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Abstract 

Academic freedom, combined with generous travel grants and tax-supported computing, made 
possible my 35 years’ study of many-body problems. Here I first review some of the many high 
points of those years. I then describe recent work - with Harald Posch, Oyeon Kum, my wife 
Carol, Siegfried Hess, and Vic Castillo - which links together particle and continuum mechanics 
through “SPAM’, Smooth Particle Applied Mechanics. 

1. Introduction 

My research has always been chaotic, despite my best-laid plans. I began my graduate 
work at Michigan by puzzling over what looked like a mistake. Its correction even- 
tually became my dissertation. I next took on an ill-posed problem assigned to me as 
a fresh postdoc at Duke. Later, as a maturing scientist at the Livermore Laboratory, 
I repeatedly managed to arrange for research leaves devoted to well-defined projects 
in Australia, Austria, and Japan. Each project had to support Livermore’s “Laboratory 
Mission”, and had to be described in advance in considerable detail. In every case 
this comprehensive planning was ineffective. I ended up, instead, doing something en- 
tirely different, and with someone other than my planned collaborator. Throughout these 
chaotic stimulating times, and those that followed, I have been sustained, motivated, 
and entertained by some wonderful people, including the organizers of this meeting, 
Brad and Michel. 

My thesis work at Michigan began with a careful study of one of Bob Zwanzig’s 
few mistakes. I had stumbled across a paper [l]  in which he stated that hard-sphere 
virial coefficients can be bounded by the values of the corresponding parallel-hard-cube 
ones. It took me a year to feel confident that this was wrong [2]. When my thesis ad- 
visor, Andy De Rocco, telephoned Bob to discuss my findings, Zwanzig took only a 
few seconds to understand, and to agree with, the h i t s  of my first research effort. 
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At Duke, as a fresh postdoc paid at twice the graduate-student rate, I was becoming 
more efficient. It took only three weeks for me to discover that the set of coupled dif- 
ferential equations given me to solve by Jacques Poirier [3] was internally inconsistent. 

At Duke, now unfettered by supervision, I was repeatedly exposed to the unplanned, 
but common, phenomenon of simultaneous independent discovery. George Stell [4] 
and I got acquainted through our parallel investigations of hard-particle virial coeffi- 
cients. Ben Widom discovered a more-general version of my relation [ 5 ]  linking the 
hard-particle chemical potential to the pair-distribution function. Camahan and Starling 
discovered the same hard-sphere equation of state I had excitedly shown to Andy De 
Rocco in my student days at Michigan. 

After a year at Duke my salary doubled again, for the second and last time, when 
Berni Alder attracted me to my first real job, at the “Rad Lab” at Livermore. De- 
spite having spent my college and university years as a chemist, I was now officially 
a physicist. At Livermore I also met Francis Ree and Tom Wainwright. We all collab- 
orated successfblly on a variety of hard-particle projects. Kirkwood’s single-occupancy 
idea, coupled with Francis’ diligent enthusiasm, soon led to accurate locations for the 
hard-disk and hard-sphere phase transitions [6]. The subtleties of the hard-disk melting 
transition continue to attract curious physicists [7]. 

By 1972 a proliferation of Monte Carlo simulations and the development of pertur- 
bation theory had taken the mystery out of equilibrium properties. Further studies of 
idealized hard disks and spheres did not appeal to me. By then I was familiar with 
Rahman’s work [8]. Its simplicity and elegance persuaded me that molecular dynamics 
with continuous potentials was well worth learning, and doing. Bill Ashurst was willing 
to work with me and eager to simulate nonequilibrium flows. He developed special 
“fluid wall” boundaries, designed to model moving isothermal walls. Soon afterward 
he, independently, developed homogeneous periodic (“Lees-Edwards”) boundaries, in 
order to reduce the number-dependence of the viscosity [9]. Bill’s fluid walls have just 
recently been reinvented, this time in Denmark [IO]. 

