Kharagpur Lecture 9 Lyapunov Instability, Spectra, Fractals

1. Pendulum Lyapunov Spectrum by Rescaling
2. Systematics of the Gram-Schmidt Orthonormalization Algorithm
3. Lyapunov Spectra by Lagrange Multipliers
4. Lyapunov Spectra by Linearization ("tangent space")
5. Spectra for Various Mesoscopic Systems
6. Dimensionality Loss in Nonequilibrium Systems
7. Revisiting the Nonequilibrium Baker Map with Poincaré

William G. Hoover
Ruby Valley Nevada
December 2016

1. Lyapunov Instability, Spectra, Fractals

Lyapunov instability implies exponential growth of $\delta \rightarrow \delta(0) \exp [+\lambda t]$.
Areas and Volumes in phase space grow exponentially too: $\exp [+\Sigma \lambda t]$.
The growth rate of an area is $\lambda_{1}+\lambda_{2}$ and of a volume $\lambda_{1}+\lambda_{2}+\lambda_{3}$.
Evidently in a 2 N -dimensional phase space there are 2 N exponents .
In Hamiltonian mechanics the sum of all these exponents is zero!
This follows from Liouville's Theorem $\rightarrow(\mathrm{df} / \mathrm{dt})=0$.
Conservation of probability ($\mathrm{f} \oplus$) gives also :
$d \ln (f \oplus) / d t=(d \ln f / d t)+(d \ln \oplus / d t)=0 \rightarrow(d \ln \oplus / d t)=\Sigma \lambda=0$.
Liouville's Theorem shows that ($\mathrm{f} \oplus$) and f and \oplus are all conserved in Hamiltonian flows. This is true instantaneously and time-averaged.
In order to understand this better let us illustrate all of these ideas with the springy pendulum problem, where $\mathcal{H}=\left(p^{2} / 2\right)+y+2(L-1)^{2}$.

1. Lyapunov Instability, $\mathcal{H}=\left(p^{2} / 2\right)+y+2(r-1)^{2}$

There are four motion equations:

$$
\begin{gathered}
(d x / d t)=p_{x} ;(d y / d t)=p_{y} ; \\
\left(d p_{x} / d t\right)=-4(x / r)(r-1) ;\left(d p_{y} / d t\right)=-4(y / r)(r-1)-1 .
\end{gathered}
$$

Let us solve five copies all together, separated in four orthogonal phase-space directions by an "infinitesimal delta = 0.000001" :

```
x1 = xr + delta ; y1 = yr ; px1 = pxr ; py1 = pyr
x2 = xr ; y2 = yr + delta ; px2 = pxr ; py2 = pyr
x3 = xr ; y3 = yr ; px3 = pxr + delta ; py3 = pyr
x4 = xr ; y4 = yr ; px4 = pxr ; py4 = pyr + delta
    [ Reference { xr,yr,pxr,pyr } and four satellites ]
```

Provided that we can keep the solutions orthogonal the four offsets can be rescaled at every timestep to determine the four $\left\{\lambda_{i}\right\}$. We have seen that rescaling the reference-to-satellite distance $\rightarrow \lambda_{1}$.

1. Lyapunov Instability for $\mathcal{H}=\left(p^{2} / 2\right)+y+(k / 2)(r-1)^{2}$

At the end of the first timestep we get 5 new values of $\left\{x, y, p_{x}, p_{y}\right\}$. $\delta_{1}=\left(r_{1}-r_{r}\right) \rightarrow \delta$ which gives us the instantaneous λ_{1}. This is the logarithm of the scale factor $\left(\delta / \delta_{1}\right)$ divided by -dt . Just as is usual we will get a sum of these instantaneous $\left\{\lambda_{1}\right\}$ to get $\left\langle\lambda_{1}\right\rangle$. Next we force $\delta_{2}=\left(r_{2}-r_{r}\right)$ to remain orthogonal to δ_{1}. To do this we remove the projection of δ_{2} in the direction of δ_{1} :

$$
\delta_{2}=\delta_{2}-\delta_{1}\left(\delta_{1} \bullet \delta_{2}\right) /\left(\left|\delta_{1}\right| I \delta_{2} \mid\right)
$$

