢ 3267 A
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Tagsre VIII. Two-dimensional Ising-well integrals.

“2By =1, = 2[-2 + 4f]
3 5
3By s 1= 334 6 - 248 4 af)
F-. el .
31, | =5 64 - 224 4 6276” - 5166 + zasr? }
1,
. . <
61, , = 3-98 + 2520 - 688" ¢ 8720 - 628t ¢ g8 ]
2
4 2 z
Ty=al 12 2404 58° - 104+ Boc® - 4007 4 ]
-8B, = 3-22+ 4~ 3% 4 2520 - 260 4 4 4 68
1215 | = D[-2645 + 14030f ~ 46624r° + 684480 - 62778(% + 192761 ]
R
5 . 2 3. N 4 5 6
6015 2 :1_”[ 9604 ~ 39200f + 1230287 - 210884f7 + 230808f° - 131616f° + 274081 ]
1915 3 ~%{ 1536 -~ 57601 + 1‘34?6{2 - 32544[3 + 36088f4 - 18432f3 + 8872f6 }
’
101, , =-55-1350 + 4140f - 138a4c% 4 2199207 - 328726 4 211688 - 10992¢% + 8o00f” ]
5 ¢ ey . 2 3 et 5 6 7
6015 5 =ﬁ{'i309 + 248821 « 73990f% + 1368041 ~ 171956 + 13741617 - 48072f + 4528f }
,5 7
14 2
301, o =-2f-3362 + 109881 - 31692(° + 6174417 - 7306560 4+ 592466 - 23992¢° + 420067 ]
)
301, = Sl 2888 - 7904¢+ 219781% - 418081° + 58404 - 564406 + 302740% - 852417 1 1646 ]
-
18I, g = 0 1296 - 36005+ 92317 - 2001667+ 2564ar® - 240688 5 1497650 - 346417 1+ 428 ]
101, = Sl 726+ 17l6r - 219604 895207 - 127856 + 134780 - 102426° + a096¢7 - 71068 + 8677
, z
I 1o ={-’§[ 60 - 1200+  294r% - ssac0 4+ aooart - 95260 4 gesr® . s1267 4 1686° - 807
-30B; = [ 268 - 8281+ 3661f° - 7o6ae - 1z0set 4 19076 - 10803r® 4 1124¢7 4 s0® 1
TapLE IX. Three-dimensional square-well integrals.
“2By =l = 2[-4 + 281)
S3B, =1, = 39+ 37 - 2420% 4 2880°]
3=l 7 A
3, = w024 - 80710 + 6564357 - 1834058 + 286145t 1
61, 5 = 31372 ¢ 6952t - a36226% + 13622207 - 31428e” 4 20011267 1
Ty ed tee- sesrs 2iset o 9191”4 1szent - seszst® 4 1z1in)
-8B, =5 204 - 17270 4 241776 - se37as® - zoasasty 1692875 4 121178
121, = yagl-304175 + 39309016 - 38539878: + 1797315780 - 492747606 + 5306466626 ]
st , s ol 941102 - 8124884f + 6340612657 - 2766712266 + §73133206% - 15462795780 + 10865662201 i
1015 3 =%{ 147456 = 1115640f + 9109176{2 - 40890272{3 + l33848352f4 - 21170538‘2{5 4 207163496f6‘ )
* t
1015 Q=_l%[—121500 + 7018841 - 5330744{2 + 18456352f3 - 6796;@6414 4 13091811255 - 193461152{64» ,80712192&? ]
601, 5 = il -658503 + 41522871 - 2692998267 + 1090982966 ~ 351371596% 4+ 7726081806 - 9994784106% + 5329312047 !
3L ¢ = yil-275684 + 17259641 ~ 1038263157 + 456302396 ~ 1403227126 + 31503916417 - 402704649 + 21306062167 1
501, o =l 219488 - 10860228 + 589248617 - 2172716417 + 674406086 - 170263776 + 268858704¢¢ « 279724398¢7 4+ 838101126 !
_ . 1
155, 5 = oyl 93372~ 4633750+ 21063677 - 96991018° + z8657553% - 690347886° +  118513170(° - 11271314417 + 10925142¢%
1015 =T§Z[ ~47916+ 1943568 - 7719737 ¢ 31783970 - gzzldaztt 4 zzesasens® - 4s1ea37ni®+ 57823283 - 464529008 4 1074477667 ]
T30 sl 3600~ Ligiers  43ssee® - 1an17s©S+ sonissst . jossesw® 4 zzeavan® - 3681080+ 39vsssa® - 26020887 4 143160680

308w 2 2730 - 96adS - 13978570+ 702582467+ 21945524¢% « 2264461177 ¢ 42607721

6

1 3884085267 + 822562385 ¢ 8142688¢% 4 443260017
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Tasre X. Three-dimensional Tsing-well integrals.

-ZBZ = 12,1 =2[-4 + 12f]

N 2 a3
EEPL R AP 3[=9 4 27f - 727 4+ 38f7]

