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1. Lyapunov Instability , Spectra , Fractals

Lyapunov instability implies exponential growth of 5 > 5(0) exp[ +At ] .
Areas and Volumes in phase space grow exponentially too: exp[ +ZAt ] .
The growth rate of an area is A, + A, and of a volume A; + A, + A3 . o
Evidently in a 2N-dimensional phase space there are 2N exponents .
In Hamiltonian mechanics the sum of all these exponents is zero ! |

8

This follows from Liouville’s Theorem = (df/dt) =0. \L
Conservation of probability (f®) gives also : s
din (f®)/dt = (dIn f/dt) + (din &/dt) =0 > (dIn&/dt) =X A =0. 9

Liouville’s Theorem shows that (f®) and f and © are all conserved in
Hamiltonian flows . This is true instantaneously and time-averaged .

In order to understand this better let us illustrate all of these ideas with
the springy pendulum problem , where 7 = (p%/2) +y + 2(L — 1)? .
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1. Lyapunov Instability , H = (p%2) + y + 2(r — 1)?

There are four motion equations:
(dx/dt) = p, ; (dy/dt) = py ;
(dpx/dt) =—4(x/r)(r — 1) ; (dp,/dt) =—4(y/r)(r—1)-1.

Let us solve five copies all together , separated in four orthogonal
phase-space directions by an “infinitesimal delta = 0.000001” :

x1 = xr + delta ; yl = yr ; pxl = pxr ; pyl = pyr
X2 = Xr ; y2 = yr + delta ; px2 = pxr ; py2 = pyr
x3 = xr ; y3 = yr ; px3 = pxr + delta ; py3 = pyr

x4 = xr ; y4 = yr ; px4 = pxr ; py4 = pyr + delta
[ Reference { xr,yr,pxr,pyr } and four satellites ]
Provided that we can keep the solutions orthogonal the four offsets

can be rescaled at every timestep to determine the four { ; } . We
have seen that rescaling the reference-to-satellite distance > A, .

1. Lyapunov Instability for H = (p%2) +y + (x/2)(r — 1)?

At the end of the first timestep we get 5 new values of { x,y,p.,py } -

81 =(ry — r,)> & which gives us the instantaneous 1, . This is
the logarithm of the scale factor ( 6/ 6,) divided by -dt . Justas s
usual we will get a sum of these instantaneous { A, } to get<; >.
Next we force 3, =(r, — r,) toremain orthogonal to 3,. To do
this we remove the projection of 5, in the direction of 5, :

82 = 82— 81 (81 L4 82 )/(|81| |82|) .
We repeat this orthogonalization step for 5; and 3, . Rescaling 5,
gives the instantaneous 1, . Next force 63 =(r3 — r,) and d,; to
remain orthogonal to 3, . Rescaling 83 gives 13 . Finally we remove

the projection of 5, parallel to &; and rescale 3, to get the fourth
and last of the instantaneous Lyapunov exponents 1, .
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2. Lyapunov Instability for H = (p%2) +y + (x/2)(r — 1)2

Let us summarize the procedure giving the four exponents :

. Integrate the 20 equations with RK4 to get{ 6,,8,, 83,9, }.
. Rescale 5, to get )., .

. Remove the projections of { 5, , 83, 8, } parallel to 5, .

. Rescale 5, to get )., .

. Remove the projections of { 65, 8, } parallel to 3, .

. Rescale 6; to get ).; .

. Remove the projection of { 3, } parallel to 33 .

. Rescale 6, to get ), .

O NOO AL WN=—=

This 8-step procedure is followed for every timestep . Itis
called “Gram-Schmidt” orthonormalization . With N equations
the number of multiplies is of order N*. The N & vectors have
O(N?) dot products which are calculated O(N) times with each
dot product requiring N multiplies .

Lyapunov Instability for = (p%/2) +y + (k /2)(r — 1)?