Bill Ashurst and I continued our nonequilibrium simulations, reinventing Les 
Woodcock’s velocity-scaling thermostatting method to go with both the fluid walls and 
the homogeneous flows. We needed contact with other researchers. Though the for- 
eign travel budget at Livermore was mostly reserved for weaponeers, I was able to get 
permission to go to Paris, to visit with Hansen, Levesque, and Verlet. In 1977 I was al- 
lowed to spend a Fulbright leave in Australia. I made elaborate plans to work with Bob 
Watts on nonequilibrium viscosity simulations using his favorite water potential [ 111. 
Bob’s water potential turned out to be unstable, ending the project after about one week. 
Bob immediately became Director of the Research School of Chemistry’s Computer 
Centre, again leaving my research unconstrained. At the Center my colleague across 
the hall was Bob’s student, Denis “Bigfoot” Evans, who has ever since been one of the 
most enthusiastic and energetic contributors to the literature on nonequilibrium simula- 
tion. Most of my research in Australia was camed out with Denis and my son Nathan. 

In view of the lack of useful theories far from equilibrium, we made an effort 
to establish links between our simulations and conventional classical mechanics. 1 first 
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described an adiabatic Hamiltonian basis for simulating periodic shears and compression 
at a meeting honoring Me1 Green in April of 1979. Bob Zwanzig interrupted my talk 
with the disconcerting remark that my “new” approach was actually “well-known”. At 
the conclusion of the meeting he and I went upstairs, to the library. I was surprised to 
find that (1) Zwanzig was again wrong and (2) that the National Bureau of Standards 
library was as empty on a 1979 evening as is the Livemore National Laboratory library 
on a typical 1996 one. In Sitges, the next summer, at another meeting honoring Me1 
Green, I again talked about the Hamiltonian basis for adiabatic deformation [12]. This 
time Zwanzig was the session chairman. He did not interrupt. By the time this work 
was published in Physical Review [ 131, Hans Andersen had discovered, independently, 
the same motion equations 1141. Around this same time, summer 1980, I had a major 
disappointment. I discovered that my marriage of 25 years had deteriorated. It came to 
an end in 1986. Both physics and physicists turned out to be very valuable in putting 
this disappointment behind me. 

In 1984, Shuichi Nose published a significant generalization of mechanics. He incor- 
porated the ideal-gas temperature scale into time-reversible dynamical simulations in 
a way exactly consistent with Gibbs’ statistical mechanics [ 151. Within three years 
Brad Holian, Harald Posch, and I had established that Nosl’s discovery links the 
macroscopic Second Law of Thermodynamics to time-reversible microscopic particle 
mechanics [16]. Just last year I was able to show that a special case of Nosl’s me- 
chanics follows from Hamilton’s Principle [17]. Dettmann and Momss have just found 
a Hamiltonian for this same special case [18]. So there is now an unbroken logical 
chain linking classical reversible mechanics to macroscopic irreversible thermodynamics 
and hydrodynamics. 

I first met Shuichi at one of Carl Moser’s CECAM workshops, in 1984. Ever since, 
I have worked hard to popularize the use of his ideas aiwy from equilibrium. During 
my 1985 sabbatical in Vienna, planned as a collaboration with Karl Kratky, I also 
became acquainted with Harald Posch, and began a very pleasant and productive col- 
laboration with him. Harald had a work station which could follow the chaotic {q,  p .  i} 
trajectories of an equilibrium thermostatted Nosl oscillator. After an all-night computer 
simulation, very detailed Poincare sections of the trajectories were waiting on the screen 
of Harald’s work station. They were then officially recorded by a photographer wearing 
a long white coat. So Harald and I became acquainted with Hamiltonian chaos together 
[ 191. In early 1986, with Bill Moran, I found that the puzzling theoretically-established 
divergences of nonequilibrium phase-space densities were simply manifestations of the 
formation of multifractal phase-space distributions. This result, and its consequences, 
are still in the process of diffusing through the literature [20,21]. 

