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The way in which the properties of a lattice gas converge to the properties of a real gas as the number 
of sites covered per particle is increased, till configuration space is a continuum, is investigated. Only for 
one-dimensional hard lines have the properties been worked out exactly for any mesh size, with the result 
that at any density the free volume per particle must span at least 50 lattice sites for the lattice gas pressure 
to approximate the real gas pressure within 1%. In the limit of close packing the lattice gas leads to an 
incorrect asymptotic form of the pressure for any finite mesh size. The viTial coefficients for a lattice gas 
with a coarse spacing can be shown to differ in order of magnitude from the real gas coefficients. Inequalities 
between the real configurational integral and the lattice configurational sum can be established 
in any number of Finally, by relating lattice and gas results, an approximate way is found 
to predict properties of real gases in two and three dimensions from lattice results alone. 

1. INTRODUCTION 

THE term "lattice gas" is in fact a misnomer since 
a real gas is not realistically described by placing 

particles on a lattice whose mesh size is comparable 
to the average nearest-neighbor separation. The lattice 
model corresponds to a trapezoidal rule evaluation of 
the configurational integral, and it must therefore be 
anticipated that noticeable errors in the thermodynamic 
functions result whenever the lattice spacing is compa
rable in magnitude to the characteristic length of the 
interparticle potential. The lattice model has, of course, 
been introduced because the properties of it are more 
easily calculable then those of a real gas, as most 
dramatically illustrated by the demonstration of the 
condensation phenomenon. The phase transition for a 
two-dimensional lattice gas whose particles have a re
pulsive core and an attractive nearest-neighbor attrac
tion is one of the few that can be rigorously established. 

*This work was done under the auspices of the U.S. Atomic 
Energy Commission. 

Nevertheless, the fundamental question remains of 
how well lattice gas properties approximate real gas 
properties and, in particular, whether phase transitions 
or their order are not artifacts of the model. As the 
mesh is made finer relative to a given interparticle 
spacing a better approximation of the real gas is ob
tained; but, if this mesh size has to be quite fine for 
accurate representation of a real gas, then the mathe
matical simplicity of the model is lost. 

At very low densities in the conventional lattice 
theory many lattice sites cover the volume accessible 
to the particles, and the lattice model gives an accurate 
description of the real gas. However, at higher densi
ties, for hard particles, the numbers of occupied and 
unoccupied sites are usually comparable; thus the vol
ume accessible to the particles (free volume) is poorly 
approximated. This is the situation at the density of 
the gas-liquid phase transition. Even worse, at still 
higher densities the occupied sites outnumber the un
occupied sites. In addition, at high densities regions 
of phase space are tenuously connected by narro~ 
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channels, and the coarse lattice theory cannot be ex
pected to give even a qualitatively correct description. 
The crude approximation to the phase space volume 
might affect, in particular, the solid-fluid phase tran
sition in the model. 

Up to now exact lattice gas properties have been 
detelmined in two dimensions when the repulsive core 
of the particles covers a single site, and the density is 
half the close-packed density.! It has been possible to 
calculate thermodynamic variables at higher and lower 
densities, and in three dimensions by using series ex
pansions. \Vhen the lattice is only twice as fine, the 
core of each particle occupying two sites in two dimen· 
sions, the problem is so difficult that analytical solution 
has not yet been possible. It is therefore of practical 
interest to see how well the results for a continuous 
configuration space are approximated by those of dis
crete, coarse spaces. 

The convergence to the continuum configuration 
space results is here investigated, by examining the 
properties of hard parallel lines, squares. and cubes 
as a function of mesh size. The convergence is found 
to be slow, even at quite low densities, so that a par
ticle must occupy more than a few lattice sites for 
accurate results. This rules out analytical treatment. 
The only practical alternative way to study lattice 
gases with finer meshes is a numerical scheme using 
the Monte Carlo method. In any numerical scheme 
configuration space is a lattice, because the position of 
a particle can only be specified to an accuracy deter
mined by the number of significant figures carried in 
the computer. This accuracy is typically one part in 
108

, so that the volume is spanned by an extremely 
fine lattice. However, it is an easy matter to decrease 
the number of significant figures by which a particle 
position is described. In this way lattice gases could 
be studied as a function of the number of sites covered 
per particle. 

