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Kharagpur Lecture 9
Lyapunov Instability , Spectra , Fractals

1.  Pendulum Lyapunov Spectrum by Rescaling
2. Systematics of the Gram-Schmidt Orthonormalization Algorithm
3.  Lyapunov Spectra by Lagrange Multipliers
4.  Lyapunov Spectra by Linearization ( “tangent space” )
5. Spectra for Various Mesoscopic Systems
6. Dimensionality Loss in Nonequilibrium Systems
7. Revisiting the Nonequilibrium Baker Map with Poincaré
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1. Lyapunov Instability , Spectra , Fractals
Lyapunov instability implies exponential growth of d à d(0) exp[ +lt ] . 
Areas and Volumes in phase space grow exponentially too: exp[ +Slt ] . 
The growth rate of an area is l1 + l2 and of a volume l1 + l2 + l3 .
Evidently in a 2N-dimensional phase space there are 2N exponents .
In Hamiltonian mechanics the sum of all these exponents is zero !
This follows from Liouville’s Theorem à (df/dt) = 0 .
Conservation of probability (fÅ) gives also :
dln (fÅ)/dt = (dln f/dt) + (dln Å/dt) = 0 à (d ln Å/dt) = S l = 0 .
Liouville’s Theorem shows that (fÅ) and f and Å are all conserved in
Hamiltonian flows .  This is true instantaneously and time-averaged .
In order to understand this better let us illustrate all of these ideas with
the springy pendulum problem , where H = (p2/2) + y + 2(L – 1)2 .
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1. Lyapunov Instability , H = (p2/2) + y + 2(r – 1)2

There are four motion equations:
(dx/dt) = px ; (dy/dt) = py ;

(dpx /dt) = – 4(x/r)(r – 1) ; (dpy /dt) = – 4(y/r)(r – 1) – 1 .
Let us solve five copies all together , separated in four orthogonal
phase-space directions by an “infinitesimal delta = 0.000001” :
x1 = xr + delta ; y1 = yr ; px1 = pxr ; py1 = pyr
x2 = xr ; y2 = yr + delta ; px2 = pxr ; py2 = pyr
x3 = xr ; y3 = yr ; px3 = pxr + delta ; py3 = pyr
x4 = xr ; y4 = yr ; px4 = pxr ; py4 = pyr + delta
[ Reference { xr,yr,pxr,pyr } and four satellites ]

Provided that we can keep the solutions orthogonal the four offsets
can be rescaled at every timestep to determine the four { li } .  We
have seen that rescaling the reference-to-satellite distance à l1 . 

1. Lyapunov Instability for H = (p2/2) + y + (k/2)(r – 1)2

At the end of the first timestep we get 5 new values of { x,y,px,py } .
d1 =(r1 – rr)à d which gives us the instantaneous l1 . This is
the logarithm of the scale factor ( d / d1 ) divided by -dt .  Just as is
usual we will get a sum of these instantaneous { l1 } to get < l1 > . 
Next we force d2 =(r2 – rr) to remain orthogonal to d1. To do
this we remove the projection of d2 in the direction of d1 :

d2 = d2 – d1 (d1 • d2 ) /(|d1| |d2|) .
We repeat this orthogonalization step for d3 and d4 . Rescaling d2
gives the instantaneous l2 . Next force d3 =(r3 – rr) and d4 to
remain orthogonal to d2 .  Rescaling  d3 gives l3 . Finally we remove
the projection of d4 parallel to d3 and rescale d4 to get the fourth
and last of the instantaneous Lyapunov exponents l4 .
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2. Lyapunov Instability for H = (p2/2) + y + (k/2)(r – 1)2

Let us summarize the procedure giving the four exponents :
1. Integrate the 20 equations with RK4 to get { d1 , d2 , d3 , d4 } .
2. Rescale d1 to get l1 .
3. Remove the projections of { d2 , d3 , d4 } parallel to d1 .
4. Rescale d2 to get l2 .
5. Remove the projections of { d3 , d4 } parallel to d2 .
6. Rescale d3 to get l3 .
7. Remove the projection of { d4 } parallel to d3 .
8. Rescale d4 to get l4 .
This 8-step procedure is followed for every timestep .  It is
called “Gram-Schmidt” orthonormalization .  With N equations
the number of multiplies is of order N4 .  The N d vectors have
O(N2) dot products which are calculated O(N) times with each
dot product requiring N multiplies .

H = (p2/2) – r cos(q) + (k /2)(r – 1)2

* Is this obvious ?