We repeat this orthogonalization step for δ_{3} and δ_{4}. Rescaling δ_{2} gives the instantaneous λ_{2}. Next force $\delta_{3}=\left(r_{3}-r_{r}\right)$ and δ_{4} to remain orthogonal to δ_{2}. Rescaling δ_{3} gives λ_{3}. Finally we remove the projection of δ_{4} parallel to δ_{3} and rescale δ_{4} to get the fourth and last of the instantaneous Lyapunov exponents λ_{4}.
2. Lyapunov Instability for $\mathcal{H}=\left(p^{2} / 2\right)+y+(\kappa / 2)(r-1)^{2}$

Let us summarize the procedure giving the four exponents :

1. Integrate the 20 equations with RK4 to get $\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right\}$.
2. Rescale δ_{1} to get λ_{1}.
3. Remove the projections of $\left\{\delta_{2}, \delta_{3}, \delta_{4}\right\}$ parallel to δ_{1}.
4. Rescale δ_{2} to get λ_{2}.
5. Remove the projections of $\left\{\delta_{3}, \delta_{4}\right\}$ parallel to δ_{2}.
6. Rescale δ_{3} to get λ_{3}.
7. Remove the projection of $\left\{\delta_{4}\right\}$ parallel to δ_{3}.
8. Rescale δ_{4} to get λ_{4}.

This 8-step procedure is followed for every timestep. It is called "Gram-Schmidt" orthonormalization. With \mathbf{N} equations the number of multiplies is of order N^{4}. The $\mathbf{N} \delta$ vectors have $\mathrm{O}\left(\mathrm{N}^{2}\right)$ dot products which are calculated $\mathrm{O}(\mathrm{N})$ times with each dot product requiring N multiplies .

Lyapunov Instability for $\mathcal{H}=\left(p^{2} / 2\right)+y+(\kappa / 2)(r-1)^{2}$
Some observations from the springy pendulum problem :

1. The four exponents sum to zero (Liouville)
2. Soon $\lambda_{1}(t)=-\lambda_{4}(t)$ and $\lambda_{2}(t)=-\lambda_{3}(t)$ ("pairing") *
3. Knowing this we need only to measure $\left\langle\lambda_{1}(\mathrm{t})\right\rangle=\lambda_{1}$
4. We could just as easily use polar coordinates \rightarrow

$$
\mathcal{H}=\left(p^{2} / 2\right)-r \cos (\theta)+(\kappa / 2)(r-1)^{2}
$$

[^0]\[

$$
\begin{gathered}
\quad \text { Lyapunov Instability for } \\
\mathcal{H}=\left(p^{2} / 2\right)-r \cos (\theta)+(\kappa / 2)(r-1)^{2}
\end{gathered}
$$
\]

With the pendulum horizontal and the motion radial with $\mathcal{H}=1$.
We use the Lagrangian [$\left.(\mathrm{dr} / \mathrm{dt})^{2}+(\mathrm{rd} \theta / \mathrm{dt})^{2}\right] / 2$ to rewrite ($\mathrm{p}^{2} / 2$) :
$p_{r}=(d r / d t)$ and $p_{\theta}=r^{2}(d \theta / d t)$ so that $\left(p^{2} / 2\right)=\left[p_{r}^{2}+\left(p_{\theta}^{2} / r^{2}\right)\right] / 2$
In polar coordinates with $\kappa=4$ the equations of motion are :

$$
\begin{gathered}
(d r / d t)=p_{r} ;\left(d p_{r} / d t\right)=\left(p_{\theta}^{2} / r^{3}\right)-4(r-1)-\cos (\theta) \\
(d \theta / d t)=\left(p_{\theta} / r^{2}\right) ;\left(d p_{\theta} / d t\right)=-r \sin (\theta)
\end{gathered}
$$

Let us compare the first one million iterations using dt = 0.001 and both coordinate systems .