The Monte Carlo method has been extensively used 
to study lattice gases2 but with emphasis on the de
pendence of the results on the number of particles, not 
on the lattice spacing. These studies illustrate some of 
the formal differences between lattice and real gases. 
For example, due to the lack of a dynamic analog of 
the lattice gas, the useful relation between the pressure 
and the radial distribution function given by theviriaJ 
theorem in the continuum case does not hold on the 
lattice. However, somewhat more cumbersome alterna
tive ways to calculate the pressure have been devised 
and used.2 On the other hand, the mathematical treat
ment of the lattice gas resembles the treatment of the 
real situation in many ways. If the usual configuration 
space integration is replaced by a corresponding sum, 

1 T. L. Hill, StatisticaJ lvfechanics (lIfcGraw-Hill Book Com
pany, Inc., New York, 1956), Chap. 7. 

2 D. A. Chesnut and Z. W. Salsburg, J. Chern. Phys. 38, 2861 
(1963). 

as in numerical integration, the thermodynamic formu
lae, the Mayer cluster expansion formalism, and the 
Ornstein-Zernike relation can all be used without 
change. There is thus hope that the mathematical 
singularities at phase transitions will be the same for 
the lattice and real gases, so long as the lattice spacing 
is comparable to the linear dimension of the free vol
ume. This criterion is satisfied at the gas-liquid phase 
transition, but not at the solid-fluid one. Thus there is 
evidence for a second-order phase transition for two
and three-dimensional lattice gases of hard particles,3 
while the continuum hard-circle and hard-sphere sys
tems apparently have a first-order transition.4 The 
hope that these solid-fluid transitions are related must 
be substantiated by making the mesh size finer. 

2. ONE-DIMENSIONAL LATTICE GASES 

The case of a one-dimensional lattice gas with an 
arbitrary mesh '.vas worked out exactly by Lee and 
Yang,S complementing the corresponding continuum 
solution of Herzfeld and Goeppert-Mayer.6 The one
dimensional example thus serves as a particularly good 
test case because, as is shown later, in two and three 
dimensions the behavior at both low and high densities 
is analogous. In the intermediate density region, the 
one-dimensional systems show no phase transition, but 
the qualitative deductions made at these densities can 
be applied to the higher-dimensional cases. 

In the general one-dimensional hard lattice gas the 
one-dimensional "401ume" corresponds to a line of L 
sites. N particles are placed on the line, and each 
particle covers s sites. The lattice is close-packed when 
the total number of sites, L, equals Ns. At lower 
densities, a lattice containing 1\T particles leaves L-Ns 
sites unoccupied. The configurational sum Q::; is merely 
the number of distinguishable ways lV particles and 
L-:.Vs unoccupied sites can be arranged: 

[(L-Ns)+ (N) =1 
(1)

[(L-Ns) lY) IJ' 

The corresponding formula in the continuum case is 

Qf(S) = (L-iYs)NjN! (2) 

'The "hard squares" model described by C. Domb [Nuovo 
Cimento Supp!. 9, 9 (1958) ] has recently been analyzed by. 
M. E. Fisher and D. S. Gaunt (to be published). Fisher and Gaunf' 
use Pade approximants for the 11-term low-density P (z) series 
and the nine-term high-density Perl) series; they find a second
order transition at about three-fourths the close-packed density. 
Their model forbids occupation of nearest-neighbor sitts on a 
square lattice. The model we examine in Sec. 3 forbids not only 
nearest- but also second-nearest-neighbor site occupations in two 
dimensions, s= 2. 