Some observations from the springy pendulum problem :
1. The four exponents sum to zero ( Liouville )
. Soon A,(t) = — A,(t) and A,(t) = — A,4(t) ( “pairing” ) *

2
3. Knowing this we need only to measure <A,(t) >=1, |
4

. We could just as easily use polar coordinates > e

H = (p2) — r cos(0) + (x/2)(r — 1)2 |
(x.y)
* Is this obvious ?
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Lyapunov Instability for

H = (p%/2) — r cos(0) + (x/2)(r — 1)2

With the pendulum horizontal and the motion radial with 7{ = 1
We use the Lagrangian [ (dr/dt)? + (rd6/dt)? ] /2 to rewrite ( p%2) :

= (dr/dt) and py = r3(d6 /dt) so that ( p%/2) =[ p,2 + (po?/r?) ] /2
In polar coordinates with « = 4 the equations of motion are :

(dr/dt) =p,; (dp./dt) = (pe?/r®) - 4(r — 1) — cos(0)

(do/dt) = (pe/r?) ; (dpe/dt) =—r sin(6)

Let us compare the first one million iterations

using dt = 0.001 and both coordinate systems .

Lyapunov Instability for Polar and Cartesian Coordinates
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Lyapunov Instability for Polar and Cartesian Coordinates*

In either Cartesian or

Polar coordinates the [Cartesian|
time-reversibility of the P(Aq) P(A2)
motion equations gives

“pairing” with

P( +Aq ) = P( —Ag ) and

P(+A2) =P(-A3). [Potar |
P(24) P()2)
The distributions depend ! h2
on the coordinate system .
-5 A1 +5,5 A2 +5

* For more details see Time Reversibility, Computer Simulation, Algorithms, Chaos (2012 ) page 31 .

. Calculation of Lyapunov Spectra by Lagrange Multipliers

Let us detail the calculation of a single Lyapunov exponent 2,

using a Lagrange multiplier . As before we have a “reference”
trajectory and a “satellite” trajectory constrained to remain at

a fixed distance 5 from the reference .

[ 1] Solve the reference : (dx,/dt) = f(x,) with RK4 or RK5 .
[ 2] Solve constrained satellite : (dx, /dt) = f(x) — L(xs— X,)

The multiplier . enforces the constraint that | x; —x, 1 =35.
(xs = X)L f(Xs) = Mxs = %) = (x,) ] =0 >
(xs = X)) f( x5)) = (X, ) 1/ (X = X,)2= A
As an amazing fringe benefit the Lagrange Multiplier is A, !
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4. Calculation of Lyapunov Spectra in “tangent space”

- p - . Wy )
(dx/clt) = py 5 (dy/dt) = py ; o

(dpx/dt) = — 4(x/r)(r — 1) ; (dpy/dt) = - 4(y/r)(r—1) —-1.

e\

To begin , Linearize the Cartesian motion equations in terms of
The infinitesimal tangent-space vector (5x, 3y, 3py, 3py ) :

dax/dt = 3p, and ddy/dt = 5p,

ddp,/dt = — 48x[ 1 — (1/r) ] — 4(x25x/r3) — 4(xydy/r3)

dép,/dt = — 48y[ 1 — (1/r) 1 - 4(y?5y/r®) — 4(xydx/r?)

Arbitrarily choose & to be a unit vector : | (5x, 3y, dpy, dpy ) I =1.

We solve the four differential equations for the rotation of & .

0,128

0,126

0,124

0,122

0,12 -

0,118

4. Calculation of Lyapunov Spectra in “tangent space”
[ Calculation is divided into ten batches in order to verify convergence ]

CALCULATION WITH RK4 CALCULATION WITH RKS

<M > <A>

Y

% -
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AJ”/ | %/‘/ - ‘ ) //

gt time

. . . . . . . .
1x10° 1.210° 1.ax10° 1.6x10° 1.8x10° 210 1.2x10° 1.4x10° 1.6x10° 1.8x10° 1

Evidently the RK4 and RK5 { 0.124 = A = A, } agree with our previous work .
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Springy Pendulum Lyapunov Spectrum via Three Methods

Lyapunov spectra describe many-dimensional phase-space
deformation as well as the location of instabilities and
bifurcations in dynamical systems. Consistent results can
be obtained using Rescaling, Lagrange Multipliers, or
Tangent-space algorithms . We studied an example problem
involving the inelastic collision of two balls previously ,

finding the most important particles forward and back >

1-4. Springy Pendulum Lyapunov Spectrum via Three Methods*

Lyapunov spectra describe many-dimensional phase-space
deformation in large or small-scale dynamical systems :

Here is the mesoscopic inelastic collision
with Forward at left, Backward at right
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* For this problem we developed a hybrid algorithm in which the reference trajectory is bit-reversible
while fourth-order Runge-Kutta computation propagates the satellite trajectory ( or trajectories ) .
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2 — 4 . Applications of the three different
methods for determining Lyapunov spectra

