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None of the approximate integral equations l 
-

3 

for the radial distribution function has yet given 
any insight into the observed4 hard-sphere and 
hard-disk phase transitions. Only the integral 
equations based on the superposition approxima
tion have been shown to give singularities in the 
hard-sphere equation of state, but the connection 
between the singularities and the phase transition 
has not been established. 

On the other hand, some inSight into the hard
disk phase transition can be gained by study of 
the computer-generated oscilloscope traces of 
disk trajectories in the two-phase region. These 
picture's suggest that an important feature of the 
cooperative motion leading to melting is the slid
ing of rows of particles past each other. This 
sliding motion is incorporated into a simple model 
and is shown to lead to a phase transition for disks 
at approximately the right pressure and density. 
Furthermore, this model leads to an accurate 
description of the solid phase of disks near close 
packing. Finally, the model suggests that, for 
particles which do not have a hard core, a solid
fluid critical point will be observed. 

In previous models of the solid phase5 a central 
particle is allowed to wander in a cell in which 
the neighbors. are strictly confined to lattice po
sitions. This is illustrated in Fig. 1 for hard 
disks; the free area, af' accessible to the center 
of the wanderer is the central cross-hatched re
gion. In this model the probability density in con
figuration space is expressed as a product of 
Single-particle probability densities6 

; that the 

motions of neighboring particles are uncorrelated. 
The other extreme, treated here, in which some 

neighboring particles are perfectly correlated will 
also lead to a theory of the cell type, as shown in 
Fig. 1. The unit crystallographic cell of the hex
agonal lattice (dashed rectangle) can be thought of 
as containing two kinds of particles, both of which 
are periodically repeated. One kind of particle 
(open circles) includes the central wanderer and 
some of its correlated neighbors. These move 
in unison (indicated by arrows) relative to the 
other kind of neighboring particle (cross-hatched 

FIG. 1. Configurations of the cell of elastic disks. 
The shaded particles are fixed. Free areas available 
to the central wanderer are shown. 
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circles) which are fixed at lattice positions. Con
sidering the lattice to be generated by a single 
unit cell with periodic boundary conditions, so 
that identical motion occurs in each cell, the co
operative behavior corresponds to one sublattice 
(in this case a row of atoms) sliding relative to 
another sublattice. This correlated cell model 
is, of course, unrealistic because the perfect 
correlation of neighbors does not, in fact, extend 
over an infinite range but, as suggested by the 
oscilloscope pictures, only over some ten par
ticle diameters. Nevertheless, the model de
scribes the solid phase quite accurately; it is not 
expected to describe the fluid phase. 

The correlated cell-model free area (central 
diamond shape region) is larger than the ordinary 
cell-model free area, as shown in Fig. 1. For 
the correlated cell model, 

a =(3d 4)1/2_ ~(4d2_d4)1/2_ 2sin- 1 (td2)l/2 

f 
- ~ (12d 2 - 9d4 )l/2 + 2 cOS-1(3d 2/4)~/2 

for 1<d2<~, (1) 

where d is the nearest-neighbor distance relative 
to the particle diameter a. The equation of state 
obtained from 

pA/NkT a (lnaj/a(lnA) = a (lnaJ/a(lrltP) (2) 

is shown in Fig. 2. At d 2 =~ the functional form 
of ar changes since at that point rows can slide 
past each other. The free area for d 2 > 1 is in
dicated in Fig. 1 by the larger central diamond
shaped region with cutoff corners. The expres
sion for it is merely the first three terms of Eq. 
(1). At low densities, the definition of af depends 
explicitly upon boundary conditions, which here 
have been taken such that the central particle is 
confined to the area per particle. 

It should be pointed out that the portion of the 
equation of state with a positive (ap/aA)T which 
leads to the first-order phase transition by the 
Maxwell construction is obtained entirely from 
Eq. (1), and hence is not an artifact due to the 
sudden appearance of new regions accessible to 
the wanderers. In fact, a number of similar 
models have similar characteristic equations of 
state. As examples, a two-dimensional square 
lattice in which the wanderer is confined by four 
stationary particles at the corner of a square ex
hibits a phase transition near twice the close
packed area, and a hexagonal lattice which has 
arbitrarily three alternate neighboring particles 
correlated with the central particle exhibits a 
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FIG. 2. The equation of state of elastic disks in the 
phase-transition region. AIAu is the area relative to 
the close-packed area, An. Light solid line, molecular 
dynamics; dashed line, ordinary cell model; heavy solid 
line, correlated cell model; dash-dot line, correlated 
cell model with a repulsive potential falling off as the 
inverse 100th power of the distance. 

phase transition very similar to the case previous
ly treated where two neighbors were correlated. 
In the case of three correlated neighbors, the 
lattice is generated by a box with periodic bound
ary conditions containing six particles (three unit 
cells wide). These six atoms are not all independ
ent but subdivided into two stationary particles 
(the one at the center and the ones in the corners) 
and four correlated ones. Sliding of rows is quite 
feasible in this model also. If the six atoms had 
been treated as all uncorrelated, a phase transi
tion would not likely be observed, since boxes 
containing four or twelve independent particles 
did not lead to one7 by molecular dynamiCS com
puter calculations. The reason for this is that 
density fluctuations are so restricted in such sys
tems that the probability of parallel sliding of rows 
is drastically reduced at the density of the phase 
transition. 

In the limit of close packing, the correlated cell
model isotherm reduces to the ordinary cell-mod
el isotherm which has been shown to be exact for 
finite systems. B Presuming that away from closf'~ 
packing, the equation of state can be expanded il' 
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pA/NkT (2/cl')+C O +C 1 0'+C 20'2+ .•• , (3) 

the value of Co for the ordinary cell model is ~ 
1. 56, for the correlated cell model V= 1. 89, 

while the molecular dynamic result gives 1. 86 
± O. 03 for either 72 or 870 particles. The values 
of C1 are -li -0.086, H= O. 765, and O. 9± 0.2, 
respectively. This quantitative success of the 
correlated cell model near close packing, as well 
as in the phase transition, as shown in Fig. 2, in
dicates its general validity in the high-density re
gion. Figure 2 also shows that for a very steep 
inverse power-law repulsive potential of the form 
kT(u/r)100 the phase transition disappears. Also, 
no phase transition was obtained when the repul
sive power was four or twelve. For these poten
tials the integral occurring in the free area of the 
cooperative cell model was evaluated numerically. 
A study now in progress involving other potentials, 

further models, and three-dimensional systems 
should help answer the question whether the mech
anism of melting in real systems is similar to 
that of elastic disks. 

*This work was performed under the auspices of the 
U. S. 	Atomic Energy Commission. 
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