4 B. J. Alder and T. E. Wainwright, J, Chern. Phys. 33, 1439 
(1960); Phys. Rev. 127, 359 (1962). 

5 T. D. Lee and C. N Yang, Phys. Rev. 87,417 (1952). 
6 K. F. Herzfeld and 111. Goeppert-Mayer, J. Chern. Phys. 2, 

38 (1934). 
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From (1) and (2) the following inequalities for Q::; and 
Qf are obtained: 

Q~(s-l) >Qf(s-l) >Q~(s) >Qf(s). (3) 

Equations (1) and (2) show that the lattice gas en
tropy, k InQ::;, exceeds the continuum gas entropy at 
any density. The pressure is obtained by the usual 
thermodynamic formula and the use of Stirling's ap
proximation. For the lattice gas the pressure is given by 

PE/kT= ca InQE/aL)N.r=!n(1+j-l) , (4) 

while the corresponding continuum expression is 

(5) 

where j is the one-dimensional equivalent of the free 
volume (unoccupied volume per particle), (L-Ns) ILl". 
Equations and (5) show that the pressure inequali. 
ties are opposite in direction to the entropy inequalities: 

P:z:(s-1) <Pf(s-1) <P-y;(s) <Pf(s). (6) 

For a particular value of s it can be seen that the 
pressures from and (5) are identical only when 
there is an infinite number of unoccupied sites per 
particle. In general the expression P:Z:/Pf=ln(l+j-l)! 
describes the error in the pressure as determined from 
the lattice model. Thus the difference in pressure for 
j= 50 is 1% at any density. The pressure error can be 
traced to an edge effect, due to measuring a line of 
nonintegral length by counting the number of lattice 
sites which fit within it. For values of j suffIciently 
large for effects to have meaning, the error in
curred averages half a unit; thus an error of one-half 
unit out of 50 means an accuracy of 1 %. The length 
of the free volume is always overestimated by the 
lattice model, and consequently the lattice gas pressure 
is too low. 

The mesh size necessary to obtain any particular 
accuracy depends only on the number of sites con
tained in the free volume j. Thus, to maintain the 
same accuracy (same number of unoccupied sites per 
particle) as density increases, it is necessary to make 
the mesh finer. For example, demanding 1 % agree

~ ment i.n the pressure requires an s of 12 at 20% of 
close packing and an s as large as 450 at 90% of close
packing. Vv'hen s is 2, the lattice gas equation of state 
is accurate within 1% only for densities less than 
Nsl L= This corresponds to a very dilute gas, and 
it is not surprising, as will be shown in the next section, 
that the virial coeffIcients according to the lattice gas 
model differ significantly from those of the continuum 
model wh.en the lattice is coarse. At the other extreme, 
in the limit of close packing, the ratio of lattice pres
sure to continuum pressure approaches zero for any 
finite mesh size or finite s. This is because the limiting 
free volume vanishes and the mesh spacing must also 
in order that a given number of unoccupied lattice 

sites remain. A reasonable limit at which the lattice 
model becomes totally unrealistic is reached when there 
is an average of only one unoccupied site per particle 
to estimate the free volume (j= 1). This occurs at a 
density of i of close packing for particles covering two 
sites each; for the more common choice, particles cover
ing one site, the model becomes unrealistic at a density 
half that of close packing, the point at which the two
and three-dimensional Ising model phase transitions 
(with attractive forces in addition to the core) are 
found. l 

Inequalities (3) and (6) suggest that a functional 
relation can be found which brings the lattice and 
continuum results into agreement. A simple way of 
finding such a relation, which can later be applied in 
two and three dimensions, is to choose an effective 
diameter (I for the continuum particles, such that the 
continuum pressure is the same as the lattice pressure 
at all number densities: 

(j= (LIN) Iln[(L-Ns+N)/(L-Ns) (7) 

At low density (j reduces to This functional rela
tion depends, of course, on the mesh size; as an illus
tration (I is plotted versus density for s equals 2 in 
Fig. 1. Notice that (I is always less than s, and that 
the simple low-density approximation, holds(I=!, 

within 2% up to half the close-packed density. 
The effect of adding a nearest-neighbor repulsive 

mound or attractive well to the one-dimensional hard
core model has been worked out both in the lattice6 

and in the continuum6 case. In Fig. 2 PdPf is plotted 
as a function of density for the nearest-neighbor po
tential <p(r<l) 00, <p(1 =E, <p(25:r) the 
curves labeled "mound" and "well" correspond to 
ElkT equals Into and -lnlO, respectively. The purely 
hard-core case is also drawn for comparison. It can 
be observed that the pressure error for densities less 
than half of close packing is nearly independent of 
the or magnitude of E. The pressure differences 
at low density can therefore be attributed mainly to 
the repulsive core of the potential. At higher densities 
the pressure discrepancy depends more strongly upon 
the nature of the potential surrounding the hard core, 
being greatest for attractive forces. Again the pressure 