0. Gram-Schmidt Orthonormalization is Essential
1. Simple Numerical Rescaling at Every Step

2. Lyapunov Spectra by Lagrange Multipliers
3

. Lyapunov Spectra by Linearization ( tangent space )

2 - 4. Systematics of the Gram-Schmidt Orthonormalization Algorithm

Here are the steps to be carried out at the end of each timestep :

8,0, 2 O, Rescale the first vector, getting 6,1,
8,8, 2> §, ford > 1 Remove projections on §,

5,°8, 2 0,0, Rescale the second vector, getting 5,1,
8,°0, 2 o, ford >2 Remove projections on 5,

On*On 2 OnoAn Repeat until the whole spectrum results

[ This can be done at every timestep . ]
Next :
Applications of the three methods for determining Lyapunov spectra
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5. Equilibrium Spectra Resemble Solid-State Debye Spectra

I I !

Lyapunov spectrum (dots)
[¢ =100 (1-r2)%; E =-§—N; N=4:V =8
j Journal of Chemical

1 2 3 4 5

—

n

~ Debye spectrum
[1.36 n1/3)

7

8 Physics 87, 6665-6670
(1987).

Spectrum for four fluid particles in three space dimensions .
There are 24 exponents including 8 zeroes, 8>0,and 8 <0.

Why are there 8 zeroes ? Note that the exponents are paired .

5. Here are Four Small-System Equilibrium Spectra in 2D and 3D*

Periodic Boundaries
Short-Ranged Repulsive Forces
+/- Symmetry for the exponents’

Zeroes{Dforr,Dforp,Eandt}
No zero exponents are shown .
Instantaneous Pairing is Typical .
Shear flows are all laminar with

Reynolds’ Number circa 50 .

n
v

4

o

Fluid 2D o0

Pr—

Solid 2D

Solid 30 /
- -

5 ' &
as | L 3

A
n

* From Posch and Hoover, Physical Review A 39, 2175-2188 (1989) .
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6. Nonequilibrium Shear Flow Driven by Moving Boundaries

Notice that P, is
negative ( so that
n is positive )

A =87 KT=1
Aeo = -43 pues . KT=1
o(r <1) = 100(1 — r2)? pois
Boundary mass = 1
and the horizontal

temperature is unity

6. More Shear Flows Driven by Moving Boundaries

Two-dimensional Sku()n-YA=32190628 Two-dimensional Ske(f)==XA g
¢ Lyapunov tra " L tri v : .,
yapunov a 113, 67, 30,
6 #=100 (1) tluid t=200 8| =100 (1) fluid M *
. Nosé-Hoover thermostat { = 1000 6| Nosé-Hoover thermostat ..o
2 4 &
2 2 o
-2 A0 x x x “2
-@
-4 } dt =0.001 -,
-6 . e
N2 (De- VN =1 =9 N2 n’,v Wat ‘e
-8 l SN BTN £=2 o
e : 4 ®, dt = 0.0005 sl § 1 = 1000 v
: N2 -10 : N — dt = 0.001 -
2N + 1 Lyapunov exponent pairs 2N + 1 Lyapunov exponent pairs

There is a negative shift of exponents, particularly the last few .
The sum of exponents changes sign between 63 and 64 terms .

This means there is a strange attractor with dimension 63.91 .

10
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Similar in 3D so that the dimensionality reduction is relatively small

10
8
| e 2
" Al
6 N , e
| N‘i......
q e=0
e 0000
00
2 880000°°°
A 8 8 e° Nosé-Hoover thermostat
' %1e8%00,, kT = 1; {=100; dt = 0.001
2 = OOOOOOOQOO
° ©000000
4 ....
| Three-dimensional ®%eee
Lyapunov spectra e,
8| ¢ =100 (1= fluid .
= NI o Sk=27
-10

3N Lyapunov exponent pairs
* Posch and Hoover, Physical Review A 39, 2175-2188 ( 1989 )

6. Spectra Bear a Resemblance to Solid-State Debye Spectra
But That Interesting Shift Occurs Away from Equilibrium !
1987 Conference Talk , Santa Trada Italy , Posch + Hoover

Here the potential is the repulsive part
of the Lennard-Jones potential with p

=0.5and T=1.0. There are 32 particles

and 192 Lyapunov exponents . A field
F. = 3 drives half of the particles to the
right and half to the left . An Amazing
Observation is that the sum of all the
exponents is negative , indicating that

the phase volume is zero ! Temperature _y
is kept fixed by using Gauss’ Thermostat :

{dp/dt=F-Cp};{=—(dD/dt)/2K.