Lyapunov Instability for H = (p2/2) + y + (k /2)(r – 1)2

Some observations from the springy pendulum problem :
1.  The four exponents sum to zero ( Liouville )
2.  Soon l1(t) = - l4(t) and l2(t) = - l3(t) ( “pairing” ) *

3.  Knowing this we need only to measure < l1(t) > = l1

4.  We could just as easily use polar coordinates à
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Lyapunov Instability for
H = (p2/2) – r cos(q) + (k /2)(r – 1)2

With the pendulum horizontal and the motion radial with H = 1 .

We use the Lagrangian [ (dr/dt)2 + (rdq/dt)2 ] /2 to rewrite ( p2/2 ) :

pr = (dr/dt) and pq = r2(dq /dt) so that ( p2/2 ) = [ pr
2 + (pq

2/r2) ] /2 
In polar coordinates with k = 4 the equations of motion are :

( dr/dt ) = pr ; ( dpr /dt ) = ( pq
2/r3 ) – 4(r – 1) – cos(q)

( dq/dt ) = ( pq /r2 ) ; ( dpq /dt ) = – r sin(q)

Let us compare the first one million iterations
using dt = 0.001 and both coordinate systems .

Lyapunov Instability for Polar and Cartesian Coordinates

Polar

Cartesian

log	(	0.001	<	time	<	1000	)

<	l >	
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Lyapunov Instability for Polar and Cartesian Coordinates*

In either Cartesian or
Polar coordinates the
time-reversibility of the
motion equations gives
“pairing” with

P( +l1 ) = P( -l4 ) and
P( +l2 ) = P( -l3 ) .

The distributions depend
on the coordinate system .

* For more details see Time Reversibility, Computer Simulation, Algorithms, Chaos (2012 ) page 31 .

3.  Calculation of Lyapunov Spectra by Lagrange Multipliers

Let us detail the calculation of a single Lyapunov exponent l1
using a Lagrange multiplier .  As before we have a “reference”
trajectory and a “satellite” trajectory constrained to remain at
a fixed distance d from the reference . 
[ 1 ]  Solve the reference : (dxr /dt) = f(xr) with RK4 or RK5 .
[ 2 ]  Solve constrained satellite : (dxs /dt) = f(xs) – l(xs – xr)
The multiplier l enforces the constraint that | xs – xr | = d .

(xs – xr)[ f( xs ) – l(xs – xr) – f( xr ) ] = 0 à
(xs – xr)[ f( xs) ) – f( xr ) ] / (xs – xr)2 = l

As an amazing fringe benefit the Lagrange Multiplier is l1 !
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4.  Calculation of Lyapunov Spectra in “tangent space”
(dx/dt) = px ; (dy/dt) = py ;

(dpx /dt) = – 4(x/r)(r – 1) ; (dpy /dt) = – 4(y/r)(r – 1)  – 1 .

To begin , Linearize the Cartesian motion equations in terms of

The infinitesimal tangent-space vector (dx, dy, dpx, dpy ) :
ddx/dt = dpx and ddy/dt = dpy

ddpx/dt =  – 4dx[ 1 – (1/r) ] – 4(x2dx/r3) – 4(xydy/r3)

ddpy/dt = – 4dy[ 1 – (1/r) ] – 4(y2dy/r3) – 4(xydx/r3)
Arbitrarily choose d to be a unit vector :  | (dx, dy, dpx, dpy ) | = 1 .

We solve the four differential equations for the rotation of d .

4.  Calculation of Lyapunov Spectra in “tangent space”

Evidently	the	RK4	and	RK5	{	0.124	=	l = l1 }	agree	with	our	previous	work	.

time

< l1 >

time

< l1 >

[ Calculation is divided into ten batches in order to verify convergence ]
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Springy Pendulum Lyapunov Spectrum via Three Methods

Lyapunov spectra describe many-dimensional phase-space
deformation as well as the location of instabilities and
bifurcations in dynamical systems.  Consistent results can

be obtained using Rescaling, Lagrange Multipliers, or
Tangent-space algorithms . We studied an example problem
involving the inelastic collision of two balls previously ,
finding the most important particles forward and back à

1-4. Springy Pendulum Lyapunov Spectrum via Three Methods*
Lyapunov spectra describe many-dimensional phase-space
deformation in large or small-scale dynamical systems :