FIG. 1. Variation of 
the effective diameter of 
a particle in the con
tinuum case. (J" is chosen 
such that the lattice 
and continuum gas pres· 
sures are identical for 
one-dimensional hard 
Jines in which the lattice 
gas particles cover two 
sites each. 

1.7 
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from the lattice model is always less than that from the 
continuum model. 

3. TWO-	 AND THREE-DIMENSIONAL HARD LATTICE 
GASES 

The lattice gas on a square lattice in which each 
particle covers more than one site has not been worked 
out completely. The low-density properties can, how
ever, be easily derived from the vi rial expansion of the 
pressure. This is because Mayer's cluster expansion 
can be specialized to a discrete configuration space, 
and, just as in the continuum case for squares and 
cubes, the ::'.Iayer i function can be factored into a 
product of one-dimensional i functions.7•s Thus, the 
lattice gas star sums factor into products of one-dimen
sional star sums. These one-dimensional star sums for 
the case in which each particle covers two sites have 
been worked out in detail and are listed in the Appendix 
through the seven point stars. From these it is possi 
ble to evaluate the first seven virial coefficients in one, 
two, and three dimensions (particles covering 2, 4, and 
8 sites, respectively). These are listed in Table 1. In 
one dimension the general nth vi rial coefficient Bn for 
a lattice gas is known from the expansion of the pres
sure [see Eq. (4) J as a power series in the number 
density, 

The analogous value in the continuum case is Bn = sn--\ 
corresponding to the limit of the lattice value as the 
number of sites each particle covers goes to infinity. 
The virial coefficients in one, two, and three dimen
sions for the continuum situation have been evaluated 
by integration of ::\1ayer's star integrals/·s and are 
listed in Table I for comparison with the lattice results. 
As was already inferred from the differences between 
the lattice and continuum one-dimensional equations 

1.0 

0 

0.8 

0.6 

..l 
PI 0.4 

0.2 

FIG. 2. The ratio of the one-dimensional lattice gas pressure to 
the continuum gas pressure as a function of density, when repul
sive or attractive potentials are present. The heavy curve corre
sponds to the purely hard-core case. 

7 R. W. Zwanzig, J. Chem. Phys. 24, 855 (1956). 
8 W. G. Hoover and A. G. De Rocco, l Chem. Phys. 36, 3141 

(1962) . 

PROPERTIES 

TABLE I. ViTial coefficients for hard lines, squares, and cubes in 
units of particle volume. The particles on the lattice cover 2D 
sites in D dimensions and the particles in the continuum case 
have a volume in D dimensions of lTD. 

Lattice gas E../ (2D)"-1 Continuum gas E,,/ (lTD) ,,-1 

Lines Squares Cubes Lines Squares Cubes 

E2 0.i50 1.125 1.688 1.000 2.000 4.000 
E3 
E, 

0.583 
0.469 

1.021 
0.832 

1.786 
1.349 

1.000 
1.000 

3.000 
3.667 

9.000 
11.333 

Eo 0.388 0.641 0.731 1.000 3.722 3.160 
Eo 0.328 0.480 0.168 1.000 3.025 -18.880 
E7 0.283 0.355 -0.229 1.000 1.651 -43.505 

of state at low densities, even the first few virial coeffi
cients are significantly different in this case, in which 
the number of sites covered by each particle is so small. 
A comparison between the lattice and continuum ver
sions of the two- and three-dimensional vi rial coeffi
cients shows that in higher dimensions the discrepancy 
becomes even larger. Thus the radius of convergence 
of the lattice virial series can be, for coarse lattices, 
sign:ficantly different from that of the continuum series. 
This should serve primarily as a warning that the be
ha"dor observed at high density in the conventional 
treatment of a lattice gas may differ qualitatively, as 
,,'ell as quantitatively, from that of its continuum an
alog. 