Nose kindly invited me to spend the year 1989-1990 with him at the Hiyoshi campus 
of Keio University, in Yokohama. I accepted. In preparation for the trip, my son 
Nathan acquired the necessary credentials to perform a marriage ceremony for Carol 
and me. Brad Holian was my best man, just as I had been his a few years earlier. 
Besides furnishing a motivation to marry, the trip to Japan also looked like the perfect 
opportunity to find out more about time-reversible thermostats by working with the 
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man who had discovered them. But, for reasons I still cannot fathom, Shuichi and 
I were unable to find a joint project to work on. Left again without a plan, I mostly 
collaborated with Carol, her colleague, Toshio Kawai, also at Keio, Sigeo Ihara, at 
Hitachi’s Kokobunji Research Center, and Tony De Groot, back in Livermore, on 
the simulation of plastic indentation. Our massively-parallel million-atom simulations 
[22,23] were the state of the art in 1990. 

Every few years at the Livermore Laboratory I would get a new supervisor. Usually 
he would request, or at least hint, that 1 should occasionally do something “useful”. 
Fortunately, this pressure to produce was reduced greatly, in my case, by the happy 
circumstance of my joint appointment in the College of Engineering at the University 
of California’s Davis/Livermore campus. During most of my tenure in the Department 
of Applied Science, Fred Wooten, a true gentleman and a fine bridge player, was 
chair. In the Livermore Laboratory the useful work it was hoped that I would do 
was expected to involve “real data” for “real” materials, certainly in three dimensions 
rather than two, and preferably on a problem which had consistently frustrated able 
scientists and engineers for decades. My occasional attempts to help out resulted in 
work on plasticity, fracture, detonation, and the equation of state of hydrogen, none of 
which was particularly satisfying. The frustration stemming from the unwelcome but 
inevitable bureaucratic nudges toward “real applications”, eased my recent decision to 
take a lucrative early retirement from the Livermore Laboratory, in mid-1995. 

Aside from some successes with plasticity and indentation, my “applied” work was 
relatively unproductive, though my last formal defense of it brought forth unexpected 
fruit. Every year I had to make an appeal to a large committee of laboratory managers 
for the use of their scarce research funds. Toward the end of my 20 min I was asked by 
Tom Weaver, “Have you thought about using smooth particles?’ I had never even heard 
of them. This chance question launched my research investigations for the past few 
years. I eventually located a smooth-particle expert, Larry Cloutman, only ten meters 
from my Livermore Laboratory office. He led me to the smooth-particle literature 
[24-261, and also generously lectured to my Department of Applied Science class on 
numerical methods. Since then, for four years now, I have been exploring, assimilating, 
and propagating smooth-particle lore with great enthusiasm. 

Numerical continuum simulations using particles are an interesting and rewarding 
research area for several reasons. The programming is simple and transparent. The 
method is robust. The study of turbulence using smooth particles has particular interest. 
It presents an inverted version of Boltzmann’s reversibility paradox, with macroscopic 
reversibility giving rise to microscopic irreversibility. Smooth particles also make it 
possible to study a variety of interesting macroscopic instabilities, quickly and cheaply. 
So far only a few detailed definitive comparisons with other techniques have been 
carried out. This is a consequence of the high stakes involved in numerical continuum 
simulation, a relatively contentious and competitive field. Despite this latter feature, 
I enjoy smooth-particle work so much that I have decided to devote the remainder of 
this talwpaper to some joint research carried out with Oyeon Kum, Harald Posch, and 
my wife Carol [27]. Harald Posch will describe some further smooth-particle results. 
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2. SPAM: Smooth-particle applied mechanics 

After learning how to move particles, it is appealing to try to solve continuum 
problems in a similar way. Though the same kinds of constraint and driving forces 
used in molecular dynamics apply, the continuum problems seem to be simpler. This 
is because fluctuations are typically absent from continuum problems. On the other 
hand, the unstable nature of turbulent flow is really just a macroscopic manifestation 
of the Lyapunov instability familiar from atomistic simulations. This has become clear 
gradually through comparisons of the microscopic instability spectra [28] and transport 
coefficients [29,30] with their macroscopic turbulent analogs. 

