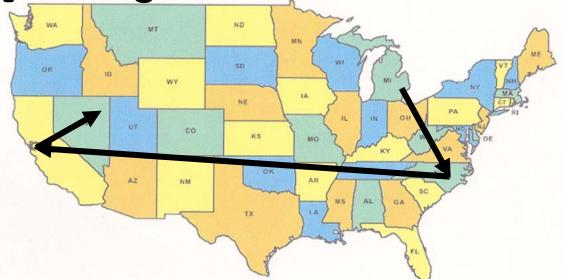
Nonequilibrium Molecular Dynamics

Wm G Hoover & Carol G Hoover [no longer at UCDavis & LLNL!]

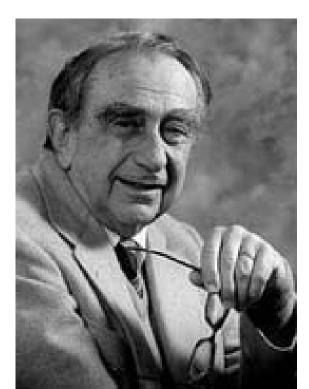


Foundations of Nonequilibrium Statistical Physics @ La Herradura, 13 September 2010 For details: http://williamhoover.info

(university of Michigan 1958-1961 and saw "Molecules in Motion" by Berni Alder & Tom Wainwright Scientific American (1959).

Scanned at the American Institute of Physics

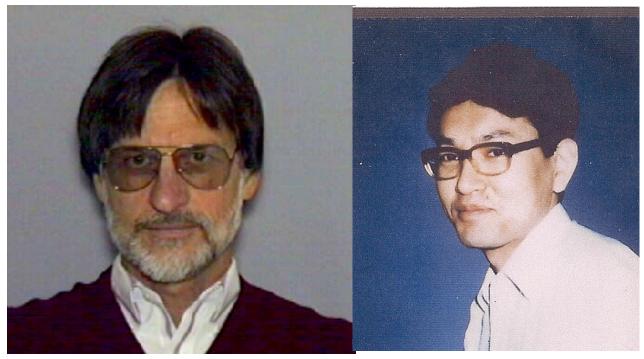
@ Lawence Livermore Laboratory & "Teller Tech" [UCDavis] 1962-2004 [10,000 people/square mile]



Bill Ashurst [PhD Thesis UCDavis 1972-1975] : "Nonequilibrium Molecular Dynamics"

Systems far from Equilibrium [SPAIN 1980]

Shuichi Nosé [PARIS 1984 and JAPAN 1989]



Retirement @ Ruby Valley, Nevada 2004

Nonequilibrium Molecular Dynamics

- 1. Goals: Understanding Flows, Failure, Instability .
- 2. Method: Scope and Ingredients .
- 3. Macroscopic Field Variables from Particles' {q,p}.
- 4. Examples of Linear and Nonlinear Transport .
- 5. Lyapunov Instability and the Second Law .
- 6. Remaining Puzzles and Good Problem Areas .

[For details see http://williamhoover.info]

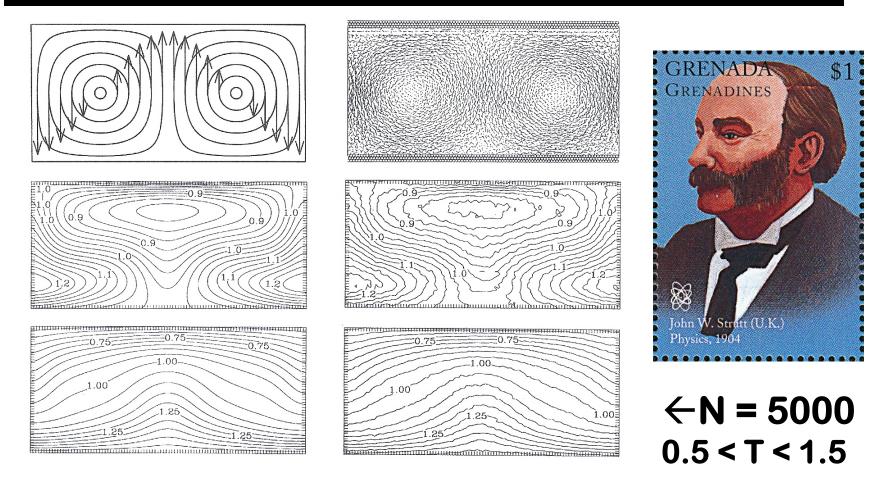
1. What NEMD is, and its Goals

Atomistic Simulations of nonequilibrium systems, particularly steady states* :

{ $md^2r/dt^2 = F_A + F_B + F_C + F_D$ }

* We control variables like { u, T, P, Q }.

