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1.0 Motivation
2.0 SPAM method
3.0 Three applications:

Free expansion of a gas
Column of water, acted on by gravity
Convecting, conducting, compressible
fluid flow



1.1 Microscopic versus Macroscopic 
Material Descriptions

Atomistic Length & time scales

L ~ 
t ~ ps

 

-

 

s

Atomistic motion satisfies 
ordinary differential equations

Specify: 

Laboratory Length & time scales

L ~ cm or meters
t ~ ms or seconds

Fluids and solids satisfy partial 
differential flow equations

Specify:    

o
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30,000,000 atomistic 
particles + parallel computer

From Kai Kadau’s
 

Los Alamos Webpage 2007

1.2 Particle Methods: Molecular Dynamics and SPAM

5000-65,000 smooth particles 
+ workstation



1.3 SPAM versus Finite-Element Methods
SPAM

 
is MUCH simpler

 
than finite-element algorithms:

No mesh generation, no node and element lists,
no element integration

SPAM
 

solves ordinary differential equations; not partial
differential equations; rezoning is easy with SPAM

SPAM
 

avoids mesh tangling and shear instabilities;
no unstable butterfly or hourglass modes



2.1  SPAM and
 

Continuum Mechanics

Smooth Particle Applied Mechanics
Used for astrophysical problems (Lucy, Monaghan)
Used in the 80s & early 90’s for fluids –

 

SPH
Method is applied to many fields: heat conduction, 
electricity & magnetism, fluid-structure interaction, 
fragmentation 

Particle

 

weight function

Lagrangian
 

(comoving) Equations of Continuum Mechanics

d/dt
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P(,e,u) ;  

Continuity equation

Equation of motion

Energy equation

Constitutive equations



2.2 Smooth Particles and Weight Functions

Properties of the weight function:

Normalization:  ∫2rw(r)dr 
 

1
Continuous first and second

 
derivatives
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0 ;   w, w´, w´´
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0 at r = h

Lucy’s weight function
w2D
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Particle density from neighbors within a smoothing length
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2.3 Particle Averages for Functions

Density-based interpolations for averages

mK
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For h ~ 3 lattice spacings, error ~ 0.2%

Averages can be formed for any power of 
 

or functions of .

Averages:



2.4 Particle Averages for the Gradients
Heat flux and Pressure Gradients

P
(p/ 1

 ·P  



·P   ( )R 

J
 [ P


( )J

P


( )R ] R
wRJmJ

Velocity and Temperature Gradients
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2.5 Smooth-Particle Equations

mJ
 

(duJ
 

/dt)  mJ
 

mK
 

[(P/)J
 


 

(PK
 

] · wJK

Equation of Motion:

Continuity Equation is automatically satisfied.

mJ
 

(deJ
 

/dt) = heat in 
 

work done

Energy Equation:

Work and heat are computed from pressure and gradients of the 
velocity, temperature, and heat flux.

Wm. G. Hoover, et ux, SPAM-Based Recipes for Continuum
Simulations, Computing in Science & Engineering, p. 78 (2001).   

Time integration with 4th

 

order Runge-Kutta



3.1 Free Expansion of a Gas

V0

 

= 1/4VF

The following reference discusses all 3 examples:
Wm. G. Hoover, et ux, Computational Physics with Particles, 
American Journal of Physics 76 (2008).

P = (for a 2D gas is the 
adiabatic equation of state;

Calculate field values on a mesh:
< >, < u >, < e >

Trajectory isomorphism
Lucy’s wIJ

 

SPAM        IJ

 

MD

Entropy increases!
2kT/m = < v2 > -

 
< v >2

S/Nk
 

= ln(VT)
S/k = ln4

ln4



Particle motion

Density

Kinetic energy

Hoover, Posch, Castillo, et ux, Journal of Statistical Physics 100, 
Numbers 1 and 2, (2000) .

3.2 Free Expansion of a Gas -
 

Results



Analytical solution

Equilibration

4.1 Water Column Acted on by Gravity

Equilibrate the water column with damping. 
Periodic boundaries on the sides.
Reflecting boundary on the bottom.

Dense fluid equation of state:
P = 3

 
–

 
2 .

( 

Falling water column:

Remove the periodic side boundaries.
Add a surface tension with a potential.             

Use a core potential to avoid particle clumps.

Initialize



4.2 Collapsing Water Column with Gravity -
 Results

Uses EA

 

,                               , core

 

.2
j

j
surface )(  

t10240 = 2t2560

 

= 4t640 

640 particles 2560 particles 10,240 particles



4.3 Collapsing Water Column with Gravity
Tensile Regions –

 
SPAM and Finite Elements

640 particles                   2560 particles              10,240 particles

WxH

 

= 80x64 elements
dy

 

= 2dx = 1 Relaxation

CollapseCavitation

 

model :
P > Pc

 

 P = Pc



5.1 The Rayleigh-Bénard Problem

Convection rolls are formed using 5000 smooth particles
when the Rayleigh

 
number exceeds a few thousand .

Rc
 

= gL4(dlnT/dy) / (DT
 

)

< uIMAGE

 


 

uFLUID

 

> uBOUNDARY

< TIMAGE

 


 

TFLUID > TBOUNDARY

Periodic boundaries on the sides.

Image & fluid particle provide u, T at the top/bottom boundary.

TCOLD

THOT

A conducting, convecting
 

fluid in 2D is heated from below in the 
presence of gravity.

P  T
 

 e Q ∂T/∂y)

g



5.2  Rayleigh-Bénard Flow (Gravity & T gradient)
Finite-Difference (left) & Smooth Particles (right) 

Velocity

Density

Temperature

Kum, Hoover, & Posch, Physical Review E 52, 4899-4908 (1995) .

Gravity

Rolls form for                                    & 5000 smooth particles
T

4

c D
)dy/Tlnd(gLR




T = 0.5

T = 1.5



5.3 Existence & Uniqueness
 

in Continuum Mechanics

Max or min, S or dS/dt, solutions

Multiple solutions for a specified boundary condition:
Initial velocity perturbation:  sin(y) & sin(nx), or random            

2 rolls

4 rolls

We also produced 6 roll 
solutions

V. M. Castillo, Wm. G. Hoover, and C. G. Hoover, Coexisting Attractors in 
Compressible Rayleigh-Bénard

 

Flow, Physical Review E, 55, No. 5, (May 1997).
V. M. Castillo, and Wm. G. Hoover, Entropy Production and Lyapunov

 

Instability at the 
Onset of Turbulent Convection, Physical Rev E, 58, No, 6, (December 1997).



Finite Difference SPAM

5.4 Three-Dimensional Rayleigh-Bénard Flow 



6. Molecular Dynamics Analogs :
Trajectory Isomophisms

 Two interesting cases of trajectory isomorphisms
occur with SPAM and molecular dynamics .
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23
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ρρP

ρP     Lucy fluid

Embedded-
atom fluid 

 Lucy fluid is used for the free expansion problem .
 Embedded atom can be used for structural relaxation

and the collapsing water column .



Conclusion –
 

SPAM Is a Transparent, Pedagogical 
Particle Method for Simulating Continuum Dynamics

SPAM is a useful for modeling
continuum mechanics
Algorithm is transparent to program

and easier to debug ;
Algorithm avoids mesh tangling ;
Rezoning is easy .

Various deficiencies have been
cured

Use density-gradient potential 
for lattice surfaces ;

String phases are cured with 
core potentials ;

Use density-curvature potential
for strength .

Buy Now!
Sales are UP!!!


	Slide Number 1
	Slide Number 2
	30,000,000 atomistic particles + parallel computer
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