Lyapunov Instability for Polar and Cartesian Coordinates

Lyapunov Instability for Polar and Cartesian Coordinates*

In either Cartesian or Polar coordinates the time-reversibility of the motion equations gives "pairing" with

$$
\begin{gathered}
P\left(+\lambda_{1}\right)=P\left(-\lambda_{4}\right) \text { and } \\
P\left(+\lambda_{2}\right)=P\left(-\lambda_{3}\right) .
\end{gathered}
$$

The distributions depend on the coordinate system.

* For more details see Time Reversibility, Computer Simulation, Algorithms, Chaos (2012) page 31.

3. Calculation of Lyapunov Spectra by Lagrange Multipliers

Let us detail the calculation of a single Lyapunov exponent λ_{1} using a Lagrange multiplier. As before we have a "reference" trajectory and a "satellite" trajectory constrained to remain at a fixed distance δ from the reference.
[1] Solve the reference : $\left(d x_{r} / d t\right)=f\left(x_{r}\right)$ with RK4 or RK5 .
[2] Solve constrained satellite : $\left(d x_{s} / d t\right)=f\left(x_{s}\right)-\lambda\left(x_{s}-x_{r}\right)$
The multiplier λ enforces the constraint that $I x_{s}-x_{r} I=\delta$.

$$
\begin{gathered}
\left(x_{s}-x_{r}\right)\left[f\left(x_{s}\right)-\lambda\left(x_{s}-x_{r}\right)-f\left(x_{r}\right)\right]=0 \rightarrow \\
\left(x_{s}-x_{r}\right)\left[f\left(x_{s}\right)-f\left(x_{r}\right)\right] /\left(x_{s}-x_{r}\right)^{2}=\lambda
\end{gathered}
$$

As an amazing fringe benefit the Lagrange Multiplier is λ_{1} !

4. Calculation of Lyapunov Spectra in "tangent space"

$$
\begin{gathered}
(d x / d t)=p_{x} ;(d y / d t)=p_{y} ; \\
\left(d p_{x} / d t\right)=-4(x / r)(r-1) ;\left(d p_{y} / d t\right)=-4(y / r)(r-1)-1
\end{gathered}
$$

To begin , Linearize the Cartesian motion equations in terms of The infinitesimal tangent-space vector ($\delta \mathbf{x}, \delta \mathbf{y}, \delta \mathbf{p}_{\mathrm{x}}, \delta \mathbf{p}_{\mathrm{y}}$):
$\mathrm{d} \delta \mathrm{x} / \mathrm{dt}=\delta \mathrm{p}_{\mathrm{x}}$ and $\mathrm{d} \delta \mathrm{y} / \mathrm{dt}=\delta \mathrm{p}_{\mathrm{y}}$
$d \delta p_{x} / d t=-4 \delta x[1-(1 / r)]-4\left(x^{2} \delta x / r^{3}\right)-4\left(x y \delta y / r^{3}\right)$
$\mathrm{d} \delta \mathrm{p}_{\mathrm{y}} / \mathrm{dt}=-4 \delta \mathrm{y}[1-(1 / r)]-4\left(\mathrm{y}^{2} \delta \mathrm{y} / \mathrm{r}^{3}\right)-4\left(\mathrm{xy} \delta \mathrm{x} / \mathrm{r}^{3}\right)$
Arbitrarily choose δ to be a unit vector: $\mathrm{I}\left(\delta x, \delta y, \delta p_{x}, \delta p_{y}\right) I=1$.
We solve the four differential equations for the rotation of δ.

4. Calculation of Lyapunov Spectra in "tangent space"

[Calculation is divided into ten batches in order to verify convergence]

Evidently the RK4 and RK5 $\left\{0.124=\lambda=\lambda_{1}\right\}$ agree with our previous work.