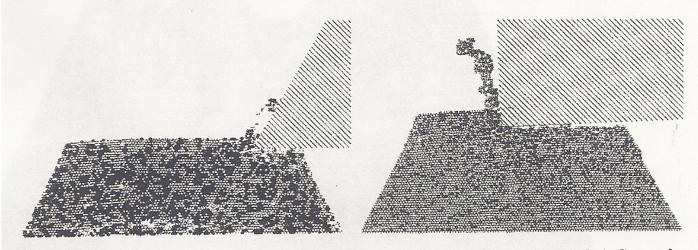
1. Goals: Understanding Complex Flows



Continuum Mechanics versus SPAM, from Oyeon Kum's Thesis.

1. Goals: Failure and Instability

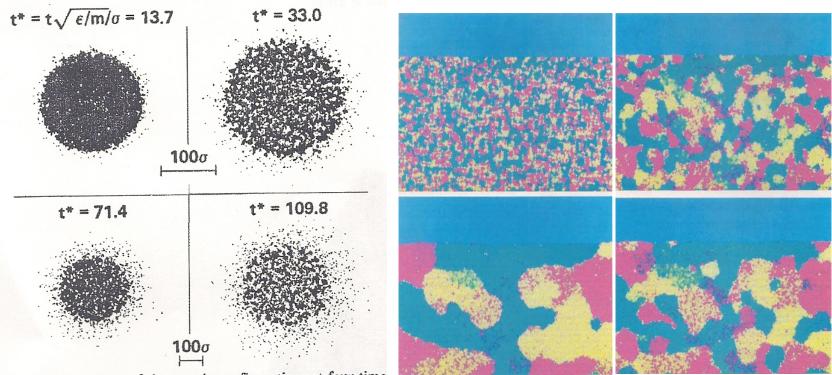
Restitution → Cold Welding



and at 1 t (1.0) and Elected Atom (might) Protectale

Thermostated Metal Cutting

1. Goals: Failure and Instability



TTO C D Late of the atomic configurations at four time

[Fragmentation and Annealing]

2. Method: Scope and Ingredients

- **Simulations Solve Ordinary Differential Equations**.
- Use Runge-Kutta for as many as 10¹² Equations .

$$\{ \mathbf{md^2r/dt^2} = \mathbf{F}_A + \mathbf{F}_B + \mathbf{F}_C + \mathbf{F}_D \}$$

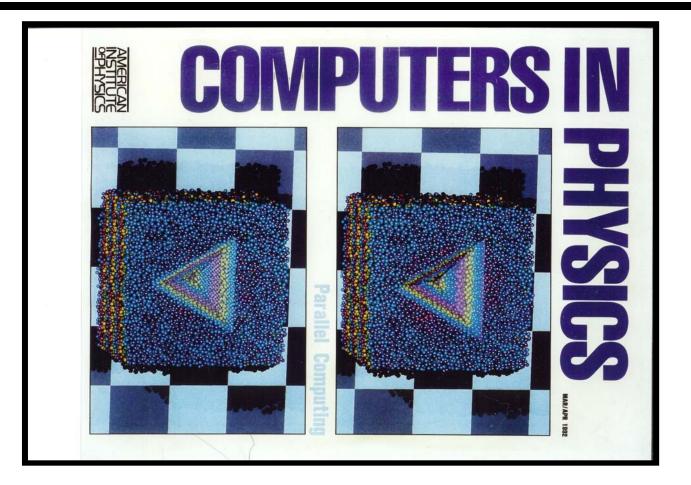
Formulate hydrodynamic/thermodynamic variables for simulations, and for analysis .

1959: Dynamics with 500 Particles

2 (e) E · 0 8 •) 1 . . .