3, =g 512 - 2688 + 9288 ~ 1226165 + 7965¢F 1
,
61, , = o/-656 + 26461 - 85657 + 1428067 - 1a220:% 1 388217 ]
I, :-%[ 72~ 216f4 6126~ 126410 + 136817 - 94af” ¢ 1428
~em, = o0z - 2o+ 13320 5 7ssi® - aserrt ¢ 2904”4 14208
121, | = (-304175 + 2420175¢ - 1061013067 + 232436820 - 282828241" ¢ 135398767 1
601, , :T?;‘«I[ 941192 - 5T62400L + 229167121% - 5294090417 + 78243352¢% - 623358361° + 19671480¢° 1
105, , = pagl 147456 - 629420f + 3452544 - 792201660 + 118146246 - 897897600 + 4145824t ]
100, , =-{-121500 + 558000f - 22312807 + 483356085 - 8se73zat « 822984067 » s3230726% 4 e5622407 i
5,4 = 735" + 5589001 ~ z 33 5 - 567 + ? - 4 + 56 i ]
5, . ol LR S 6 7
601, , = o-656503 + 3247101f - 119089081° 4 280581061 - 459207361% + 482530441 - 268648901° ¢ 49233361
PR T . 2 o3 o iand ~ H sinach o zac?
3005 ¢ = Tagl-275684 + 13515241 - 483094817 + 116787727 - 18587130¢ 4 197232661 - 11403504 ¢ 27502326 ]
30l
5 R R 4 a5 3 Ty iag B
30I, =gl 219488 - 9010561+ 303559267 - 7073308 + 122816641° - 151957921 + 11510436(° - 505011617 + 561360¢ 1
5 , ) R S 5 L6 7 iy
151, o =opagl 93312~ 388600f 4 12318480 - 31221780 + 520397af” - 6324408 + S101728f" - 20842081 + 339132 1
. 5 . 2 3 4 305 6 B . 9
1015 o =qagl ~47916 + 169884f - 504108¢° + 123813260 - 2175234t ¢ 2895378¢° - 2802884¢0 4 1662180¢7 - 5a5418:% 4 4avses 1
,
Lo gl 3600 10s00r+ 313200 - 69ss2r® & 13ssler® - 179784r° & 2062520° ~ 15492017 + 75744® - 1800817 + 69661}

-3085 =~1%;{ -2730 « 144912f + 582642{2 - 207?706{3 + 41511?8}24 -

372492¢% « s7ssezec® + 2902728 + az0818:% & 2607817 ¢ 69667

TasrE XT. Integrals which contribute to the potential of mean force for square- (or Ising-) well particles in one dimension.

a1 °IA

g | dg | O<r<d f<r<2

2<r<3 | 3<r<qg
Vool 2 r 2-r o 0
21 s r i 3-r o]
A 2ear 0 |-2+r | 4-r
TOTAL: |4~r 4-r G-t 4-r
"'am:fm
g | gy O<r<l ter<2 2<r<3 3<r<d 4<r<h 5<r<6
f :: 3-r? 4—;-3”--;—1'2 4;—-3r+—ér£ 0 0 Q
.
2 |1 gr® | —#3r -rf | 3 g-4r+yc° | 0 0
blae
2 I 2-2 4f-5reide® ~3f43e-47 3La3r-4®  125-Ende® O
vt ‘
I 19512 -at+9r-3¢F | 135-8e+idr® | 4%-3rede® | -19f+9r-r 18-6r+di®
TOTAL: | 12-r2 12-1% | 18-6r+br? | 18-6r+f P | 18-6r+Le? | 1B-6r+4r?

PN
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TasrLe XTI, Integrals which contribute to the potential of mean force for square- (or Ising-) well particles in one dimension.

Jass [P

g | ax O<r<l| [<r<2 2<r<3 3<r<d
i :: 3-r——‘2—r2 4-3r+42 1 0
I Ut

— I-rbgr r-4r®o I
l (-3}
! p o r‘%rz _;‘ [e]
il RN g

: r=grt | 2531 41" -lg+2r-gr 0

b
1 I-r 0 -4+3r~%r2 8-4r+%rz
| .

:'7: e r I 3 - o
I I/O}
N 2 -Fla-ar +f|o0 0
: ;71 2-2r ¢] ~Z24r 4-r
%
113 (2| -346r-2¢8] Q9-Gr+rd | O
TOTAL: [12-2r-+e% | 12-2r-4% | 16-6r+41% | 16-6r 4402

Vo [ R

g | ay Oo<r<li J<r<2 2<r<3 3<r<d
1 : . 3-2¢ 4-ar+c?
4 g : r-%r2 \'--2'-r2
‘ L

Q0

[-2r 42| © o ¢]

2 IN
2| 2 9-6r+r? | 0
21 0 L—r+%r2 -‘%‘;-Z&ro!—ér2 o]
4! I g | 2-eepet | O 0
4 N r -2 0 ~6+5r-r2 | 0
2 | I 2% 430" jad-3rebt | O
2| K e-er 0 0 0
B 2ears2rt 0 4-4r+r® | 16-8r+r?
TOTAL: |12-4r 12-4r 16-8r +r% | 16-8r+r?

Tasre XIIL Integrals which contribute to the potential of mean force for square- (or Ising-) well particles in one dimension.
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2lfy o o sgsaie-es Al o

4y 400 |-gesr o 13g-13greapd®| o

sl |o 2 -2ripe-dat | ag-agens®4R| o

a Q{

5 ro-r® o ] 0
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VIEF 2kear aided 0 ©

il 12 cerret2® o ~B e 12t -6cf 41t | Ba-4grriztad
TOTAL: (375460 +4e% (376 +3r® | B4 481128 =% | €4-a8c+ (2500




392 W,

between 1 and 2. The values of the restricted integrals
are given as functions of 7{=ry). The column headed
g gives the number of topologically identical sets &
which contribute to a particular integral J,m,. The
row labeled Total is obtained by adding up the re-
stricted integrals multiplied by g, and serves as a check
on the calculation; the totals formed in this way are

G. HOOVER AND F. H. REE

(apart from sign) doubly rooted graph integrals for
one-dimensional hard rods of length 2. The integrals
given here can be used to confirm the results given in
Appendix II as well as to calculate the first few terms
in the number density expansion of the mean force
potential, the radial distribution function, and the
direct correlation function.
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