* For this problem we developed a hybrid algorithm in which the reference trajectory is bit-reversible
while fourth-order Runge-Kutta computation propagates the satellite trajectory ( or trajectories ) .
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2 – 4 . Applications of the three different
methods for determining Lyapunov spectra

0.  Gram-Schmidt Orthonormalization is Essential
1.  Simple Numerical Rescaling at Every Step
2.  Lyapunov Spectra by Lagrange Multipliers

3.  Lyapunov Spectra by Linearization ( tangent space )

2 - 4. Systematics of the Gram-Schmidt Orthonormalization Algorithm

Here are the steps to be carried out at the end of each timestep :

d1•d1 à d1,l1
d1•dJ à dJ for J > 1
d2•d2 à d2,l2

d2•dJ à dJ for J > 2
• • •

dN•dN à dN,lN

Rescale the first vector, getting d1,l1
Remove projections on d1

Rescale the second vector, getting d2,l2

Remove projections on d2

• • •
Repeat until the whole spectrum results
[ This can be done at every timestep . ]

Next	:
Applications	of	the	three	methods	for	determining	Lyapunov spectra
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5. Equilibrium Spectra Resemble Solid-State Debye Spectra

Spectrum for four fluid particles in three space dimensions .
There are 24 exponents including 8 zeroes, 8 > 0 , and 8 < 0 .
Why are there 8 zeroes ?  Note that the exponents are paired .

Journal of Chemical
Physics 87, 6665-6670
( 1987 ) .

5.	Here	are	Four	Small-System	Equilibrium	Spectra	in	2D	and	3D*

Periodic Boundaries

Short-Ranged Repulsive Forces
+/- Symmetry for the exponents’

Zeroes { D for r , D for p , E and t }

No zero exponents are shown .
Instantaneous Pairing is Typical .

Shear flows are all laminar with 
Reynolds’ Number circa 50 .

* From Posch and Hoover, Physical Review A 39, 2175-2188 (1989) .
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6.	Nonequilibrium Shear	Flow	Driven	by	Moving	Boundaries

f(r < 1) = 100(1 – r2)4

Boundary mass = 1
and the horizontal

temperature is unity

Notice that Pxy is
negative ( so that
h is positive )

l1 = 8.7
l69 = -43

There is a negative shift of exponents, particularly the last few .
The sum of exponents changes sign between 63 and 64 terms .
This means there is a strange attractor with dimension 63.91 .

6.	More	Shear	Flows	Driven	by	Moving	Boundaries
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* Posch and Hoover, Physical Review A 39, 2175-2188 ( 1989 )

Similar	in	3D	so	that	the	dimensionality	reduction	is	relatively	small

6. Spectra Bear a Resemblance to Solid-State Debye Spectra
But That Interesting Shift Occurs Away from Equilibrium !
1987 Conference Talk , Santa Trada Italy , Posch + Hoover

Here the Power Law is 0.38, not 1/3
The Dimensionality Loss is ≈ 20 .

Here	the	potential	is	the	repulsive	part
of	the	Lennard-Jones	potential	with	r
=	0.5	and	T	=	1.0	.		There	are	32	particles
and	192	Lyapunov exponents	.		A	field
Fe =	3	drives	half	of	the	particles	to	the
right	and	half	to	the	left	.		An	Amazing
Observation is	that	the	sum	of	all	the
exponents	is	negative	,	indicating	that
the	phase	volume	is	zero	!		Temperature
is	kept	fixed	by	using	Gauss’	Thermostat	:

{	dp/dt =	F	– zp }	;	z =	- (	dF/dt )/2K	.
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The Idea of Heat Reservoirs Driving Nonequilibrium Systems
as in Ashurst’s Thesis led to an explanation of Irreversibility
From Time-Reversible Nonequilibrium Molecular Dynamics .

1987 Conference Talk at
Monterey California . Work
by Bill Hoover , Bill Moran,

Brad Holian , Harald Posch .
The stability of the simulation
provides a mechanical proof
of Thermodynamics’ 2nd Law .

Thermal Heat Reservoirs via Gauss' Principle of Least
Constraint ; Disssipation, Chaos, and Phase-Space
Dimensionality Loss in One-Dimensional Chains*

W G Hoover, H A Posch, and L W Campbell, Chaos 3, 325-332 ( 1993 ) .