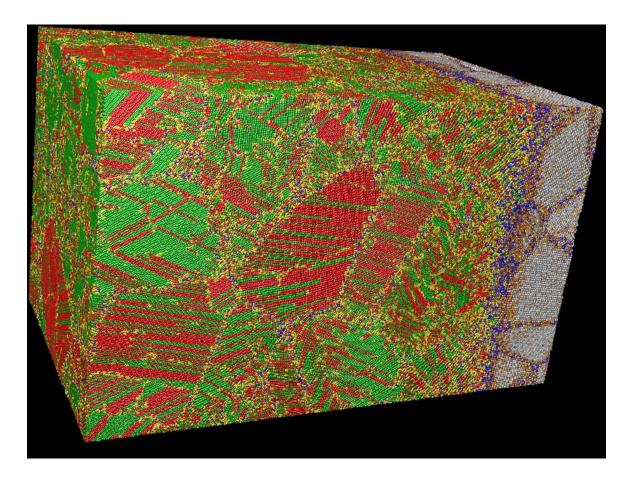
From Vineyard's 1960 Physical Review Article

1989: Dynamics with 1,000,000 Particles



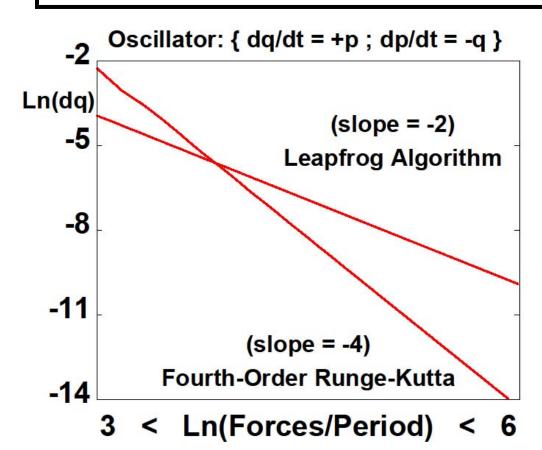
From our work in Japan, 1989-1990, simulating silicon.

2007: Dynamics with 30,000,000 Particles



From Kai Kadau's Los Alamos Webpage

2. Methods: Leapfrog *versus* Runge-Kutta



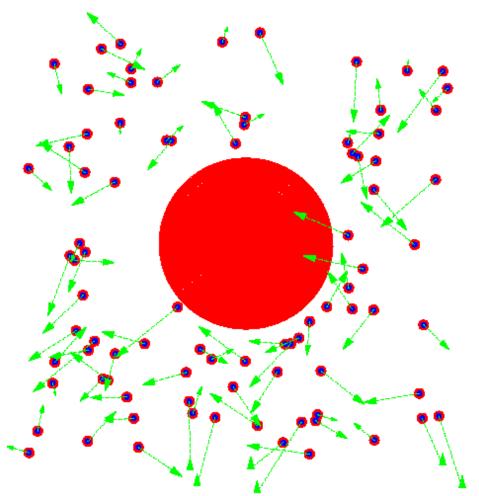
3. Microscopic \rightarrow Macroscopic

For control and analysis of { u, T, P, Q } we need methods for defining point functions .

We describe atomistic dynamics in the Language of Continuum Mechanics .

3. Analysis from Kinetic Theory & Statistical Mechanics → T, P, Q.

Ideal Gas Thermometer



Temperature is just the *comoving* Kinetic Energy .

3. Nosé-Hoover Temperature Control

- **Dettmann's Hamiltonian** $\mathcal{H}(q,p,kT)$:
 - $\mathcal{H}(q,p) = s[K(p/s) + \Phi + \zeta^2 \tau^2/2 + #kTIns] = 0!$
- **Thermostated Oscillator Example :**
 - H (q,p) = s[(q² + (p/s)² + p_s^2)/2 + lns] = 0 !
 - $d^{2}q^{2}/dt^{2} = -q \zeta dq/dt$; $d\zeta/dt = (dq/dt)^{2} 1$.

Nosé-Hoover equations maintain Gibbs' Canonical Distribution !

3. Macroscopic Field Variables

$kT = \langle (p^2/m)_i \rangle [Comoving p!]$ $PV = \Sigma(pp/m)_i + \Sigma(rF)_{ij}$ $E = \Sigma[(p^2/(2m)]_i + \Sigma\phi_{ij}]$ $QV = \Sigma(pe/m)_i + \Sigma(rF \cdot p/m)_{ij}$

We need local definitions for all of these !