Smooth-particle applied mechanics solves the continuum equations for the time 
development of the coordinates, velocities, and specific energies { r , ~ , e }  of a mov- 
ing grid of “smoothed” particles. The method includes an interpolation scheme for 
evaluating all the continuum variables, at every point in space, in terms of the discrete 
set of particle values. This specially stable particle method was discovered in 1977, 
by Lucy and by Monaghan [24,25], and has since been developed by astrophysicists 
and weapons physicists for a variety of fluid and solid applications [26]. This com- 
putational method is pedagogically appealing because it is simultaneously robust and 
simple. Typically, smooth-particle applied mechanics is implemented so as to conserve 
mass, momentum, and energy exactly. Angular momentum is not normally conserved. 
Though fixed boundaries can be easily modelled, moving boundaries and material in- 
terfaces require special consideration. 

By eliminating an ordered grid, the smooth-particle method also eliminates the usual 
grid-based distortional instabilities which plague simulations with large deformations. 
Surprisingly, the particle picture simplifies the evaluation of gradients. Particles, rather 
than regular ordered grid points, also simplify automatic rezoning, interpolation, and 
the evaluation of fast Fourier transforms. The characteristic idea underlying the method 
is to describe the spatial influence of each particle through a relatively short-ranged 
“weight function” w(r < h) .  Such a function is analogous to a pair potential. The 
weight function has at least two continuous derivatives so that the stress and heat-flux 
divergences { V .o, V Q} vary smoothly in space. A typical smooth-particle weight 
function is Lucy’s, here normalized for three-dimensional space: 

W L , , ‘ ~  =(105/16nh3)[l + 3(r/h)][l - (r /h)I3,  r < h .  

At any point in space, r,  the corresponding mass density p r ,  including, as a special 
case, the density at the location of the ith smooth particle, p , ,  is evaluated by super- 
posing contributions from every particle within the range h of the point in question: 

In such pair sums, one for each particle, a typical smooth particle interacts with from 
20 to 80 neighboring particles. 
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The smooth-particle form of the continuum equation of motion, pi: = V . 0  illustrates 
the simplicity of the gradient operation using smooth particles. The divergence of 
the stress tensor becomes a sum of individual particle stress tensors weighted by the 
gradients of all the weights for particles close enough to interact: 

{ f i  = m [(alp2 )i  + (alp2 ) j ]  . Vwij) 

These simple motion equations lead to a surprising analog of Boltzmann’s reversibility 
paradox [31]. They correspond exactly to atomistic Newtonian equations of motion if 
the hydrostatic stress tensor appropriate to a two-dimensional isentropic gas is used, 
a 0: p 2 .  Though an atomistic SPAM system certainly has viscosities [29] and a conduc- 
tivity [30], it is simultaneously a model for an isentropic gas which lacks these same 
transport coefficients. These phantom transport coefficients are an interesting paradox. 
That is, if the smooth-particle weight h c t i o n  w(r) ,  is viewed as a pair potential &r), 
the pair potential implies both shear and bulk viscosities - though the bulk viscosity 
must be nearly zero - and a heat conductivity, even though the isentropic gas being 
modelled has none of these properties. 

Oyeon Kum, Harald Posch, and I devoted two years to the study of smooth-particle 
techniques, beginning with studies of linear shear flows and heat flows; then exploring 
more complex inviscid flows and the initiation of hydrodynamic instabilities [27,32]. 
All of our early work was restricted to two space dimensions. More recently, Carol and 
I have been cartying out three-dimensional studies. Oyeon, Harald, and I were able to 
obtain accurate solutions of a well-studied thermal convection problem, the “Rayleigh- 
Benard problem”, validating the smooth-particle solutions by comparing them to others 
obtained by applying conventional grid-based methods to the same problems [32]. 