Springy Pendulum Lyapunov Spectrum via Three Methods

Lyapunov spectra describe many-dimensional phase-space deformation as well as the location of instabilities and bifurcations in dynamical systems. Consistent results can be obtained using Rescaling, Lagrange Multipliers, or Tangent-space algorithms. We studied an example problem involving the inelastic collision of two balls previously, finding the most important particles forward and back $\boldsymbol{\rightarrow}$

1-4. Springy Pendulum Lyapunov Spectrum via Three Methods* Lyapunov spectra describe many-dimensional phase-space deformation in large or small-scale dynamical systems :

[^1]
2-4. Applications of the three different methods for determining Lyapunov spectra

0. Gram-Schmidt Orthonormalization is Essential
1. Simple Numerical Rescaling at Every Step
2. Lyapunov Spectra by Lagrange Multipliers
3. Lyapunov Spectra by Linearization (tangent space)

2-4. Systematics of the Gram-Schmidt Orthonormalization Algorithm

 Here are the steps to be carried out at the end of each timestep :$$
\begin{array}{ll}
\delta_{1} \cdot \delta_{1} \rightarrow \delta_{1}, \lambda_{1} & \text { Rescale the first vector, getting } \delta_{1}, \lambda_{1} \\
\delta_{1} \cdot \delta_{\mathrm{J}} \rightarrow \delta_{\mathrm{J}} \text { for } \mathrm{J}>1 & \text { Remove projections on } \delta_{1} \\
\delta_{2} \cdot \delta_{2} \rightarrow \delta_{2}, \lambda_{2} & \text { Rescale the second vector, getting } \delta_{2}, \lambda_{2} \\
\delta_{2} \cdot \delta_{\mathrm{J}} \rightarrow \delta_{\mathrm{J}} \text { for } \mathrm{J}>2 & \text { Remove projections on } \delta_{2} \\
\ldots & \\
\delta_{\mathrm{N}} \cdot \delta_{\mathrm{N}} \rightarrow \delta_{\mathrm{N}}, \lambda_{\mathrm{N}} & \text { Repeat until the whole spectrum results } \\
& \text { [This can be done at every timestep .] }
\end{array}
$$

Next :
Applications of the three methods for determining Lyapunov spectra

5. Equilibrium Spectra Resemble Solid-State Debye Spectra

Journal of Chemical Physics 87, 6665-6670 (1987).

Spectrum for four fluid particles in three space dimensions. There are 24 exponents including 8 zeroes, $8>0$, and $8<0$. Why are there 8 zeroes? Note that the exponents are paired.
5. Here are Four Small-System Equilibrium Spectra in 2D and 3D*

Periodic Boundaries
Short-Ranged Repulsive Forces +/- Symmetry for the exponents'

Zeroes \{ \mathbf{D} for r, D for p, E and t \}
No zero exponents are shown .
Instantaneous Pairing is Typical .
Shear flows are all laminar with
Reynolds' Number circa 50.

* From Posch and Hoover, Physical Review A 39, 2175-2188 (1989) .

6. Nonequilibrium Shear Flow Driven by Moving Boundaries

Notice that $P_{x y}$ is negative (so that η is positive)

$$
\begin{gathered}
\lambda_{1}=8.7 \\
\lambda_{69}=-43
\end{gathered}
$$

$\phi(r<1)=100\left(1-r^{2}\right)^{4}$ Boundary mass = 1 and the horizontal temperature is unity

6. More Shear Flows Driven by Moving Boundaries

$2 \mathrm{~N}+1$ Lyapunov exponent pairs

$2 \mathrm{~N}+1$ Lyapunov exponent pairs

There is a negative shift of exponents, particularly the last few .
The sum of exponents changes sign between 63 and 64 terms . This means there is a strange attractor with dimension 63.91.