3. Molecular Dynamics \rightarrow Continuum Mechanics

Long MD simulations represent nanoseconds . Large MD simulations represent microns . Continuum Mechanics uses Finite Elements rather than Atoms .

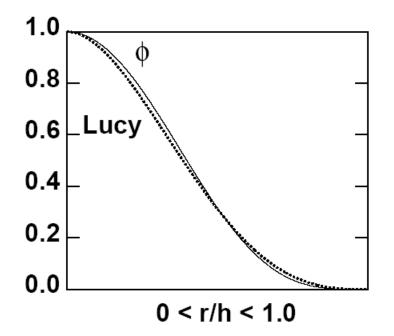
$$\dot{\rho} = -\rho \nabla \bullet \mathbf{V}$$

$$\rho \dot{\mathbf{v}} = -\nabla \bullet \mathbf{P} + \rho \mathbf{g}$$

$$\rho \dot{\mathbf{e}} = -\nabla \mathbf{v} : \mathbf{P} - \nabla \bullet \mathbf{C}$$

Examples coming in the Next Lecture .

3. SPAM*, a method for continuum mechanics \rightarrow Lucy's weight function, w = 1 – 6r² + 8r³ – 3r⁴.

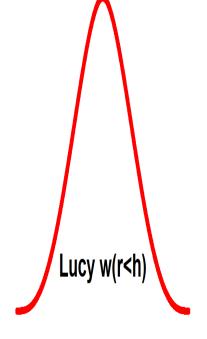


Short-range repulsive potential, $\phi = (1 - r^2)^4$.

* Smooth Particle Applied Mechanics

3. Macroscopic Field Variables with Compact Weight Functions adapted from SPAM simulations :

$$\begin{split} \rho(\mathbf{r}_0) &= \sum_j \mathbf{w}(|\mathbf{r}_j - \mathbf{r}_0|) \text{ with} \\ \mathbf{w}_{1D} &= \mathbf{C}[1 - (\mathbf{r}/\mathbf{h})]^3 [1 + 3(\mathbf{r}/\mathbf{h})] \\ \mathbf{C}_{1D} &= (5/4\mathbf{h}) \\ \mathbf{C}_{2D} &= (5/4\mathbf{h}) \\ \mathbf{C}_{2D} &= (5/\pi\mathbf{h}^2) \\ \mathbf{C}_{3D} &= (105/16\pi\mathbf{h}^3) \\ \mathbf{h} &= 3 \text{ is a good choice!} \end{split}$$



3. Macroscopic Field Variables ← Particles

The "Smooth Particle weight function" w(r<h) smoothes out the particles over a range h, providing twice-differentiable density ρ, stream velocity u, *et cetera*.

$$\begin{split} \rho(\mathbf{r}) &= \sum \mathbf{m}_{J} \mathbf{w} (\mathbf{r} - \mathbf{r}_{J}) \ ; \ \rho_{I} = \sum \mathbf{m}_{J} \mathbf{w} (\mathbf{r}_{i} - \mathbf{r}_{J}) \ ; \\ \rho(\mathbf{r}) \mathbf{u}(\mathbf{r}) &= \sum \mathbf{m}_{J} \mathbf{v}_{J} \mathbf{w} (\mathbf{r} - \mathbf{r}_{J}) \ ; \\ \rho(\mathbf{r}) \mathbf{e}(\mathbf{r}) &= \sum \mathbf{m}_{J} \mathbf{e}_{J} \mathbf{w} (\mathbf{r} - \mathbf{r}_{J}) \ , \ \text{and so on } . \end{split}$$

Notice → Continuity Equation is an Identity !

NEMD: 4. Nonlinear Transport

Atomistic Simulations of nonequilibrium systems, particularly steady states, provide details of Nonlinear transport :

$$P_{xx} \neq P_{yy}$$
 and $T_{xx} \neq T_{yy}$

We control variables like { u, T, P, Q }.

4. Linear/Nonlinear Shears

Boundary Forces : Moving and Periodic . Constraint Forces : Constant { u, T, e } . Driving Forces : Homogeneous { Doll's or s'lloD } or Inhomogeneous .

