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1 & Nosé-Hoover MD :
Hamiltonian Motion Equations for
the Canonical Ensemble !

Shuichi Nosé’s Good Idea :

Hy = 2 (pY2ms?) + ®(q) + NDKT In(s ) + ( p.2/2M ) ;

“Scale the time”, multiplying time derivatives by s
and replace { (p/s) 2> p}. Then{ (dp/dt) =F-Cp }

where (dZ/dt) = 2 [ (pZ/mkT) -1 1/=2.

Carl Dettmann’s Better Idea : H,=sHy=0

Exactly the same NH equations of motion
result, but without any time-scaling .




1. & Nosé-Hoover MID

Best Idea : The continuity equation shows that
Gibbs’ canonical distribution, f « e=?/k7) | js a
stationary solution of the equations of motion :

{ (dp/dt) =F(q)- Cp }.

provided that the friction coefficient C is
generated by the integral feedback equation :

dt/dt = [ < (pZmkT) >-11/v2 > (9f/dt) = 0.

These motion equations are deterministic and
time-reversible, not Hamiltonian. Nosé’s
“time-scaling variable” s has disappeared .



1. There are Nonequilibrium Possibilities
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2. Meeting Shuichi at CECAM in 1984
and Philippe Choquard at Lausanne

What is “s” ?




Sabbatical at Keio, 1989-1990




3. May 1990 Snapshot, Nestlé House




Gary Morriss & Carl Dettmann
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Shiichi Nosé 1951-2005 [ Improved Hamiltonian in 1996 ]

Nosé’s New Hamiltonian Generates Gibbs’ Canonical Ensemble :

#=2 (p2/2ms2) + [ ®(q) + NkTIn s + (PSZ/ZM) ]
W (mii=Fla)-ma; £ = [(K/K) — 1 1/2)



3. Sabbatical at Keio 1989-1990




Generalizations of Nosé-Hoover MD

Bauer, Bulgac, and Kusnezov
considered a much more general
situation, including one, two, or more “friction
coefficients” { T } , enough to generate Brownian
Motion with time-reversible motion equations .

Their focus was Equilibrium .
Our focus is Nonequilibrium .




4. Fractals and Dimensionality Loss
in Nonequilibrium Simulations
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4. Pictures of Shear and Heat Flow
using Nosé-Hoover thermostats
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4. Fractals. { A } 2 Dimensionality Loss
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By following the motion of N satellite systems
orthonormally constrained about an N-dimensional
reference system, the N Lyapunov exponents are
given by forces needed to maintain orthonormality.
The algorithm was developed by Benettin’s group.



4. Interesting Example of
Lyapunov Fractal Instability
- vanishing phase volume

Isokinetic Galton Board : gravitational Work is
converted to extracted Heat via frictional C .

\ / Cross sections of phase space at
| Fields of strengthE=1, 2,3,and 4.
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+ dissipative parts of phase space .




4. Classical Textbook Fractals ( with holes )

Isokinetic Galton Board

Generates Fractal
C%'S%D Phase-space
Q O Cross Sections




4. MultiFractal Galton Board Sections
[-1<sin(P ) <+1lasfunctionof0<a<m]




4. Fractals and Dimensionality Loss

Generic Nonequilibrium Phase Space Flow
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4. Second Law of Thermodynamics

Fractal Distributions give Time’s Arrow :
Nonequilibrium states are rare.
Nonequilibrium entropy diverges .

Reversed nonequilibrium trajectories are
more unstable, and hence unobservable .

d(inf )/dt = S/k = - YA =Yt >0.
— d(Inf )/dt =- d(In®)/dt < 0!



5. An Interesting ¢* Example of NH Fractal

Lyapunov Instability & Dimensionality Loss

¢* Heat Flow ( Hooke’s Law + quartic tethers )

The dimensionality loss, 35/50, implies zero
phase volume with entropy of minus infinity.
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6. Nonequilibrium Simulations
using Hamiltonian Mechanics ?

The Kinetic Temperature, T = < mv?/k >,
can be constrained by using a Lagrange
Multiplier 2 an Isokinetic Hamiltonian :

REPUBLIKOSTERREICH

SURLE | 1 = 2[ (K(v)K(p) ]2 - K(v) + ®(q)
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Here K(v) is a fixed kinetic energy .
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6. Puzzling Hamiltonian Thermostating ?

Nose Hamiltonian Temperatures

(df/dt) =0
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Despite tremendous temperature gradients there is
no heat flow in these 60-particle ¢* chains. The results
are similar for the canonical and the kinetic thermostats.
The ¢* interparticle forces are harmonic, with quartic tethers.