A qualitative argument that the behavior in the 
solid-fluid phase transition region may be altered in 
a coarse lattice gas is based on the observation that 
these transitions occur,4,9 in two and three dimensions, 
at a density corresponding to a linear expansion of 
about from close packing. It has already been 
shown that for s= 2 there is less than one unoccu
pied site available to estimate the free volume at that 
density. If, as seems likely, the melting phenomenon 
involves a highly cooperative motion corresponding to 
small channels connecting small pockets in configura
tion space, the lattice will have to be fine enough to 
allow the system to sample the detailed shape of these 
regions. In the gas-liquid transition region the situa
tion is not nearly so bad. That transition occurs at a 
linear expansion of about 60%, and the accessible re
gions in phase space are broader and more extensively 
connected than in the solid-fluid case. It is possible 
that the mathematical nature of the continuum gas
liquid singularity will be preserved with a lattice par
ticle covering only t'l';o sites because the significant 
narrow regions in phase space, might be comparable 
to the mesh width. 

More quantitative statements are difficult to make, 
particularly in the phase transition region. However, 
interestingly enough, the lattice gas provides bounds 
on the thermodynamic functions for the real gas. For 

~ W. W. Wood and J. D. Jacobson, J. Chem. Phys. 27, 1207 
(1957); B. J. Alder and T. E. Wainwright, ibid" p. 1208. 
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example, it can easily be shown that for hard particles 
the inequalities (3) are also satisfied in two and three 
dimensions, so that the lattice gas entropy is also too 
large. The physical basis of the proof does not depend 
on the number of dimensions: evaluating the hyper
volume of accessible phase space by counting the inte

number of unit hypercubes whose lattice 
points, lie \yithin the hypervolume over

estimates the hyperyolume near the of accessible 
phase space. On the other hand, out all unit 
hypercubes which intersect the edge underestimates 
the extent of accessible phase space, and so the bounds 
are establi3hed. 

Because the entropy inequalities hold in two and 
three dimensions it is tempting to speculate that the 
pressure inequalities (6) are equally valid, even though 
in&ddual yirial coefficients (Table I) do not satisfy 
corresponding inequalities. However, with the use of 
the virial coefficients it can be confirmed that the 
lattice pressure is too low at low In support 
of the surmise that this is also true at densities, 
the asymptotic form of the lattice pressure, as the 

approaches close packing, estimated in the 
possible example, namely, squares covering 

four sites. In that example, the area at close-packing, 
V, will contain VI4 particles, and the number density, 
p , will be i. Kear close packing we expect that 
the leading two terms in the lattice gas grand partition 
function, E:= EQNZN, correspond to putting VI4 and 
(V 1) 14 particles on the lattice. Then 

E:= QV/4ZV/4+Q(V_ll/4Z(V-l) !4+ .. " 

whre z is the activity. QVi4 is 1, because there is only 
one way in which to arrange V14 nonoverlapping 
squares on V sites. Q(V-l)/4 is proportional to V, be
cause anyone of V sites can be left vacant, and the 
proportionality constant k accounts for the number of 
ways the (V -1)14 particles can then be arranged. 
Because this is still a very limited number of ways, 
k is of the order of unity. Thus near close packing the 

function is of the form 

(9) 

Then, irom the usual thermodynamic relations, the 
equations P kT=lnzt+kz,-lt and p are ob
tained. The a3:--mptotic expression for the pressure is 

O(lnk) +0(1-4p). (10) 

In order to a:-riYe at (10) a term with a single vacant 
site was included in the g!'and partition function. This 
seems a peculiar choice, because removal of a particle 
from any finite cl03e·packed would leave four 
such unoccupied sites. \Ye cannot justify this choice 
rigorously, and only point out here why we believe it 
is plausible. As V becomes (and we are actually 
interested in the limit that approaches infinity) V 
passes through values that are of 4, with 
remainders of 0, 1, 2, or 3. \ire that each of 

these kinds of V will contribute to the limit of A, 
although it is difficult to weight the different sizes 
(as well as shapes) properly. Even the one-dimensional 
system illustrates a part of this complexity. In the 
simplest relevant case, s= 2, it is necessary to include 
volumes with both odd and even numbers of sites 
(weighted equally) in E: to obtain a correct high
density expansion of the equation of state. 