Analyses : Tensor Natures of P and T : { P_{xx} , P_{yy} , P_{zz} } and { T_{xx} , T_{yy} , T_{zz} } all differ systematically in nonlinearity.

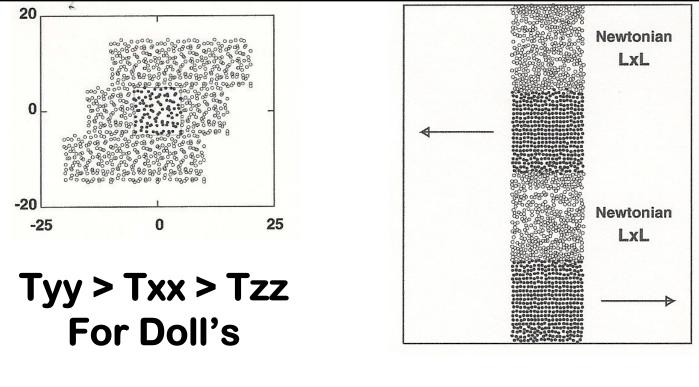
4. Linear/Nonlinear Shears

For Doll's or s'lloD :

$$\{\dot{\mathbf{x}} = \dot{\boldsymbol{\varepsilon}}\mathbf{y} + (\mathbf{p}_{\mathbf{x}}/\mathbf{m})\}$$

For Doll's Algorithm : $\left\{ \begin{array}{l} \dot{p}_{y} = F_{y} - \dot{\mathcal{E}}p_{x} - \zeta p_{y} \end{array} \right\}$ For s'lloD Algorithm : $\left\{ \begin{array}{l} \dot{p}_{x} = F_{x} - \dot{\mathcal{E}}p_{y} - \zeta p_{x} \end{array} \right\}$