Similar in 3D so that the dimensionality reduction is relatively small

3N Lyapunov exponent pairs

* Posch and Hoover, Physical Review A 39, 2175-2188 (1989)

6. Spectra Bear a Resemblance to Solid-State Debye Spectra But That Interesting Shift Occurs Away from Equilibrium ! 1987 Conference Talk, Santa Trada Italy, Posch + Hoover

Here the potential is the repulsive part of the Lennard-Jones potential with ρ $=0.5$ and $T=1.0$. There are 32 particles and 192 Lyapunov exponents. A field $F_{e}=3$ drives half of the particles to the right and half to the left . An Amazing Observation is that the sum of all the exponents is negative, indicating that the phase volume is zero! Temperature is kept fixed by using Gauss' Thermostat :
$\{d p / d t=F-\zeta p\} ; \zeta=-(d \Phi / d t) / 2 K$.

The Idea of Heat Reservoirs Driving Nonequilibrium Systems as in Ashurst's Thesis led to an explanation of Irreversibility From Time-Reversible Nonequilibrium Molecular Dynamics .

эัวดИ injoūnટ己 रtielsvinU oigx smencoxor reer

Shūichi Nose Keio University Yokohama 1987
FIGURE 3
Schematic illustration of a far-fromequilibrium Newtonian bulk region driven by two reversible Nosé-Hoover heat revervoirs.

1987 Conference Talk at
Monterey California . Work
by Bill Hoover , Bill Moran,
Brad Holian , Harald Posch . The stability of the simulation provides a mechanical proof of Thermodynamics' $2^{\text {nd }}$ Law .

Thermal Heat Reservoirs via Gauss' Principle of Least Constraint ; Disssipation, Chaos, and Phase-Space Dimensionality Loss in One-Dimensional Chains*

The Heat Conductivity of a Harmonic chain diverges because the transport is ballistic . We decided to see what happens if a periodic chain is divided into two parts, each thermostated Into two parts, one cold and one hot, using Gaussian thermostat variables ζ and additional Lagrange multipliers η, to constrain $\Sigma q, \Sigma p, \Sigma p^{2}$ so that the equations of motion are :
$\left\{(\mathrm{dq} / \mathrm{dt})=\mathrm{p} ;(\mathrm{dp} / \mathrm{dt})=\mathrm{F}_{\mathcal{H}}-\zeta \mathrm{p}-\eta ; \zeta=\Sigma \mathrm{F}_{\mathcal{H}} \mathbf{p} / \Sigma \mathrm{p}^{2} ; \eta=\Sigma \mathrm{F}_{\mathcal{H}} / \Sigma 1\right\}$

A six-particle chain with both kinetic temperatures $\mathbf{T}=2$ is a chaotic Hamiltonian system . But partitioning the kinetic energy unequally , from (1.9,0.1) to (1.1,0.9) gives spectra corresponding to dissipative limit cycles (no chaos). An eight-particle chain behaves differently, with a (chaotic) spectrum for temperature differences up to $\Delta K=1.4$.

W G Hoover, H A Posch, and L W Campbell, Chaos 3, 325-332 (1993).

Thermal Heat Reservoirs via Gauss' Principle of Least Constraint ; Dissipation, Chaos, and Phase-Space Dimensionality Loss in One-Dimensional Chains*

6. Stationary States from HOT + COLD Harmonic Chains - a six or eightparticle chain is enough for chaos. Of the 2 N Lyapunov exponents seven necessarily vanish, those representing the displacements, momenta , and kinetic energies of both regions plus motion in the trajectory direction .

K_{C}	K_{H}	$\Delta D(6)$	$\Delta D(8)$	$\dot{S} / k(6)$	$\dot{S} / k(8)$	$\lambda_{1}(6)$	$\lambda_{1}(8)$
1.0	1.0	0.0	0.0	0.0	0.0	0.174	0.152
0.9	1.1	5.0	0.15	0.22	0.046	0.00	0.152
0.8	1.2	5.0	0.58	0.45	0.18	0.00	0.14
0.7	1.3	5.0	1.22	0.70	0.39	0.00	0.118
0.6	1.4	5.0	2.1_{7}	0.97	0.64	0.00	0.096
0.5	1.5	5.0	3.25	1.29	0.92	0.00	0.078
0.4	1.6	5.0	4.3_{4}	1.67	1.27	0.00	0.067
0.3	1.7	5.0	5.3	2.20	1.76	0.00	0.063
0.2	1.8	5.0	8.0	3.01	2.56	0.00	0.000
0.1	1.9	5.0	9.0	4.72	4.43	0.00	0.000