The Heat Conductivity of a Harmonic chain diverges because the transport is ballistic .  We
decided to see what happens if a periodic chain is divided into two parts , each thermostated
Into two parts, one cold and one hot , using Gaussian thermostat variables z and additional
Lagrange multipliers h , to constrain S q , S p , S p2 so that the equations of motion are :

{	(dq/dt)	=	p	;	(dp/dt)		=	FH – zp – h ;	z = S FH p/	S p2 ;	h =	S FH / S 1	}

A six-particle chain with both kinetic temperatures T = 2 is a chaotic Hamiltonian system .
But partitioning the kinetic energy unequally , from ( 1.9,0.1 ) to ( 1.1,0.9 ) gives spectra
corresponding to dissipative limit cycles ( no chaos ) .  An eight-particle chain behaves
differently , with a ( chaotic ) spectrum for temperature differences up to DK = 1.4 .
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Thermal Heat Reservoirs via Gauss' Principle of Least
Constraint ; Dissipation, Chaos, and Phase-Space
Dimensionality Loss in One-Dimensional Chains*

6. Stationary States from HOT + COLD Harmonic Chains – a six or eight-
particle chain is enough for chaos .  Of the 2N Lyapunov exponents seven 
necessarily vanish , those representing the displacements , momenta ,
and kinetic energies of both regions plus motion in the trajectory direction . 
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Thermal Heat Reservoirs via Gauss' Principle of Least
Constraint; Disssipation , Chaos , and Phase-Space

Dimensionality Loss in One-Dimensional Chains*

The harmonic model requires relatively intricate programming in order to maintain
the six constraints ( center-of-mass position and momentum and temperature for
both halves of the problem ) .  There is an additional zero exponent corresponding
to an offset in the direction of the trajectory motion .  The f4 model is considerably
easier to implement and provides dimensionality losses with robust chaos .

Although Hamiltonian chaos is fascinating , with its mixture of chaotic and regular
solutions , thermostated systems which avoid that complexity are certainly a more
desirable approach to understanding nonequilibrium stationary states .  The flow
from an unstable repellor to a chaotic fractal attractor is far simpler than Hamiltonian
chaos .  The repellor/attractor structure can be seen in the smallest one-body models
with either impulsive or continuous forces or even with two-dimensional maps .

* Hoover , Posch , and Campbell , Chaos 3 , 325-332 ( 1993 )

The Reversibility of the Equations of Motion Implies the
Presence of Attractor + Repellor Pairs of Fractal Objects

Hoover,	Physical	Review	A	37,	252-257 (	1	January	1988	)
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The Reversibility of the Equations of Motion Implies the
Presence of Attractor + Repellor Pairs of Fractal Objects

Nonequilibrium Systems	driven	by	Time-Reversible	motion
equations	produce	symmetric	phase-space	flows	from	a
MultiFractal Zero-Volume	Repellor to	a	Mirror-Image
attractor	.		The	mirror	image	corresponds	to	time	reversal	.
Zero	phase	volume	explains	the	rarity	of	nonequilibrium
stationary	states	.		In	addition,	the	repellors have	a	positive
Lyapunov exponent	sum	corresponding	to	mechanical
instability	and	unobservability .		These	features	are	fully
consistent	with	the	Second	Law	of	Thermodynamics	.

Summary of the Situation in 1987-1990

Gauss’ Principle of Least Constraint and Nosé-Hoover mechanics
made it possible to simulate stationary nonequilibrium flows for
systems of 100 or so particles with 4N or 6N equations of motion
in two or three space dimensions .  Although the equations were
always time-reversible the results never were .  Inevitably motion
collapses onto a “strange attractor”.  The dimensionality of the
attractor lies between the number of exponents in the last sum
greater than zero and the first negative sum .  Evidently the
phase-space distribution is ( multi ) fractal and with zero volume
relative to the equilibrium phase space. ( to be continued . . . )
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6. An updated  version of the Baker Map

The	Baker	Map’s	mixing	mechanism	resembles	that	of	a	Baker	kneading	bread	dough	.		First	,
stretch in	the	x	direction	.		Second	,	make	a	central	vertical	cut .		Third	,	replace the	right		half
atop	the	left	.		This	three-step	process	introduces	new	information	in	the	x	direction	while
aiscarding information	in	the	y	direction	.		As	a	result	,	a	computer	simulation	of	the	Baker
Map	is	doomed	to	fail	after	a	few	dozen	iterations	,	converging	to	the	fixed	point	at	the	upper
righthand corner	of	the	mapped	area	.