A

The Dimensionality Loss is = 20 .

Here the Power Law is 0.38, not 1/3 |

11
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The Idea of Heat Reservoirs Driving Nonequilibrium Systems
as in Ashurst’s Thesis led to an explanation of Irreversibility
From Time-Reversible Nonequilibrium Molecular Dynamics .

1987 Conference Talk at
Monterey California . Work

by Bill Hoover , Bill Moran,

Brad Holian , Harald Posch .

s20M !ﬂaiﬁr_iax Ks?aign: No:p;y
1 elo universi mgm . -

¢ '3?3%’::%;43? vokonama - The stability of the simulation
Schematic 111ustration of a far-from- provides a mechanical proof

equilibrium Newtonian bulk region driven by
two reversible Nosé-Hoover heat revervoirs.

of Thermodynamics’ 2 Law .

Thermal Heat Reservoirs via Gauss' Principle of Least
Constraint ; Disssipation, Chaos, and Phase-Space

Dimensionality Loss in One-Dimensional Chains*

The Heat Conductivity of a Harmonic chain diverges because the transport is ballistic. We
decided to see what happens if a periodic chain is divided into two parts , each thermostated
Into two parts, one cold and one hot , using Gaussian thermostat variables { and additional
Lagrange multipliers 1, to constrain = q, = p , = p2 so that the equations of motion are :

{(dg/dt)=p; (dp/dt) =Fs —Cp-m;C=ZFyp/Zp*;n=2Fy/21}

A six-particle chain with both kinetic temperatures T = 2 is a chaotic Hamiltonian system .
But partitioning the kinetic energy unequally , from ( 1.9,0.1 ) to ( 1.1,0.9 ) gives spectra
corresponding to dissipative limit cycles ( no chaos ). An eight-particle chain behaves
differently , with a ( chaotic ) spectrum for temperature differences up to AK=1.4.

W G Hoover, H A Posch, and L W Campbell, Chaos 3, 325-332 ( 1993 ) .

12
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Thermal Heat Reservoirs via Gauss' Principle of Least
Constraint ; Dissipation, Chaos, and Phase-Space
Dimensionality Loss in One-Dimensional Chains*

0.20 _I""I""I"”l'"'I"“!""l'”'l_ 0.20 -_I"'I""l AR RARRAN ‘I TTrT
C . > 3 “aOS
b € L:TIt Cycles \ ] 0.1 ec\\\ 3
- . L N
. \H_\W’ W _E . \
C . \ . 010 F \ \
b > 2.2 F \\\
-0.60 E. \ ll _4: 7\’ -0.30 ;- \
- ] -0.40
o :— \ N = 6 LYAPUNOV SPECTRA. -; -0.50 E‘ i N = 8 LYAPUNOV SPECTRA.
A0 m =T sl Kot Ko =2 - am E l'\.. m=1 x=1 Keaw+Kur=2. 3
'1'20l-—L,.,,1.,..i...,1,.141“..1.1111.411; .7 E-I sl bl l....h..j

6. Stationary States from HOT + COLD Harmonic Chains — a six or eight-
particle chain is enough for chaos . Of the 2N Lyapunov exponents seven
necessarily vanish , those representing the displacements , momenta,

and kinetic energies of both regions plus motion in the trajectory direction .

