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1. What are Shockwaves ? 
2. How are Shockwaves Generated ? 
3. What can Shockwaves Teach Us ? 
4. Shockwaves from Molecular Dynamics 
5. Shockwaves from Continuum Dynamics 
6. “Smooth-Particle” Averaging 
7. Some Lessons + Remaining Questions 
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Near-Discontinuities in Macro Properties :  
Velocity, Density, Energy, Stress, and 
Temperature Jump in a few Free Paths 
 

      Phys Rev Letters 
                             W G Hoover, 1979 

                                                Klimenko/Dremin 
Shockwaves are a Simple Laboratory for 
studying Nonlinear Transport because 
the boundary conditions are equilibrium. 

#1. What are Shockwaves? 

30 Kbars 



#2. Three Ways to Generate Shockwaves 
Give Three Different Interface Speeds 

us 

us - up 

0 



#2. Threefold Compression à 6TPa 
Shock Velocity ß Pin Closures 

12-60 Megabars: Al, C, Fe, LiH, SiO2, U … 



#3: What can Shockwaves Teach Us? 

•  High-Pressure Equation of State 
– Hugoniot Energy Conservation Relation 
– Pressure Pxx varies Linearly with Volume! 

•  Viscosity determines the distance scale 
•  Highly Nonlinear Transport Information, 

– such as the Temperature Tensor, with 

Txx     Tyy ≠



Analysis from Kinetic Theory 

Temperature 
is just the 
comoving  

Kinetic 
Energy . 





#3: Viscosity determines ShockWidth 
Newtonian Viscosity: 

P – P0 =  ~ viscosity x up/width 
 

Kinetic Theory: 
Viscosity ~  Mean free path x c 

 

Conclusion à Shockwaves are Thin: 
Shock Width ~ Mean Free Path  



#3: Constants of the Motion 
u/V , 

Pxx + (u2/V)  , 
(u/V) [ e + (PxxV) + (u2/2) ] + Qx 

  

Velocity changes : us à (us - up) . 
 

#5: Newtonian Viscosity + Fourier Heat 
Conductivity can convert these to first-order 
differential equations for u(x) and T(x), which 

makes it possible to compute Pxx and Qx 
from the velocity and temperature gradients. 

 
 



#3: 50% Compression using 
MD with a Strong Shockwave 

⇒

This shockwave has quite an 
interesting temperature profile ! 

⇒
Cold 
Fast 

Hot 
Slow 



#3: 12,960-Particle Shock Profiles 

Flagrant Violation of Fourier’s Law ! 

r	

 P 

{ T } DP 
à 



#4 & #5: Microscopic versus MACROSCOPIC viewpoints 
 
#4: microscopic particle mechanics : 

	

Hamiltonian à F = ma 
 P and Q come from the Virial & Heat Theorems 
 P is time-reversible while Q is irreversible . 

 
#5: MACROSCOPIC CONTINUUM MECHANICS : 

	

Fluxes depend on gradients of P and Q , 
 [ comoving fluxes of momentum and energy ]  
 Typically P and Q depend on gradients of u and e 
 Typically these relations aren’t time-reversible 
 P is irreversible while Q is time-reversible . 

 
 
How can or do these two prescriptions ever agree ? 



#4: Simulation Techniques 

•  1. Shrinking Boundary Conditions 
•  2. Stagnation Against a Wall 
•  3. Two Treadmills @ us and [ us – up ]. 

– This last method is the best one! 

us us – up 



#4: Simple Equation of State 
(with apologies to van der Waals) 

Choose a weak repulsive force 
Resembling the weight function: 

 
Force varies as [ 1 - (r/h) ]n 

and is normalized to unity 
 

Expecting to find: 
 

e = (1/2V) + T  and  P = (e/V) 	





#4: Stationary Shockwave Solution 
Satisfying Conservation Laws 

uCOLD = 2 ; uHOT = 1 
VCOLD = 1 ; VHOT = 1/2 

PCOLD = 1/2 ; PHOT = 5/2 
eCOLD = 1/2 ; eHOT = 5/4 
TCOLD = 0/4 ; THOT = 1/4 

  

constant fluxes : 2, (9/2), 2x3 

 

∆e = (3/4) = < -P >∆v = (3/2)(1/2) 



#4 and #5: P = (1/2V2) + (T/V) = (e/V)  
àSolutions for Twofold Compression 

(u/V) = 2 ; 
 

Pxx + (u2/V)  = 9/2 ; 
 

(u/V) [ e + (PxxV) + (u2/2) ] + Qx = 2x3 = 6 
 

Almost correct, with the shockwave 
moving slowly to the right . 

(u, V, P, e) = (2, 1, 1/2, 1/2) à (1, 1/2, 5/2, 5/4) 



Energy Conservation à Hugoniot 
Work done = PHOT(∆V/2) + PCOLD(∆V/2) 

No Change in Kinetic Energy 
∆E = (PHOT + PCOLD)(∆V/2) 

Cubic Spline Example: P = [ 3 – V ]/[ 6V – 2 ] 
With V = 1 and T = 0 initially. 