In view of the fact that (10) rests upon such intui
tive ideas, it is worthwhile to obtain it in another way, 
also approximate, but unrelated to the foregoing argu
ments: 

Consider the lattice gas equation of state from the 
yiewpoint of the recent reformulation of the virial 
series.lO It was shown that the nth virial coefficient 
can be expressed as 

(- ) ("'2)~ftr fijdrn-1+other terms, 
n i<i 

where the "other terms" are numerous, and not neces
sarily small. Neglecting these terms, and using the 
fact that the lattice sum corresponding to the above 
integral is (21'-1)2( ) ,,(n-1)/2 for hard squares of side 
length 2, yields B,,= (4n -2nH+1)ln. Summing the 
virial series in this approximation, an equation 
of state again of the form (10): 

In{(1-2p)2/[(1-p) (1-4p)J}. (11) 

This approximate equation of state has also been ar
rived at (in a different way) by Temperley.H In support 
of the statement that the terms which have been kept 
are the dominant ones in this lattice gas virial 
some of the left-out terms mentioned above have been 
evaluated also, and found to make finite contributions 
to the pressure at the close-packed density. 

The logarithmic dependence of the pressure on free 
volume shows that the lattice gas pressure is also too 
small at high since in the continuum case 
the pressure on the free volume; 
PlkT approaches (2-8p)-1 near the close-packed situ
ation just treated.12 This establishes that, just as in 
the one-dimensional case, PT.!PI approaches zero in 
the close-packed limit. 

Besides the bounds just established it would be de
sirable to make the lattice gas results more quantita
tive without the prohibitive task of making the mesh 
finer. It was already pointed out that the chief differ
ence between the lattice and continuum results came, 
in the laaice case, from an overestimate of the free 
volume. This overestimate was remedied in one dimen
sion by introducing an effective diameter for the parti
cles [see (7) The low density form of the effective 
diameter, is exact for the second virial coeffi

10 F. II. Ree and W. G. Hoover, J. Chern. Phys. 41, 1635 (1964). 
11 H. N. V. Ternperley, Proc. Phys. Soc. (London) 77, 630 

(1961). 
12 W. G. Hoover, J. Chern. Phys. 40, 937 (1964). 

http:treated.12
http:series.lO
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TABLE II. One-dimensional star sums. 

Index Absolute values of the sums 

n=2 1 3 

n=3 7 

n=4 1-3 19, 17, 15 

n=5 1-10 51, 45, 45, 43, 41, 39, 37, 35, 33, 31 

n=6 1-18 141, 121, 121, 117,111, 115, 109, 107, 107, 107, 103, 103,101, 113, 103, 99, 99, 99, 
19-36 97, 97, 95, 97, 93, 91, 91, 87, 87, 95, 91, 91, 89, 87, 85, 85, 85, 83, 
37-54 83, 81, 81, 83, 81, 81, 79, 77, 77, 75, 75, ii, 75, 73, il, 69, 69, 67, 
55-56 ~, M . 

n=7 1-18 393,333,325,319,309,299,293,291,287,287,289,287, 287, 291, 281, 287, 279, 279, 
19-36 279,275,269,271,267,261,263,309,285,275,267,265, 265, 263, 2i3, 263, 263, 261, 
37-54 265,259,259,259,255,257,259,259,257,255,255,251, 253, 231, 2-!9, 2-±9, 257, 245, 
55-72 245,247,247,243,247,243,247,245,241,241,241,239, 239, 237, 235, 237, 239, 233, 
73-90 227,227, 223, 307, 269, 257, 249, 249, 249, 247, 247, 251, 243, 255, 239, 239,239, 239, 
91-108 239,239,241,237,235,239,237,233,231,231,231,233, 231, 231,231,229,229,231, 