4. Homogeneous vs Inhomogeneous Shears

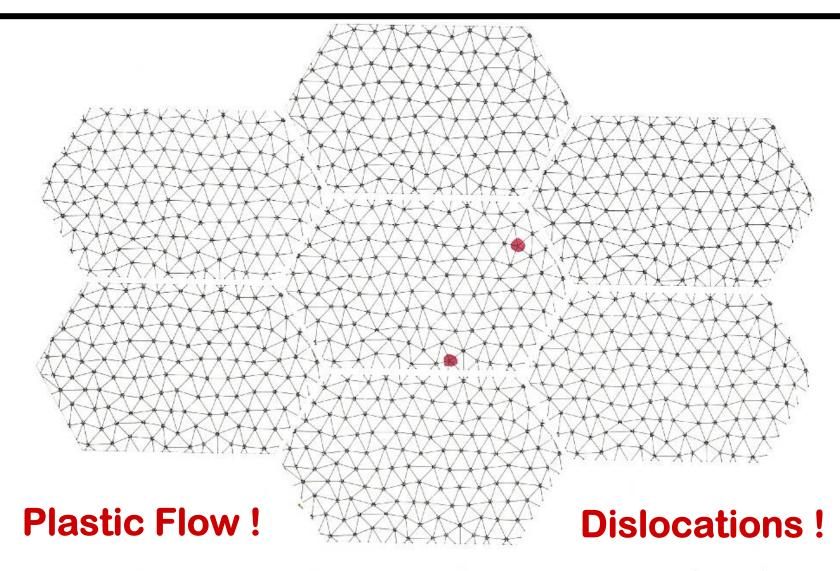


Txx > Tyy > Tzz For s'lloD

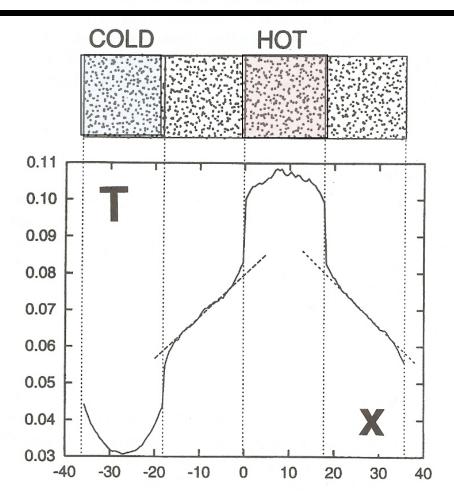
 $T_{xx} > T_{zz} > T_{yy}$

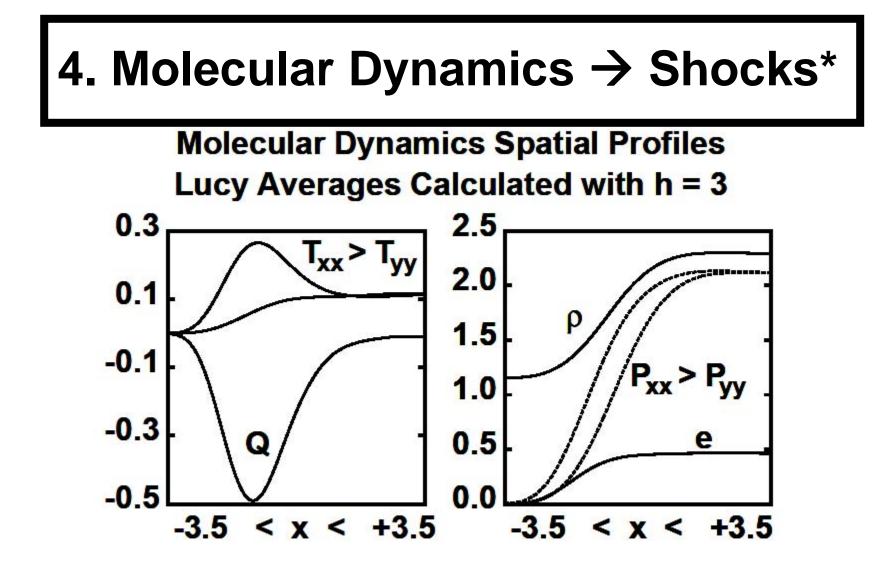
PRE 78, 046701 (2008)

4. Periodic Solid-Phase Shear



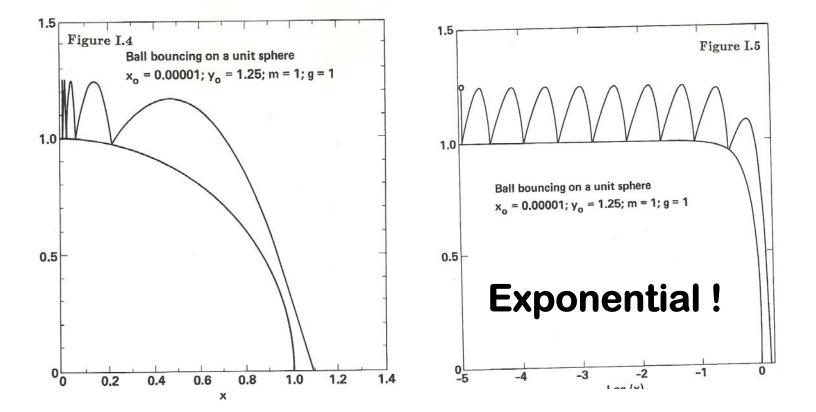
4. Four-Chamber Periodic Heat Flow Problem





* More Later ! Details are in PRE (2010).

5. Irreversibility-Lyapunov Spectra Lyapunov Instability for a Ball

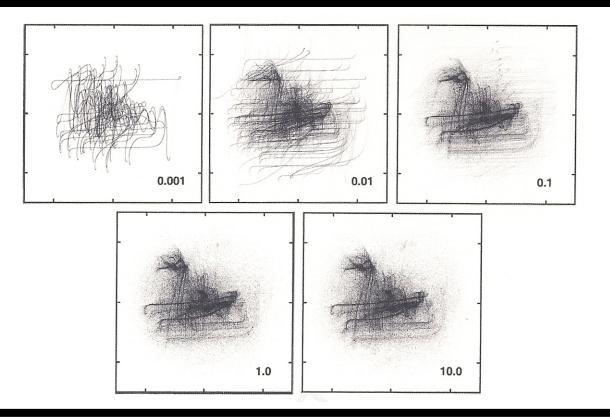


5. Second Law of Thermodynamics

VS

Boltzmann: Entropy Increases (Dilute Gases) . Kelvin: Work to Heat is ok. *Not* the reverse ! Clausius: Entropy Increases ! Loschmidt: But the Equations are Reversible ! Poincaré: But the Initial Conditions Recur !

