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1.1 What 1s a Shockwave?

Near-Discontinuity in{ p,u, e, o, T }:
Density, Velocity, Energy, Stress, and
Temperature all Jump in a few Free Paths .
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Shockwaveé provi'de a Simple Laboratory for
studying nonlinear Transport . The boundary
conditions are equilibrium . Curve is K&D MD .



1.2 Why are Shockwaves Useful?

Momentum Conservation - Pressure

Energy Conservation - E(P,V)

(P +pu?)cop=(P + pu?)por
Inelastic Stagnation Results :

2 _
PoUp” = Por

Ae =%(u,2) = (PV)yor



1.3 How are Real Shocks Generated ?
Explosives = Threefold Compression

12-60 Megabars: Al, C, Fe, LiH, SIO,, U ...

PHYSICAL REVIEW A VOLUME 29, NUMBER 3 MARCH 1984

Shock-wave experiments at threefold compression

Charles E. Ragan III
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 3 June 1983)
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2.2 Molecular Dynamics Techniques

1. Collision of two zero-pressure blocks
2. Two Treadmills @ ugand [ug—u,].

e

Use F = ma with 4t"-order Runge-Kutta .




2.3 Analysis from Kinetic
Theory & Statlstlcal I\/Iechanlcs

Ideal Gas Thermometer

Temperature

IS just the
comoving
Kinetic
Energy .




2.4 T, P,and Q from Dynamics

KT = <(p2/m),> [ Comoving p ]
PV = 2(pp/m), + 2(rF),,
QV =X(pe/m), + 2(rFp/m),,

{ m[r(t+dt) - 2r(t) + r(t-dt)] = F(t)(dt)” }

Evidently the dynamics is time-reversible
and can even be made brt-reversible .

Runge-Kutta - 6 digits for 24,000 steps .



2.5 Molecular Dynamics Techniques

e Use fourth-order Runge-Kutta integrator
with double precision to solve dynamical
equations of motion with a pair potential :

o(r>1)=(10/m)(1 -r)3.
Use periodic Boundaries in y direction.
Use Treadmill or Collision of Blocks in x .

SO O

Cold Cold+Hot Hot




2.6 Spatially-averaged Profiles
In One, Two, or Three Dimensions
with Compact Weight Functions

p(ro) = ZjW(lrj — Iol) with
Wip = C[1 - (r/N)]°[1 + 3(r/h)]
C.p = (5/4h)
C,p = (5/mh?)
C,p = (105/167h?)
h=3Is agood choice!

Lucy wir<h)



3.1 [ Irreversible ] Continuum Mechanics

pO=—pVeuand pu =-VeP and
pe=-Vu.P-VeQ with
P=P,—nlVu +Vu'land Q =

The continuum equations are irreversible
because they incorporate Newtonian
viscosity In the Pressure and Fourier heat
conduction in the Heat Flux .



3.2 Fourier’'s Heat Conduction
and Newton’s Viscosity

P=[P,—AVeu]l —y[Vu+Vu']




3.3 Irreversibility in Continuum Mechanics

o=n¢ and Q =—«VT

If the motion is reversed ( by playing a
movie backwards ) the shear stress o
changes sign but the heat flux does not.

In molecular dynamics the exact opposite
occurs, with stress invariant while the
heat flux vector Q changes sign !



3.4 Continuum Mechanics of Shocks

The Comoving Fluxes are Constant ;
from the Continuity, Motion, and
Energy Equations there are 3 Constant
Fluxes :

pu,
P + pus,

pule + (P /p) + (u%/2)] + Q,

Irreversible, Entropy Iincreases !



3.5 Solving the Continuum Equations

1. Compute density p at cell centers .
2. Compute u, e, T, P, o, Q at the nodes .

3. Use second-order space differencing and
Fourth-order Runge-Kutta time integration of
(d/dt){ p, u, e, T, P, o, Q} to evolve a solution .

4. This algorithm shows that shockwaves are
stable and reveals their detailed structure .



3.6 Solutions for Weak
Shockwaves are a good start

Jo,

Landau and Lifshitz’ Fluid Mechanics
solves this for constant nand . The
profiles all have exponential forms .