Fig. 1 shows speed, temperature, and density surfaces for a typical stationary flow. 
Thermodynamically, the fluid is an ideal gas with a constant shear viscosity and a 
constant heat conductivity. The fluid is heated along the bottom wall of the container, 
expands, and is lifted upward. The buoyancy forces can generate either stationary or 
chaotic convection currents. Stationary solutions are rather well-known because they 
can be approximated by both grid-based and spectral techniques. Chaotic solutions 
are not so easy to validate. Numerical techniques can fail to converge. Even when 
they do converge, the chaotic solutions must be characterized through time averages. 
Politically-incorrect two-dimensional problems are not only much faster to solve and 
much simpler to observe. They also furnish valuable flow data for checking the more- 
cumbersome three-dimensional solutions of the type shown in Fig. l. Oyeon, Harald, 
and I generated several two-dimensional solutions, emphasizing the ideal-gas and van 
der Waals equations of state. 

We concentrated on a cell with a horizontal-to-vertical aspect ratio of two. This was 
because Chandrasekhar’s classic approximate solutions for this case [33] suggested 
that two parallel rolls would result, as in Fig. 1. His analysis of this two-dimensional 
problem predicted the temperature difference leading to the onset of convection with an 
error of only a few percent. Later, in three-dimensional simulations carried out in Berlin 
and Livermore, there were some surprises. First, I found that the three-dimensional 
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Fig. I .  Surfaces of constant speed, temperature. and density according to two versions of Rayleigh-Benard flow. At the left i s  a stationary grid-based solution of thc 
compressible conducting Navier-Stokes equations. At the right is a snapshot from a corresponding smooth-particle simulation. The weighting function is Monaghan’s. 
as descibed in Ref. [25], with a range equal to 2.5( V / N ) ’  ’. Contours of ( I J ~  + c!. t I , ? ) ’ , ~  = {0.03,0.06,0.09.0.12} and T = {0.8,1.0,l.2} are shown. Both approaches 
use the ideal-gas equation of state, P = pkT = 

-.I 
with a Rayleigh number of 40000, a Prandtl Number of unity, and 69 984 degrees of freedom. 
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Navier-Stokes equations sometimes produced a solution with elliptical rolls, 30% nar- 
rower than in two dimensions, and rotated 45” from their expected orientation in the 
periodic cell. Soon afterward, another graduate student, Vic Castillo, discovered that a 
variety of stationary flows, with two rolls, four rolls, etc., can be generated in two-space 
dimensions [34]. Under some circumstances grid-based numerical solutions showed that 
two or more solutions can coexist with exactly the same boundary conditions, so that 
the observed solution is sensitive to the initial conditions. 

Three-dimensional grid-based solutions converge, fairly convincingly, to stationary 
flows. Back at Livermore, with faster machines, Carol and I tried to simulate three- 
dimensional flows with smooth particles. Our early attempts failed, just as had Oyeon’s 
in two dimensions, and for the same reason. The “fluid”, rather than circulating, froze 
solid. The cause of the freezing can be readily understood. If the fluid flow velocity is 
too small to overcome the smooth particle potential barrier, which is of order h-D in D 
dimensions, the flow stops. Making the barrier lower, by increasing h, leads quickly to 
simulations with millions of particle-pair interactions, impractical on serial machines. 

The freezing and numerical diffusion associated with the smooth particles led to 
further studies, in Berlin, Livermore, and Vienna, of the intrinsic numerical viscosity 
and heat conductivity characterizing weak smooth potentials. Hess, Posch, and I [29,30] 
found that the additional momentum and heat flows caused by the discretization are 
closely analogous to the turbulent transfers of momentum and energy, reinforcing our 
prejudice [28] that turbulence and the many-body problem are one and the same. 

