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Determination of Virial Coefficients from the Potential of Mean Force*®
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A relation between the potential of mean force at zero separation and the excess chemical potentia] is
derived for “hard” molecules. Application to hard spheres shows that of the Percus~Yevick, Kirkwood,
convolution, and Born-Green~Yvon integral equations, only the Kirkwood equation gives the correct

third viral coefilcient.

TN this article we derive a new relation {between the
A potential of mean force' and the excess chemical
potential) which may be used to obtain virial coeffi-
cients from  the radial distribution fuanction. The
relation is valid whenever each term é{r;} in the total
potential energy ®{r¥) hus the possible values 0 and
© only.?

Consider the deilnitions of the potential of mean
force ¥(7) and of the radial distribution function g(r):

r T V2] exp[—&(rV) /kTJdr™—*
explL —W kT = = E
EXpL (r)/eT =g(7) T exp[-—‘f’(TN)/ijdrN

(1
The denominater in (1) is V! times the configurational
integral Q. Aultply (1) by exp[e(r)/ET] and pass
to the limit »—0. In this limit, so long as the molecules
are hard, we may replace ¢(ry) +¢(re) by ¢lra) in
the integral over dr¥~?=sdry---dry. Thus we have,
after taking the limit,

exp[ —¥(0) /kT+¢(0) /kT]
V2 exp[—@ (V1) /kT Jdry

(2)

NQy
The numerator of (2) is {NV—1)1¥ times the con-
figurational integral Qw.;. Using the relations®

Oxe1/On=5=p exp(— _B3.p"), where 5 is the fugacity
divided by &7, and Bu.== — (n+1) Buya/n, where 3, is
the nth irreducible cluster integral* and B, is the nth

* This work was supported by a grant from the Alired P, Sloan
Foundation,

T Alfred P. Sloan Foundation Fellow.

LT, L, Hill, Staiistical Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1936}, p. 193.

2 This statement is stronger than Is implied by the symbols
¢{ri;y and ©{r¥}., The new relation holds even for an angie-
dependent pair potential (provided it iz of the “hard” 0 or
type) with the modidcation that in the limit to which (3} refers,
bard ellipsoids, for example, would be merged in a common
orientation. Because (3) is applied only to hard spheres in this
work, we prefer to suppress the angle dependence here to simplify
the notation. In a forthcoming publication we will apply the new
relation to systems of parallel hard lines, squares, and cubes, and
illustrate its graphical interpretation,

¥ See, for example, J. de Boer, Reports on Progress in Physics
(The Physical Soclety, London, 1949), Vol 12, p. 339,

4 J. E. Mayer and M. G. Mayer, Statistical Mechanics {Joln
Wiley & Sons, Inc., New York, 1940), p. 287,

virial coefficient, we sce from (2) that the potential of
mean force at zero separation is related to the excess
chemical potential u# by the equation,

W(0) —$(0) = —uF=kTY_B.p"

]

=—kTY (n+1)Bup™/n. (3)

el

From number density (p=N/V} cxpansions of
exp[¢(r)/kTg(r), number density expansions of
¥(r) —¢(r) may be obtained; inserting the latter into
the new relation (3), equating equal powers of p, and
letting 7—0, one obtains the virial coefficients. For those
systems for which (3) is valid, the above procedure is
an alternative to inserting the number density ex-
pansion of g{r) into the Ornstein-Zernicke relation®
(and solving for P/ET)

kT (3p/dP)na=1+4p[[g(r) —17dr, (4)

Tasrr 1. Fourth virial coefficient for hard spheres according to
various approximations. Unit volume is 4Xthe molecular volume,

Eaq. {3) Eq. (4) Eq. {3)
Exacts 0.28695 0.28695 0.28695
Percus-Yevick 0.07812 0.29687> 0.250000
Kirkwood 0.20919 0.44182¢ 0.13996¢
Convolution 0.89062 0.209194 0.445314
Born~Green—~Y von ...® 0.34241¢ 0.22522=

& Jor references se¢ G, E. Uhlenbeck and G. W. Ford, Siudies in Statisticol
Mechanics, edited by J. de Boer and G. E. Uhlenbeck {Interscience Publishers,
Inc., New York, 1962}, Vol. 1, p. 182, This article is & valuable reference on the
application of graph theory to the equation of state and the radial distribution
function.

b See reference 7, reference 11, reference 1, p. 213, and G. 5. Rushbrooke and
. 1. Scoins, Proc. Roy. Soc. {Londen) A216, 203 {1953).