K¢ Ky AD(6) AD(8) S/k(6) S/k(8)  A,(6) A, (8)
1.0 1.0 0.0 0.0 0.0 0.0 0.174  0.152
09 1.1 5.0 0.15 0.22 0.04,  0.00 0.152
08 1.2 5.0 0.54 0.45 0.18 0.00 0.14
0.7 1.3 5.0 1.2, 0.70 0.39 0.00 0.118
0.6 1.4 5.0 2.1, 0.97 0.64 0.00 0.096
05 1.5 5.0 3.2, 1.29 0.92 0.00 0.078
0.4 1.6 5.0 43, 1.67 1.27 0.00 0.067
0.3 1.7 5.0 5.3 2.20 1.76 0.00 0.063
0.2 1.8 5.0 8.0 3.01 2.56 0.00 0.000
0.1 1.9 5.0 9.0 4.72 4.43 0.00 0.000

13
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Thermal Heat Reservoirs via Gauss' Principle of Least
Constraint; Disssipation , Chaos , and Phase-Space
Dimensionality Loss in One-Dimensional Chains*

The harmonic model requires relatively intricate programming in order to maintain
the six constraints ( center-of-mass position and momentum and temperature for
both halves of the problem ). There is an additional zero exponent corresponding
to an offset in the direction of the trajectory motion . The ¢* model is considerably
easier to implement and provides dimensionality losses with robust chaos .

Although Hamiltonian chaos is fascinating , with its mixture of chaotic and regular
solutions , thermostated systems which avoid that complexity are certainly a more
desirable approach to understanding nonequilibrium stationary states . The flow
from an unstable repellor to a chaotic fractal attractor is far simpler than Hamiltonian
chaos . The repellor/attractor structure can be seen in the smallest one-body models
with either impulsive or continuous forces or even with two-dimensional maps .

* Hoover , Posch , and Campbell , Chaos 3, 325-332 ( 1993 )

The Reversibility of the Equations of Motion Implies the
Presence of Attractor + Repellor Pairs of Fractal Objects

E - 4.00 p*)/mo

Attractor Repelior
Hoover, Physical Review A 37, 252-257 ( 1 January 1988 )

14
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The Reversibility of the Equations of Motion Implies the
Presence of Attractor + Repellor Pairs of Fractal Objects

Nonequilibrium Systems driven by Time-Reversible motion
equations produce symmetric phase-space flows from a
MultiFractal Zero-Volume Repellor to a Mirror-Image
attractor . The mirror image corresponds to time reversal .
Zero phase volume explains the rarity of nonequilibrium
stationary states . In addition, the repellors have a positive
Lyapunov exponent sum corresponding to mechanical
instability and unobservability . These features are fully
consistent with the Second Law of Thermodynamics .

Summary of the Situation in 1987-1990

Gauss’ Principle of Least Constraint and Nosé-Hoover mechanics
made it possible to simulate stationary nonequilibrium flows for
systems of 100 or so particles with 4N or 6N equations of motion
in two or three space dimensions . Although the equations were
always time-reversible the results never were . Inevitably motion
collapses onto a “strange attractor”. The dimensionality of the
attractor lies between the number of exponents in the last sum
greater than zero and the first negative sum . Evidently the
phase-space distribution is ( multi ) fractal and with zero volume
relative to the equilibrium phase space. ( to be continued .. .)

15
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6. An updated version of the Baker Map
o [ [ ]
The Baker Map’s mixing mechanism resembles that of a Baker kneading bread dough . First,
stretch in the x direction . Second , make a central vertical cut . Third, replace the right half
atop the left . This three-step process introduces new information in the x direction while
aiscarding information in the y direction . As a result , a computer simulation of the Baker

Map is doomed to fail after a few dozen iterations , converging to the fixed point at the upper
righthand corner of the mapped area .

Because of our interest in time reversibility we consider here a rotated Baker Map ( suggested
by Bill Vance ] . Not only does this modification introduce reversibility , so that TBT = B, it

is also is a permanent source of “noise” due to the square roots which are a consequence of the
rotation operation . This uptodate Baker Map is a great analog of nonequilibrium mechanics .

7. An updated version of the Baker Map

Information gleaned from an old model , the Baker Map , which was
brought up-to-date by [ 1 ] a 45° rotation and [ 2 ] a provision for

phase-space area change , corresponding to dissipation. The use
of maps , rather than flows , means that chaos can be seen in just

Two phase-space dimensions , not just the Three required for flows .

16
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An Updated Version of the Baker Map
including the 45-degree rotation

P

) e
PR N ¢

Understanding the Source of Irreversibility through the Baker Map
[ at and away from “equilibrium” and with single-precision arithmetic ]
This is the “equilibrium” case which preserves area in the mapping .