Thermal Heat Reservoirs via Gauss' Principle of Least Constraint; Disssipation, Chaos, and Phase-Space Dimensionality Loss in One-Dimensional Chains*

The harmonic model requires relatively intricate programming in order to maintain the six constraints (center-of-mass position and momentum and temperature for both halves of the problem). There is an additional zero exponent corresponding to an offset in the direction of the trajectory motion. The ϕ^{4} model is considerably easier to implement and provides dimensionality losses with robust chaos.

Although Hamiltonian chaos is fascinating, with its mixture of chaotic and regular solutions, thermostated systems which avoid that complexity are certainly a more desirable approach to understanding nonequilibrium stationary states. The flow from an unstable repellor to a chaotic fractal attractor is far simpler than Hamiltonian chaos. The repellor/attractor structure can be seen in the smallest one-body models with either impulsive or continuous forces or even with two-dimensional maps .

[^2]
The Reversibility of the Equations of Motion Implies the Presence of Attractor + Repellor Pairs of Fractal Objects

The Reversibility of the Equations of Motion Implies the Presence of Attractor + Repellor Pairs of Fractal Objects

Nonequilibrium Systems driven by Time-Reversible motion equations produce symmetric phase-space flows from a MultiFractal Zero-Volume Repellor to a Mirror-Image attractor . The mirror image corresponds to time reversal . Zero phase volume explains the rarity of nonequilibrium stationary states. In addition, the repellors have a positive Lyapunov exponent sum corresponding to mechanical instability and unobservability. These features are fully consistent with the Second Law of Thermodynamics .

Summary of the Situation in 1987-1990

Gauss' Principle of Least Constraint and Nosé-Hoover mechanics made it possible to simulate stationary nonequilibrium flows for systems of 100 or so particles with 4 N or 6 N equations of motion in two or three space dimensions. Although the equations were always time-reversible the results never were. Inevitably motion collapses onto a "strange attractor". The dimensionality of the attractor lies between the number of exponents in the last sum greater than zero and the first negative sum. Evidently the phase-space distribution is (multi) fractal and with zero volume relative to the equilibrium phase space. (to be continued . . .)

The Baker Map's mixing mechanism resembles that of a Baker kneading bread dough . First, stretch in the x direction. Second, make a central vertical cut. Third, replace the right half atop the left. This three-step process introduces new information in the x direction while aiscarding information in the y direction. As a result, a computer simulation of the Baker Map is doomed to fail after a few dozen iterations, converging to the fixed point at the upper righthand corner of the mapped area .

Because of our interest in time reversibility we consider here a rotated Baker Map (suggested by Bill Vance]. Not only does this modification introduce reversibility, so that TBT = B^{-1}, it is also is a permanent source of "noise" due to the square roots which are a consequence of the rotation operation. This uptodate Baker Map is a great analog of nonequilibrium mechanics .

7. An updated version of the Baker Map

Information gleaned from an old model, the Baker Map, which was brought up-to-date by [1] a 45° rotation and [2] a provision for phase-space area change, corresponding to dissipation. The use of maps, rather than flows, means that chaos can be seen in just

Two phase-space dimensions, not just the Three required for flows .

An Updated Version of the Baker Map including the 45-degree rotation

Understanding the Source of Irreversibility through the Baker Map [at and away from "equilibrium" and with single-precision arithmetic] This is the "equilibrium" case which preserves area in the mapping .

Notice ! Single precision throughout !
if(q.lt.p) then
qnew $=+1.25 * q-0.75 * p+\operatorname{sqrt(1.125)}$
pnew $=-0.75 * q+1.25 * p-\operatorname{sqrt}(0.125)$
endif
if(q.gt.p) then
qnew $=+1.25 * q-0.75 * p-\operatorname{sqrt}(1.125)$
pnew $=-0.75 * q+1.25 * p+\operatorname{sqrt}(0.125)$
endif

The plot is composed of 500000 points (gnuplot dots) starting with (qp) = (0.6,0.8) . The dots are part of the transient portion leading to a periodic orbit with 15920382 .