Because	of	our	interest	in	time	reversibility	we	consider	here	a	rotated Baker	Map	(	suggested
by	Bill	Vance	]	.		Not	only	does	this	modification	introduce	reversibility	,	so	that	TBT	=	B-1 ,	it
is	also	is	a	permanent	source	of	“noise”	due	to	the	square	roots	which	are	a	consequence	of	the
rotation	operation	.		This	uptodate Baker	Map	is	a	great	analog	of	nonequilibrium mechanics	.

• ••

7. An updated  version of the Baker Map

Information gleaned from an old model , the Baker Map , which was 
brought up-to-date by [ 1 ] a 45o rotation and [ 2 ] a provision for

phase-space area change , corresponding to dissipation .  The use

of maps , rather than flows , means that chaos can be seen in just

Two phase-space dimensions , not just the Three required for flows .
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An Updated Version of the Baker Map
including the 45-degree rotation

Understanding the Source of Irreversibility through the Baker Map
[ at and away from “equilibrium” and with single-precision arithmetic ]
This is the “equilibrium” case which preserves area in the mapping .

if(q.lt.p) then
qnew = +1.25*q - 0.75*p + sqrt(1.125)
pnew = -0.75*q + 1.25*p - sqrt(0.125)

endif

if(q.gt.p) then
qnew = +1.25*q - 0.75*p - sqrt(1.125)
pnew = -0.75*q + 1.25*p + sqrt(0.125)

endif

The	plot	is	composed	of	500	000	points	(	gnuplot dots	)	starting	with	(	qp )	=	(	0.6,0.8	)	.
The	dots	are	part	of	the transient	portion	leading	to	a	periodic orbit	with	15 920 382 .

q

p
Notice	!	Single	precision	throughout	!
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7. Understanding the Source of Irreversibility Through the Baker Map
Suppose we solve the equilibrium Baker Map starting at (0.6,0.8) with single precision .
I noticed that the ( coordinate,momentum ) pairs repeat every 15 920 382 iterations . *
The next idea was to generate a [ time-reversed ] trajectory starting with (0.6,-0.8) .
A search reveals that the q coordinates from the two initial conditions don’t match .
A factorization shows that 15 920 382 = 2 x 3 x 41 x 64 717 which is mysterious !
Starting with (0.3,-0.4) again provides 15 920 382 [ again ] but (0.3,0.4) à 3 367 578 !

Although the initial parts of the mappings differ ( they are transients ) the final periodic
orbits are mirror images of one another and the  “equations of motion” are indeed
unchanged if one changes the signs of both q and p .

Although the 15 920 382 points are too many to plot we can look at 0.01% of them
after the transients have disappeared.  We find that the two orbits are congruent !

* Motivated by Dellago and Hoover’s rediscovery and investigations of a nice
Periodic orbit paper : Grebogi, Ott, and Yorke, Physical Review A 38, 3688 (1988) .

I am curious whether or not C generates the same periodic orbit as FORTRAN .

7. Understanding the Source of Irreversibility Through the Baker Map

There is no apparent
symmetry between

the centered plots of
width 0.02 and height

0.02 .  

Looking at the tops
or bottoms of the

two plots revealed a
similar lack of any

symmetry .  

Why are the periods
Identical ?
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Understanding the Source of Irreversibility Through the Baker Map

Suppose we solve the equilibrium Baker Map starting at (0.6,0.8) with single precision .
We notice that the (coordinate,momentum) pairs repeat every 15 920 382 iterations :
0.258040428     -0.376516074        17414024
0.258040428       1.02718401        17441609
0.258040428      0.689610183        19365593
0.258040428     -0.376516074        33334406
0.258040428       1.02718401        33361991
0.258040428      0.689610183        35285975
0.258040428     -0.376516074        49254788

Suppose we start at (0.6,-0.8) instead .  Then we see :
7.05265850E-02 -0.822517037         9952250
7.05265850E-02 -0.822517037        25872632
7.05265850E-02 -0.822517037        41793014
Again notice the (coordinate,momentum) pairs repeat every 15 920 382 iterations :

A search reveals that the q coordinates from the two initial conditions don’t match .

ß (q,p) and iteration
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7. Understanding the Source of Irreversibility through the Baker Map :
Even at Equilibrium we see the analogs of repellor/attractor pairs .

All of the details of the 15 920 382 periodic-orbit points are present .
Note	the	inverted	(q,p)	scales																												These	plots	are	identical	!
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Understanding the Source of Irreversibility Through the Baker Map

Even at Equilibrium we see the analogs of repellor/attractor pairs .