- pCOLDe—x//I _I_pHOTe+x//1
e + e+x//1 .

—XI A
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3.7 Navier-Stokes vs Molecular Dynamics

Navier-Stokes
Shockwidths

are too Narrow

for Strong Shocks
( Linear ) transport
Coefficients

are too Small ! 2>

Weak Shocks
are the same ..

50 kb & 400 kb .,



4.1 Some “Well-Known” Results

1. Shockwaves are “narrow”, with a width
about equal to the mean free path .

2. Equilibrium boundary conditions
(If any) are easy to implement .

3. The details of the profiles depend upon
how the averages are computed .



4.2 Averages of Molecular Dynamics Data

Velocity Gradient and Pressure Tensor
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5.2 Some Newer Results

1. T, and Ty are very different .

y
2. Fluxes delayed, non Navier-Stokes .
3. Sinewave shocks rapidly become

planar, simplifying the analysis and
demonstrating shock stability .

4. Instabilities { A, A} & Time Symmetry .



5.3 Temperature is a Tensor!

Molecular Dynamics Temporal Profiles
Lucy Averages Calculated with h=3
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5.4T,, and T,, are very Different and
the Heat Flux Response Is Late

Temperature Gradients and Heat Flux
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5.5 Planar Shocks are Stable!
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6.1 Gruneisen Model with T,, & T,
€=€cop T Ck(Txx + Tyy)/2

Pequitisrium = Pcolp T YPCKT

Q depends on (dT,,/dx) and (dT,,/dx) .

Work and Heat likewise contribute
differently to (dT,,/dt) and (dT,,/dt) .



6.2 Temperature Tensor In
Continuum Mechanics

1. Gradients contribute separately to Q, .
QX — _KXXVTXX — KnyTyy

2. Work and Heat contribute separately
To T,, and T,, with the sums correct .

pckTwx=—aVv:PTERAL _ By eQ
kaTyy = —(1 — (].)VV . PTHERMAL — (1 — ﬁ)V ® Q



6.3 Delaying Stress & Heat Flux
Viscoelastic or Cattaneo Equation

c + t(do/dt) = n(du/dx)

0% Maxwell Stress Relaxation
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(du/dx) =1/ et +e™]



6.4 Typical Molecular Dynamics

Molecular Dynamics Spatial Profiles
Lucy Averages Calculated with h=3
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6.5 Typical Continuum Mechanics

Generalized Navier-Stokes Equations
Q 1:7 both; Work and Heat both to Txx
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7.1 Instantaneous Growth Rates { A}

Particles with above-
average linear growth
rates can be located by
diagonalizing the
propagator | + Ddt
where

D =0(q,p)/d(q,p)

time =2

time=4

time=6

time =18

time=20

time =22

Runge-Kutta Reversibility Is quite good !



7.2 Irreversible Lyapunov Vectors

Instantaneous time = 2
Growth Vectors { A
following the motion time =4
kept Orthonormal _
' time =6
by using a set of
Lagrange Multipliers time = 18
time =20
time = 22

Bit-Reversibility is the right way !



8.1 Summary and Prospects
(for more see arXiv 1001.1015)

IRREVERSIBLE Shockwaves can be
generated by dynamics .

Temperature is a TENSOR !
Gradients of (u, T ) precede (o, Q).

Partitioning thermal contributions of

(P,e, o, Q)to (Work, Heat ) provides
successful shockwave simulations .



8.2 Some Things to Work on

o Stability Analyses: Understanding how
iIrreversibility and entropy production
can be described in this time-reversible
problem by analyzing the Lyapunov
spectra, Covariant Lyapunov spectra,
and Phase-Space Growth Rates .

e Constitutive Relations: Optimizing the
weight function for two and three
dimensional flows ( Rayleigh-Bénard ) .



7.3 Some Useful Reference Boaoks

World Scientific

For a pdf file, go to For a comp copy, write
www.williamhoover.info hooverwilliam@yahoo.com



Lecture Notes
in Physics

Smooth Particle
Applied Mechanics

The State of the Art

William Graham Hoover

World Scientific

For a comp copy, write For a pdf file, go to
hooverwilliam@yahoo.com www.williamhoover.info
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