7. Ergodicity and Multiple Temperatures
for a Thermostated Harmonic Oscillator

Two Friction Coefficients give an Ergodic four-dimensional
Gaussian when € = 0; Multifractal Distributions for€ > 0.

2 IT=I1+|tant;(q)I q=p ;

- 1 p=-q-Cp-Ep’;
.| : t=p'-T(a) ;
oL — M | S=p'-3p'T (q) '
e Tla)mteetenn(d)



7. Nosé-Hoover Oscillators with Conservative
and Dissipative Phase-Space Objects

q=p;P=-9-%p;C=p>—T;T=1+ctanh(q)

Sprott, Hoover, and Hoover, Physical Review E 89, 042914 (2014)



7. Nosé-Hoover Oscillators with Conservative and
Dissipative Phase-Space Objects from Clint Sprott

q=p;P=-9-%p;C=p2—T;T=14+¢tanh(q)

5 q 5 32

(pq) sections 3 interlocking
128 initial conditions trajectories

Transition at ¢ = 0.4054



7. Robust Heat Transfer - Doubly Thermostated Oscillators
q=p;P=-q-Cp-Ep3;C=p2-T;E=p*-3p2T; HH
o

i P=-9-Cp;E=p2-T-LE;E=C2-T; MKT
T=1+¢tanh(q)

q =
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These thermostated oscillators are fractal,
but still ergodic, when € >0 !




Patra + Bhattacharya’s Idea [ arXiv 1407.2353 ]

Patra - Bhattacharya
q=p-8q ;p=-9q-Cp;L=p°~T;E=q*-T
Hoover - Holian

q=p;P=-9-Cp-Ep3;C=p2-T;E=p*-3p2T

Martyna Klein — Tuckerman(ergodlc’?)
q=p;P=-q-Lp;C=p2-T-CE;E=C2-T

The 2014 lan Snook Prize will be awarded for the most
convincing paper addressing the MKT ergodicity forc=0.

The MKT thermostated oscillators are ergodic when
¢=0"! Are you prepared to prove it? $500.00 US .



Martyna — Klein — Tuckerman Chain Thermostat

(a) Qn=19 Q§=19 n=-1,&=1

(g, p, -1, +1 ) section
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Puneet Kumar Patra and Baidurya

Bhattacharya, “Nonergodicity of the “The [MKT] thermostat therefore does not

Nosé-Hoo.ver Chain 'I:hermost.at i';', generate the canonical distribution or preserve
Com!)utatlor.IaIIy Achievable Time”, quasi-ergodicity for the Poincaré Section”.
Physical Review E 90, 043303 ( 2014)



Summary of Nosé’s Legacy

Gibbs’ Statistical Mechanics is directly linked to
Hamilton’ s Dynamics .

Thermostats use only a single degree of freedom,
the coefficient C .

Nonequilibrium steady states are multifractal .

Entropy production from nonequilibrium processes
is easy to compute : d(Inf)/dt = d(S/k)/dt =C .

Multifractal symmetry breaking gives Second Law .



For additional details see
www.williamhoover.info

Simulation and Control of
Chaotic Nonequilibrium Systems

i ®

Tim eNseversibility,

is our current project, which “ - -
should be completed by this
year’s end, in plenty of time
for our next meeting !
Thanks, Morishita+lsobe-sans !

William Graham Hoover
Carol Griswold Hoover

World Scientific
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30 Years After Shuichi Nosé’s 1984 Work*

1984
1987:
1989:
1990:
1992:
1996:
1996:
1997:
2000:
2006:
2008:
2014:

* “A unified formulation of the constant temperature molecular dynamics methods

Meeting Shuichi Nosé in Paris at a CECAM Workshop
MultiFractal Thermostated Systems Far from Equilibrium
Sabbatical at Keio, working with Kawai, Boku, lhara
Bauer, Bulgac, Kusnezov generalizations of Nosé-Hoover
Martyna, Klein, Tuckerman Chain Thermostat
Simultaneous < p? > and < p* > control

Dettmann Hamiltonian H,=sH, =0

Configurational Temperature ( of 1952 )

Aoki and Kusnezov ¢* model for heat conduction
Memorial Meeting for Shuichi Nosé ( 1951-2005 )
Hamiltonian Thermostated Chains

Patra-Bhattacharya Thermostat

“A molecular dynamics method for simulations in the canonical ensemble”
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