7. Understanding the Source of Irreversibility Through the Baker Map

Suppose we solve the equilibrium Baker Map starting at ($0.6,0.8$) with single precision . I noticed that the (coordinate,momentum) pairs repeat every 15920382 iterations . * The next idea was to generate a [time-reversed] trajectory starting with ($0.6,-0.8$) .
A search reveals that the q coordinates from the two initial conditions don't match. A factorization shows that $15920382=2 \times 3 \times 41 \times 64717$ which is mysterious ! Starting with (0.3,-0.4) again provides 15920382 [again] but (0.3,0.4) $\rightarrow 3367578$!

Although the initial parts of the mappings differ (they are transients) the final periodic orbits are mirror images of one another and the "equations of motion" are indeed unchanged if one changes the signs of both q and p.

Although the 15920382 points are too many to plot we can look at 0.01% of them after the transients have disappeared. We find that the two orbits are congruent !

* Motivated by Dellago and Hoover's rediscovery and investigations of a nice Periodic orbit paper : Grebogi, Ott, and Yorke, Physical Review A 38, 3688 (1988) .

I am curious whether or not C generates the same periodic orbit as FORTRAN .

Understanding the Source of Irreversibility Through the Baker Map

Suppose we solve the equilibrium Baker Map starting at $(0.6,0.8)$ with single precision . We notice that the (coordinate,momentum) pairs repeat every 15920382 iterations :

0.258040428	-0.376516074	17414024
0.258040428	1.02718401	17441609
0.258040428	0.689610183	19365593
0.258040428	-0.376516074	33334406
0.258040428	1.02718401	33361991
0.258040428	0.689610183	35285975
0.258040428	-0.376516074	49254788

Suppose we start at (0.6,-0.8) instead. Then we see :
$7.05265850 \mathrm{E}-02$-0.822517037 9952250
$7.05265850 \mathrm{E}-02-0.82251703725872632$
$7.05265850 \mathrm{E}-02$-0.822517037 41793014
Again notice the (coordinate,momentum) pairs repeat every 15920382 iterations :
A search reveals that the q coordinates from the two initial conditions don't match .
7. Understanding the Source of Irreversibility through the Baker Map :

Even at Equilibrium we see the analogs of repellor/attractor pairs .
All of the details of the 15920382 periodic-orbit points are present .
Note the inverted (q, p) scales
These plots are identical !

Understanding the Source of Irreversibility Through the Baker Map
Even at Equilibrium we see the analogs of repellor/attractor pairs . All of the details of the 15920382 periodic-orbit points are present . At equilibrium there are two mirror-image periodic orbits . They have identical lengths roughly equal to the square root of the number of state points . This is what we would "expect" from the Birthday Problem.

Let's look at the much simpler problem of a Nonequilibrium Steady State, where a portion of the map (2/3) undergoes compression independently of the direction of time.

N people are in the room . Are their Birthdays different?
Probability that Second person's birthday is different =(1-1/365)
Second and Third $=(1-1 / 365)(1-2 / 365) \ldots$ [integrate the log]
$\mathbf{N}^{2} /(2 \times 365)=1 / 2 \rightarrow \mathbf{N}=\sqrt{ } \mathbf{3 6 5}=19$

An exacting calculation shows that 23 is the first probability to exceed $1 / 2$. In our Baker Map example the number of states is around 10^{16}. Let's consider the Nonequilibrium Baker Map next .

7. Time Reversibility of the Nonequilibrium Baker Map

ANY TRANSFORMATION THAT IS ERGODIC HAS SOME COMPRESSION AND EXPANSION . MOST OF THE MAP CORRESPONDS TO COMPRESSION GIVING A STRANGE ATTRACTOR .