Notice ! Single precision throughout ! 15

if(q.1lt.p) then

gqnew = +1.25*q 0.75*p + sqrt(1.125)

pnew = -0.75*q + 1.25*p - sqrt(0.125) 0s
endif

p

1

0

if(q.gt.p) then

-0.5

qnew = +1.25*q - 0.75*p - sqrt(1l.125)
pnew = -0.75*q + 1.25*p + sqrt(0.125) 4 i
endif q

1.5 L L L s L
1.5 -1 -0.5 0 0.5 1 1.9

The plot is composed of 500 000 points ( gnuplot dots ) starting with (qp ) =(0.6,0.8) .
The dots are part of the transient portion leading to a periodic orbit with 15 920 382 .

17
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7. Understanding the Source of Irreversibility Through the Baker Map

Suppose we solve the equilibrium Baker Map starting at (0.6,0.8) with single precision .
I noticed that the ( coordinate,momentum ) pairs repeat every 15 920 382 iterations . *
The next idea was to generate a [ time-reversed ] trajectory starting with (0.6,-0.8) .

A search reveals that the q coordinates from the two initial conditions don’t match .

A factorization shows that 15 920 382 = 2 x 3 x 41 x 64 717 which is mysterious !
Starting with (0.3,-0.4) again provides 15 920 382 [ again ] but (0.3,0.4) > 3 367 578 !

Although the initial parts of the mappings differ ( they are transients ) the final periodic
orbits are mirror images of one another and the “equations of motion” are indeed
unchanged if one changes the signs of both g and p .

Although the 15 920 382 points are too many to plot we can look at 0.01% of them
after the transients have disappeared. We find that the two orbits are congruent !

* Motivated by Dellago and Hoover’s rediscovery and investigations of a nice

Periodic orbit paper : Grebogi, Ott, and Yorke, Physical Review A 38, 3688 (1988) .

I am curious whether or not C generates the same periodic orbit as FORTRAN .

100

7. Understanding the Source of Irreversibility Through the Baker Map

P o

100
— 100~
4 5000

$00°0
T

$000
T o

$000-
T

0.02.

(8'0-'9°0) uum Buneis d'b

S000
- Cpann

symmetry .

Identical ?

100

There is no apparent
symmetry between
the centered plots of
width 0.02 and height

Looking at the tops
or bottoms of the
two plots revealed a
similar lack of any

Why are the periods

18
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Understanding the Source of Irreversibility Through the Baker Map

Suppose we solve the equilibrium Baker Map starting at (0.6,0.8) with single precision .
We notice that the (coordinate,momentum) pairs repeat every 15 920 382 iterations :

0.258040428 -0.376516074
0.258040428 1.02718401
0.258040428 0.689610183
0.258040428 -0.376516074
0.258040428 1.02718401
0.258040428 0.689610183
0.258040428 -0.376516074

17414024
17441609
19365593
33334406
33361991
35285975
49254788

< (9,p) and iteration

Suppose we start at (0.6,-0.8) instead .

Then we see :

7.05265850E-02 -0.822517037
7.05265850E-02 -0.822517037
7.05265850E-02 -0.822517037

9952250
25872632
41793014

Again notice the (coordinate,momentum) pairs repeat every 15 920 382 iterations :

A search reveals that the q coordinates from the two initial conditions don’t match .

7. Understanding the Source of Irreversibility through the Baker Map :

Even at Equilibrium we see the analogs of repellor/attractor pairs .

All of the details of the 15 920 382 periodic-orbit points are present .

Note the inverted (q,p) scales

-0.998

-0.996 -*

-0.994

-0.992

-0.99

These plots are identical !
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Understanding the Source of Irreversibility Through the Baker Map

Even at Equilibrium we see the analogs of repellor/attractor pairs .

All of the details of the 15 920 382 periodic-orbit points are present .

At equilibrium there are two mirror-image periodic orbits . They have

identical lengths roughly equal to the square root of the number of

state points . This is what we would “expect” from the Birthday

Problem .

Let’s look at the much simpler problem of a Nonequilibrium Steady

State , where a portion of the map (2/3) undergoes compression

independently of the direction of time .

N people are in the room . Are their Birthdays different ?

Probability that Second person’s birthday is different = (1 — 1/ 365)
Second and Third = (1 -1/365) (1 -2/365) ... [ integrate the log ]

N%(2x365)=% > N=v365=19

An exacting calculation shows
that 23 is the first probability
to exceed 2. In our Baker
Map example the number of
states is around 106 . Let’s
consider the Nonequilibrium
Baker Map next .
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7. Time Reversibility of the Nonequilibrium Baker Map

BEFORE

Reversed in Time

ANY TRANSFORMATION THAT IS ERGODIC HAS SOME COMPRESSION AND EXPANSION .
MOST OF THE MAP CORRESPONDS TO COMPRESSION GIVING A STRANGE ATTRACTOR .