-up +up 



Although the Compression is Irreversible we 
Conserve Mass, Momentum à Rayleigh Line 

(us /V0) = (us - up)/V = M 
 

P + (us - up)2/V  = P0 + us
2/V0  

 

P - P0 = (M2V0) - (M2V) 
 
 

Cubic Spline Example: P = (9/2) - 4V 
 
 





#5: MACROSCOPIC CONTINUUM 
Definitions of Smooth Profiles 

for “Field Variables” at R 
Consider averaging { m, mv, me, . . . } 
or pressure, heat flux, gradients, . . . 

Each particle’s influence is w( r < h ) : 
(1/V) = ∑miw(ri-R) ; u(R)/V(R) = ∑miviw(ri-R) 

Gradients of (1/V), (u/V), (e/V), . . . 
Give sums with gradients of w(ri) 

w is a smooth-particle weight function 
CONTINUUM MODELS depend on h ! 



#4 microscopic versus #5 MACROSCOPIC viewpoints 
 

How can these two prescriptions ever agree ? 
 

1: The smoothing length h can be chosen arbitrarily  
 

2: A delay time tau can also be chosen for the heat 
flux Q and the shear stress (Pxx – Pyy)/2 : 

 

Q + tau(dQ/dt) = - K(dT/dx) 
But, remember that Txx and Tyy are quite different : 



#6: Smooth-Particle Profiles in 
either One or Two Dimensions 

rho(x) = ∑jw(x - xj)  
where, with r = | x | 

w1D = (5/4h)[ 1 - (r/h) ]3[ 1 + 3(r/h) ] 
or 

rho(x,y) = ∑jw(x - xj,y - yj)  
where, with r = [ x2 + y2 ]1/2 

w2D = (5/πh2)[ 1 - (r/h) ]3[ 1 + 3(r/h) ] 



#6: What about Shock Stability? 

Sinusoidal Initial Condition 



#6: What about Temperature? 

Kinetic Temperature  f Momenta 
Configurational Temperature f Forces 
 
kTKinetic = < p2/m > relative to mean flow 
 

kTConfig = < | sH  |2 >/ < s2H > 
 
Determine the mean flow by using w(r): 
< v >j = ∑wijvi/∑wij ; w(r) a weight function. 
   



#6: The 
Shockwave 

profile 
narrows 

with time, 
indicating that 

it is 
STABLE ! 





#6: Development of Smooth Profiles 
for “Field Variables” at R 

Consider averaging { m, mv, me, . . . } 
within a radius h of R : 

rho(R) ≈ ∑imi(ri)w(ri-R) where 
 

w2D = (10/πh2)[ 1 - (r/h) ]3 or 
w2D = (10/πh2)[ 1 - (r/h) ]3[ 1 + 3(r/h) ] 

 
w is normalized with integral = 1 

 



Navier-Stokes vs Molecular Dynamics 

Weak Shocks 
are the same . 
  N-S ßà MD 

Navier-Stokes 
Shockwidths 
are too Narrow 
for Strong Shocks 
( Linear ) transport 
Coefficients 
are too Small ! à 



#7: Some Interesting Points 

•  Shockwidth gives a Viscosity estimate 
•  Heat Conductivity can be Negative!* 
•  Shockwave Stability is Interesting 
•  Boundaries are Equilibrium ones 
•  The transition is Irreversible in fact 

* See Mott-Smith in 1951 Physical Review. 



Configurational Temperature Blows up!  Among the 
various Kinetic Temperatures only the Grid-Based 

temperature has a Strong maximum.  Evidently local 
temperatures will be more useful in analyzing 

nonlinear flows. 

Normalized potential ~ (1 – r)3 
 

The spatial integral is set 
equal to unity.  The 
choice of the local 

Temperature depends 
on whether or not the 
“Self” contribution is 
included in the sums. 

#7 : Lessons So Far  
 



#7: Lessons So Far* 
•  Thickness is of order the Mean Free Path 
•  One-dimensional shocks are Stable 
•  Kinetic Temperature is a Tensor 
•  Configurational Temperature is Poor 
•  Nonlinear Viscosity is Complex 
•  Time Delay is Typical 

* arXiv:0905.1913 : T and Stability 
* arXiv:1005.1525 : work, heat, relaxation 



#7: Remaining Puzzles* 
•  Description of Temperature/Heat Flow  
•  Direct Measurement of Shock Heat Flux 
•  Cell Model of the Shockwave Process 
•  Prediction of the Nonlinear Viscosity 
•  Best Definitions of Pxx, rho, u, h, et cetera 

* arXiv:0905.1913 : T and Stability 
* arXiv:1005.1525 : work, heat, relaxation 

•  For more details: arXiv:0905.1913 



Some Useful Reference Books 



Some Useful Reference Books 



 2015 Ian Snook Prize : 
$1000 US for the most interesting 

     Ergodic Time-Reversible Map 
Of Unit Square Into Itself 

      Computational Methods in 
         Science and Technology 

 21(3) [ 2015 ] 

2007 with 
Ian & Marie à 

ß 1996 