© See reference 12,

¢ See reference 9 and K. Hiroike, J. Phys. Soc. Japan 13, 1457 (1958).

¢ For the Born~Green~Yvon equation W{0) — ¢{0) is not simply related to
combinations of hard-sphere cluster integrals; because of this difficulty we have
not made the (tedious) calculation of Ba(BGY) according to (3).

f See reference 11.

& See reference 1, p. 213, footnote 1.

5 See reference 3, p. 363.
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or the virial theorem®
PrRT =p—(p*/6RT) fg(7) (dp/dr)rdr, (3

and equating equal powers of p. As is well known, the
values of a particular B, obtained from an approximale
g{r) using (4) and (3) are not gencrally the same. For
this reason it was of interest to Investigate the virial
coefhicients derived from (3).

For a system of hard spheres, we obtained number
density expansions of the approximate g(7}’s satisfying
the Percus-Yevick,? Kirkwood,! convolution,® and
Born-Green~Yvon® integral equations. The analytical
expressions derived by Nijhoer and Van Hove were

8 1. Q. Hirschielder, C. ¥, Curtiss, and R. B. Biwd, Iolecular
Theory of Gases and Liguids (John Wiley & Sons, Inc., New York,
1954), p. 134

7 J. K. Percus and G. J. Yevick, Phys. Rev, 116, 1 (1938).

s 1. G, Kirkwood, J. Chem. Phys, 3, 300 (1933).

* This equation has been derived by many authors {independ-
entlyy. See, for a listing, footnote 1 of G. S, Rushbrooke and P.
Hutchinson, Physica 27, 647 (195613,

WAL Born and H. 3. Green, Proc. Roy. Sec. (London) Al88,
10 (1946); 1. Yvon, dctualités scientifigues ef indusirielles (Her-
mann & Compagnie, Paris, 1935), Vol. 203,

1B, R. A, Nijboer and L. Van Hove, Phys. Rev. 85, 777 (1952).
In order to calculate By according to (3) it was necessary to
calculate x*(r) for 0<r<1, using the notation of this reference.

We found

X' (r) =2 (r3/630) — (4/10) — (r3/24) + (*/2) — (5/9) 1.
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used for the integrals of the doubly rooted graphs
appearing in the coefiicients of the first two powers of
p. Using (3), we oblaln for Bs —+&, £, 4, and £, respec-
tively, from the four integral equations. {The exact
value of B; is ¥ in these conventional units, molecular
volume=}.) We note that only the Kirkwood integral
equation gives the correct B3 1f (3) is used. By contrast,
it is weil known that all four integral equations give
the correct By (but nol By) if either (4) or (5) is used.

In Table T we list fourth virial coefficients B; for
hard spheres calculated from three of the four integral
equations using (3); By from the Kirkwood iutegral
equation using (43 and (3) (apparently an original
caleulation™); and, for comparison, the exact By and
published values arising from the three other integral
equations using (4) and (3).

The results in the table bear out the conclusions we
have reached in our hard-cubes work: The Percus-
Yevick integral equation, together with (4), gives the
best results at densities where the virial expansion is
useful; determination of wvirial coefficients from the
Kirkwood equation gives more reliable results if (3),
rather than {4} or (5), is used.

2 Stell’s detajled and identical independent calculation {G.
Stell, J. Chem. Phys. 36, 1817 (1962)7) appeared just after we
had submitted this article,
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