109-126 231, 22~ 22~ 227, 227, 225, 225, 225, 225, 223, 227, 223, 229, 223, 221, 121, 221, 221, 
127-144 221,219,221,219,217,219,217,221,2.17,217,217,219, 219, 215, 213, 213, 211, 211, 
145-162 211, 209, 209, 211, 209, 209, 209, 209, 213, 207, 203, 199, 199, 253, 233, 233, 227,225, 
163-180 223, 223, 223, 225, 219, 219, 219, 215, 215, 21~ 217, 215, 21~ 215, 213, 215, 219, 211, 
181-198 211,211,213,213,209,209,209,209,207,207,211,209,207, 213, 207, 207, 207,205, 
199--216 207,203,203,205,201,203,203,203,207,201,201,201, 203, 199,201, 199, 199, 199, 
217-234 199, 197, 197, 197, 199, 197, 197, 197,201, 195, 197, 195, 195, 195, 193, 195, 193, 193, 
235-252 193, 195, 191, 191, 191, 189, 189, 189, 187, 187, 185, 185, 185, 183, 185, 183, 189,217, 
253-270 211,209,207,203,203,201,199,199, 199, 199, 199, 199, 195, 195, 201, 197, 195. 195, 
271-288 197,193, 191, 191, 191, 191, 195, 189, 189, 189, 189, 189, 187, 187,187, 189, 187, IS;, 
289-306 187, 189, 187, 185, 185, 185, 185, 183, 183, 183, 183, 185, 183, 181, 183, 181, 181, 183. 
307-324 181,181,181,179,179,179,179,177,183,177,175,175, 175, 175, 175, 173, 173, 173, 
325-342 173,171,171,171,169,169,171,169,199,191,193,191, 187, 185, 183, 183, 183, 179, 
343-360 179,179,179,177,177,177,177,177,175,175,175,177,179, 175, 173, 171, 171, lil, 
361-378 171, 171,169,171,169,171,171,169,167,167,167,165,165, 165, 165, 165, 165, 163, 
379-396 163, 163, 163, 163, 165, 163, 161, 159, 159, 159, 159, 157, 155, 175, 1i7, 171, 171, 169, 
397-414 169, 169, 167, 167, 165, 163, 165, 163, 165, 161, 161, 161, 159, 159, 157, 157, 157, 157, 
415-432 155, 155, 155, 153, 153, 153, 153, 153, lSI, 153, 151, 151, 149, 149, 149, 163, 161, 159, 
433-450 159, 155, 153, 153, 151, 149, 149,149, 147, 147, 147, 147, 145, 145. 1-!3, 1-±3, U3, 157, 
451-468 147, 145,145,143, 141, 141, 139, 139, 137, 141, 139, 137, 135, 133, 133, 131, 129, 127. 

================================ 

cient not only in one dimension, but in two and three density. Thus, the Ising model phase transition at 

dimensions as well, for the hard-core interparticle po half the close-packed density may actually correspond 

tentials considered here. Furthermore, the third virial to the experimentally observed gas-liquid transition, 

coefficient is also much improved by the same choice which occurs at a some"'hat lower density. 

of (J'. For s=2, Ba(lattice)/Ba(continuum) 1.04, 1.08, 
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from the virial series gives for the lattice PV/iYkT= 


APPENDIX2.506, and for the continuum PV/iYkT= 2.481 with 
this value of (J'. The agreement between the lattice and The one-dimensional star sums for hard particles on 
continuum results is within 1%. This suggests that a lattice covering two sites each are listed in Table II. 
lattice gas results can be related to continuum results The numbers given are for the star sums contributing 
in general by some scaling such as the one demon to B 2) Ba, B4) B6J and B7• The ordering of the star 
strated here. Other types of scaling might be obtained sums is identical with that used in listing the star 
by considering that lattice gas results at a given den integrals in Ref. 8 for the continuum gas. There are 
sity correspond to real gas results at a lower effective 1, 1, 3, 10, 56, and 468 of these, respectively. -
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