Lyapunov Exponent Calculation for the Baker Map

2/3 of the measure (upper row) expands by $3 / 2$ while $1 / 3$ of the measure expands three fold so that $\lambda_{1}=(2 / 3) \ln (3 / 2)+(1 / 3) \ln 3=0.63651$. The smaller Lyapunov exponent is $(2 / 3) \ln (1 / 3)+(1 / 3) \ln (2 / 3)=$ -0.86756 . The sum should be $-(1 / 3) \ln (2)=-0.23105$ and is! 个 Compression/Expansion = 2 for a mean value of $2^{1 / 3}$.

7. Time Reversibility of the Nonequilibrium Baker Map

BAKER MAP REPELLOR
BAKER MAP ATTRACTOR
[Reversed in Time by using the Reversed Map : $\mathcal{R}=\mathcal{T A} \mathcal{A}$]

7. Time Reversibility of the Nonequilibrium Baker Map

```
do 60 it = 1,500 000
if(q+p.lt.-dsqrt(2.0d00/9.0d00)) then
qp = 11*q/6.0d00 + 7*p/6.0d00 + dsqrt(49.0d00/18.0d00)
\rhop = 11*p/6.0d00 + 7*q/6.0d00 + dsqrt(25.0d00/18.0d00)
endif
if(q+p.gt.-dsqrt(2.0d00/9.0d00)) then
qp = 11*q/12.0d00 + 7*p/12.0d00 - dsqrt(49.0d00/72.0d00)
pp = 11*p/12.0d00 + 7*q/12.0d00 + dsqrt( 1.0d00/72.0d00)
endif
q=qp
p = pp
write(100,*) q,p
continue
```

The repellor is no more difficult to construct than was the attractor. This FORTRAN program used the original Baker mapping with (q, p) replaced everywhere by ($q,-p$)

7. Time Reversibility of the Nonequilibrium Baker Map

One might well expect that the TBT mapping, because it can easily be checked to confirm that it returns to the previous (q, p) point, would generate the same attractor as was obtained by the forward mapping .

What happens is "something completely different". Because reversing would be expected to preserve the attractor it is suprising to see instead a Repellor, with velocities opposite to those of the Attractor . Reversing would imply expansion of area, which is impossible in a bounded space.

Overall this is exactly the same experience that one would see with an irreversible movie. After seeing many "frames", half a million in the Baker case, that all follow the same pattern , the time symmetry is broken and the highly-unlikely Lyapunov-unstable Repellor states are generated instead. The Baker Map is a good analog of the same reversibility lessons that we can learn from continuous particle flows .

7. Time Reversibility of Nonequilibrium Steady States

The Baker Maps nicely illustrate that the competition between expansion and compression is necessarily won by compression. Although any history that we generate simply follows a moving point, which can't change area, a collection of these points, as described by the Liouville Theorem can never expand in a steady state . Liouville requires compression, which is why we invariably observe fractal strange attractors in nonequilibrium steady states. Although this lesson is most easily seen for simple maps it is evident that the same mechanism, Changing Phase Volume \rightarrow Irreversibility and Strange Attractors
is also seen in the manybody systems to which molecular dynamics can be applied.
A second lesson, from the ϕ^{4} model, is that dimensionality loss is not limited to the phase-space coordinates which are thermostated. Because the phase-space offset vectors (satellite minus reference) rotate much more rapidly than they grow or decay it is feasible to see an overall dimensionality loss which greatly exceeds the number of thermostated pairs of phase-space coordinates. Our simple few-body models lead to an understanding of many-body ones and to an understanding of thermodynamic irreversibility. We discuss the ϕ^{4} model in the next lecture .

[^0]: * Is this obvious ?

[^1]: * For this problem we developed a hybrid algorithm in which the reference trajectory is bit-reversible while fourth-order Runge-Kutta computation propagates the satellite trajectory (or trajectories).

[^2]: * Hoover , Posch , and Campbell , Chaos 3, 325-332 (1993)