Past > Present > Future

P>

The strains for the upper two regions are i \\

(3;2/3)and for the lower (3/2;1/3). :
These strains correspond to area changes

of 2 at the top and 1/2 at the bottom .

The time-reversed version of the Baker Map // ”
B is TBT, where T changes (q,p) 2 (q,-p) - 4

// Reversed in Time
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Lyapunov Exponent Calculation for the Baker Map

2/3 of the measure ( upper row ) expands by 3/2
while 1/3 of the measure expands three fold so
that A, = (2/3)In(3/2) + (1/3)In 3 = 0.63651 . The
smaller Lyapunov exponent N
is (2/3) In(1/3) + (1/3) In(2/3) = : \\ >
-0.86756 . The sum should be \
-(1/3)In(2) = -0.23105 and is !
Compression/Expansion = 2 /// &

for a mean value of 2173 .

“" Reversed in Time

. Time Reversibility of the Nonequilibrium Baker Map

Backward and Forward Baker Maps

-1 L

BAKER MAP REPELLOR BAKER MAP ATTRACTOR
[ Reversed in Time by using the Reversed Map : R = TAT]
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7. Time Reversibility of the Nonequilibrium Baker Map

do 60 it = 1,500 000

if(g+p.lt.-dsqrt(2.0d00/9.0d00)) then

qp = 11%q/6.0d00 + 7%p/6.0d00 + dsqrt(49.0d00/18.0d00)
pp = 11%p/6.0d00 + 7%q/6.0d00 + dsqrt(25.0d00/18.0400)
endif

if(g+p.gt.-dsqrt(2.0d00/9.0d00)) then

qp = 11%q/12.0d00 + 7%p/12.0d00 - dsqrt(49.0d00/72.0d00)
pp = 11%p/12.0d00 + 7%q/12.0d00 + dsqrt( 1.0d00/72.0d00)
endif
q = qp

p=pp
write(100,*) q,p
60 continue

The repellor is no more difficult to
construct than was the attractor . This
FORTRAN program used the original Baker
mapping with ( q,p ) replaced everywhere by ( q,-p )

7 . Time Reversibility of the Nonequilibrium Baker Map

One might well expect that the TBT mapping , because it can easily be
checked to confirm that it returns to the previous ( q,p ) point , would
generate the same attractor as was obtained by the forward mapping .

What happens is “something completely different” . Because reversing

would be expected to preserve the attractor it is suprising to see instead
a Repellor , with velocities opposite to those of the Attractor . Reversing
would imply expansion of area , which is impossible in a bounded space .

Overall this is exactly the same experience that one would see with
an irreversible movie . After seeing many “frames” , half a million in
the Baker case , that all follow the same pattern , the time symmetry is
broken and the highly-unlikely Lyapunov-unstable Repellor states
are generated instead. The Baker Map is a good analog of the same
reversibility lessons that we can learn from continuous particle flows .
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7 . Time Reversibility of Nonequilibrium Steady States

The Baker Maps nicely illustrate that the competition between expansion and
compression is necessarily won by compression . Although any history that we
generate simply follows a moving point, which can’t change area, a collection of
these points , as described by the Liouville Theorem can never expand in a steady
state . Liouville requires compression, which is why we invariably observe fractal
strange attractors in nonequilibrium steady states . Although this lesson is most
easily seen for simple maps it is evident that the same mechanism,
Changing Phase Volume -> Irreversibility and Strange Attractors
is also seen in the manybody systems to which molecular dynamics can be applied .

A second lesson , from the ¢* model , is that dimensionality loss is not limited to the
phase-space coordinates which are thermostated . Because the phase-space offset
vectors ( satellite minus reference ) rotate much more rapidly than they grow or
decay it is feasible to see an overall dimensionality loss which greatly exceeds the
number of thermostated pairs of phase-space coordinates . Our simple few-body
models lead to an understanding of many-body ones and to an understanding of
thermodynamic irreversibility . We discuss the ¢* model in the next lecture .
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