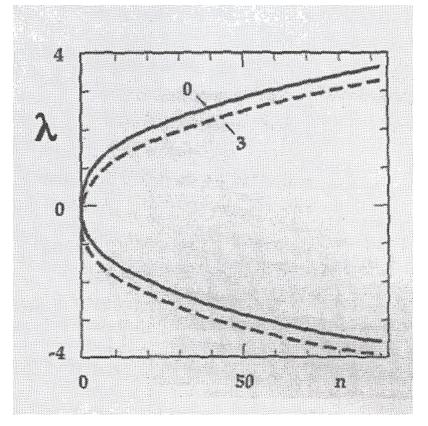
5. Fractal Formation for an Oscillator



Increasing the point-to-point time interval reveals a fractal distribution .

5. Lyapunov Spectrum for N = 32

Symmetry Breaking, Lennard-Jones Particles



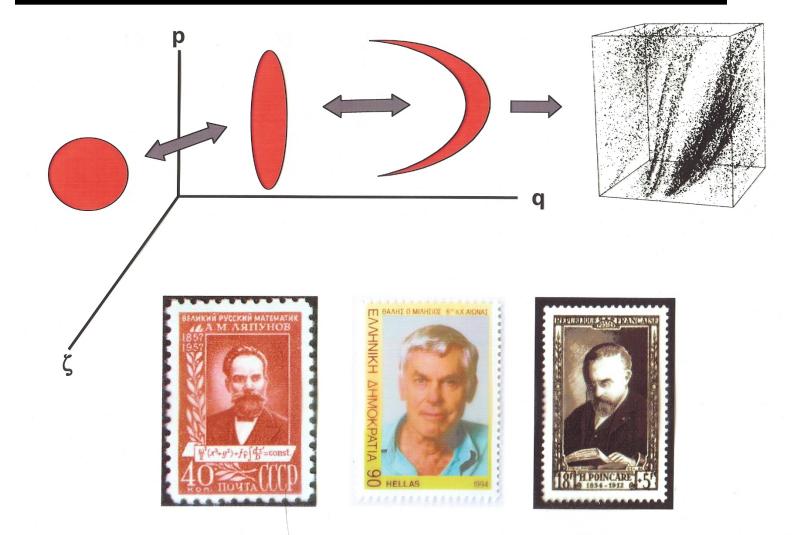
Time Reversible Dynamics Dissipative, dS/dt > 0 Zero Phase Volume Multifractal Attractor

Thermostatted Color Conductivity External Field in x Direction: 16 Particles Pushed to the Right 16 Particles Pushed to the Left

96 Pairs of $\lambda \rightarrow \Delta D$ of order -10

Posch and Hoover, 1987

5.Generic Nonequilibrium Phase Space Flow



Fluctuation Theorem(s) describe this shrinkage.

5. Lessons from the Fractals

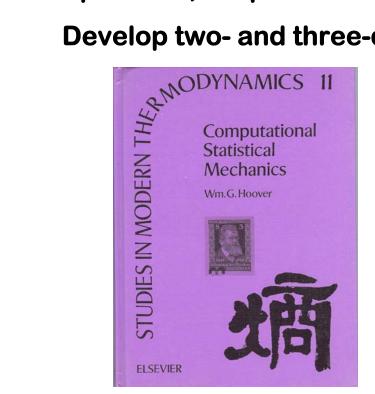
- Nonequilibrium States are very Rare .
- Comoving phase volume vanishes .
- Distributions' Dimensionality Reduced .
- Distributions are Singular everywhere .
- Gibbs' Entropy diverges to $-\infty$.
- Forward Stability > Backward Stability .

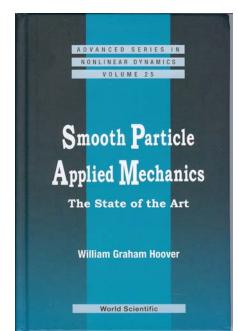
6. "What to do?" [Lenin]

Find the BEST method for defining Field Variables .

Analyze interesting problems with Local Lyapunov Spectrum, simplified with bit-reversible dynamics .

Develop two- and three-dimensional thermomechanics .





http://williamhoover.info