In the course of comparing two- and three-dimensional simulations of the Rayleigh- 
Benard problem, it was amusing to find that a three-dimensional fluid with no bulk 
viscosity 

does not correspond exactly to a two-dimensional fluid with only shear viscosity. 
To match the three-dimensional stresses, a,, and aYY, the two-dimensional fluid re- 
quires a bulk viscosity equal to one-third the shear viscosity, vu = 113: 

The numerical effect of the additional bulk viscosity is typically quite small. In an 
ideal-gas simulation of Rayleigh-Benard flow, at a Rayleigh number of 3600, the flow 
velocity increased by about on part in 1000 when the two-dimensional bulk viscosity 
was set equal to zero rather than to q/3. 

We are continuing the Rayleigh-Benard work, and undertaking analyses of smooth- 
particle shockwave structure, on the massively-parallel computers at Livermore, 
testing the stabilities and size-dependence of corresponding two-dimensional and three- 
dimensional simulations. Evaluating the promise of smooth particles, relative to more 
conventional methods, is good research: deeply absorbing, technically challenging, 
sometimes surprising, and possibly even useful. I am very gratehl to my many fi-iends 
and colleagues for helping to make these studies a reality. 
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3. Summary 

I appreciate the trouble which Brad Holian and Michel Mareschal went to in orga- 
nizing this meeting in Lyon. Ever since Jean-Pierre Hansen introduced me to Paris, 
international gatherings, particularly the CECAM workshops and NATO institutes, have 
been invaluable sources of stimulation for my research. Nonequilibrium simulations at 
the atomic level, though no more “realistic” than Boltzmann’s kinetic theory, have an 
aesthetic unity, appeal, and value. I particularly appreciate the honor that Brad and 
Michel have done me here, and am looking forward to seeing continuing progress in 
nonequilibrium simulations, both microscopic and macroscopic. 

Addendum of 20 July 1996 

A cancelled weekend with Jean-Pierre left Carol and me at CECAM, with plenty 
of time to digest the mixed food-for-thought provided by our friends, old and new. 
Sauro Succi suggested some novel ways to link SPAM with traditional statistical the- 
ories. One of the nicest birthday presents emerged from my conversations with Carl 
Dettmann. He provided the elusive answer to a puzzling question which came up in 
1984: What is the simplest Lagrange-Hamilton basis for Nose-Hoover mechanics? Carl 
found the answer quickly: Nosk’s original Hamiltonian, multiplied by s. No time scal- 
ing is required. The only trick is setting the initial value of the Hamiltonian equal to 
zero. This result leaves Gibbs’ ensembles firmly linked to a mechanics so classical 
that even Goldstein would have recognized it. From my perspective, nonequilibrium 
statistical mechanics has finally reached the maturity of its equilibrium cousin, and 
just 25 years later. Now, the basic principles linking transport and the Second Law 
to mechanics, fractals, and Lyapunov instability are an enduring part of physics. Both 
the computational and the theoretical workers have their own routes to understanding, 
and are now at work on the details. It is promising for the future to see that both 
groups are hard at work on representing boundaries, stimulated by the work Lyderic 
Bocquet described. Both Bemi and Alex Garcia rightly emphasized the importance and 
the promise of hybrids to linking the microscopic and macroscopic points of view. 
Harald, Carol, and I like SPAM. I personally profited from the chance to talk with 
Michel and Malek Mansour about their experiences with the degenerate instabilities 
they found in Rayleigh-Benard problems. My own student, Vic Castillo, has been 
rediscovering very similar degeneracies at Livermore. Pierre Gaspard is blazing his 
own Hamiltonian path to nonlinear transport while a host of simulators continue their 
comprehensive explorations of this relatively new territory. For me, the tantalizing goal 
has again shifted, from equilibrium, to nonequilibrium, to understanding instability and 
turbulence through SPAM. The continuing search sometimes leads to sweeping views 
of the future. The beautiful view from Lyon guarantees excitement and stimulation for 
the birthdays yet to come. Thanks again, Michel and Brad, for making it possible to 
meet the many friends assembled here at Lyon. 
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