All of the details of the 15 920 382 periodic-orbit points are present .
At equilibrium there are two mirror-image periodic orbits .  They have

identical lengths roughly equal to the square root of the number of
state points .  This is what we would “expect” from the Birthday

Problem .

Let’s look at the much simpler problem of a Nonequilibrium Steady
State , where a portion of the map (2/3) undergoes compression
independently of the direction of time .

N people are in the room .  Are their Birthdays different ?
Probability that Second person’s birthday is different = ( 1 – 1/ 365)
Second and Third = ( 1 – 1/365) ( 1 – 2/365) . . .  [ integrate the log ]
N2/( 2 x 365 ) = ½ à N = √365 = 19

An exacting calculation shows
that 23 is the first probability
to exceed ½ .  In our Baker
Map example the number of
states is around 1016 .  Let’s
consider the Nonequilibrium
Baker Map next .

Wikipedia
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7. Time Reversibility of the Nonequilibrium Baker Map

BEFORE AFTER

ANY TRANSFORMATION THAT IS ERGODIC HAS SOME COMPRESSION AND EXPANSION .
MOST OF THE MAP CORRESPONDS TO COMPRESSION GIVING A STRANGE ATTRACTOR .

à

à

Reversed in Time

à
à

Past  à Present à Future

The	strains	for	the	upper	two	regions	are
(	3	;	2/3	)	and	for	the	lower	(	3/2	;	1/3	)	.
These	strains	correspond	to	area	changes
of	2	at	the	top	and	1/2	at	the	bottom	.

The	time-reversed	version	of	the	Baker	Map
B	is	TBT ,	where	T	changes	(	q,p )	à (	q,-p	)	.

qàP	
à
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Lyapunov Exponent Calculation for the Baker Map

2/3 of the measure ( upper row ) expands by 3/2
while 1/3 of the measure expands three fold so
that l1 = (2/3)ln(3/2) + (1/3)ln 3 = 0.63651 . The
smaller Lyapunov exponent
is (2/3) ln(1/3) + (1/3) ln(2/3) =
-0.86756 .  The sum should be
-(1/3)ln(2) = -0.23105 and is !
Compression/Expansion = 2
for a mean value of 21/3 .

7. Time Reversibility of the Nonequilibrium Baker Map

BAKER MAP REPELLOR                           BAKER MAP ATTRACTOR
[ Reversed in Time by using the Reversed Map : R = TAT ]

R A
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7. Time Reversibility of the Nonequilibrium Baker Map

The repellor is no more difficult to
construct than was the attractor .  This
FORTRAN program used the original Baker
mapping with ( q,p ) replaced everywhere by ( q,-p )

7 . Time Reversibility of the Nonequilibrium Baker Map

One might well expect that the TBT mapping , because it can easily be
checked to confirm that it returns to the previous ( q,p ) point , would
generate the same attractor as was obtained by the forward mapping .

What happens is “something completely different” .  Because reversing
would be expected to preserve the attractor it is suprising to see instead
a Repellor , with velocities opposite to those of the Attractor . Reversing

would imply expansion of area , which is impossible in a bounded space .

Overall this is exactly the same experience that one would see with
an irreversible movie .  After seeing many “frames” , half a million in

the Baker case , that all follow the same pattern , the time symmetry is
broken and the highly-unlikely Lyapunov-unstable Repellor states

are generated instead.  The Baker Map is a good analog of the same
reversibility lessons that we can learn from continuous particle flows .
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7 . Time Reversibility of Nonequilibrium Steady States
The Baker Maps nicely illustrate that the competition between expansion and

compression is necessarily won by compression . Although any history that we 
generate simply follows a moving point, which can’t change area, a collection of 

these points , as described by the Liouville Theorem can never expand in a steady
state .  Liouville requires compression, which is why we invariably observe fractal 
strange attractors in nonequilibrium steady states .  Although this lesson is most

easily seen for simple maps it is evident that the same mechanism,
Changing Phase Volume à Irreversibility and Strange Attractors

is also seen in the manybody systems to which molecular dynamics can be applied .

A second lesson , from the f4 model , is that dimensionality loss is not limited to the 
phase-space coordinates which are thermostated . Because the phase-space offset 

vectors ( satellite minus reference ) rotate much more rapidly than they grow or 
decay it is feasible to see an overall dimensionality loss which greatly exceeds the 
number of thermostated pairs of phase-space coordinates . Our simple few-body 
models lead to an understanding of many-body ones and to an understanding of 

thermodynamic irreversibility .  We discuss the f4 model in the next lecture .


