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1. What is microscopic reversibility ?
2. What is the stability of the motion ?
3. Macroscopic Irreversibility
4. Shockwave Structure Dynamics
5. Shockwave Structure Models

microscopic	reversibility	and	MACROSCOPIC IRREVERSIBILITY

microscopic reversibility and MACROSCOPIC IRREVERSIBILITY

What is microscopic reversibility ?  Newtonian + Lagrangian + Hamiltonian
Mechanics can all be expressed in terms of coordinates and velocities or
momenta { q,p } .  The momenta are derivatives of the Lagrangian , L :

L =K – F ; { p = (∂L /∂q)q ; (dp/dt) = (∂L /∂q) }
and appear in the Hamiltonian H(q,p) .  The momentum p is the partial
derivative of the Lagrangian with respect to dq/dt . A “solution” of the
motion equations is either a time-ordered set of coordinates { q } or a
similar set of coordinate/momentum pairs { q,p } .
The “Leapfrog Algorithm”, q+ - 2qo + q - = dt2 (F/m)o gives coordinates { q }
while the Runge-Kutta gives pairs of phase variables { q,p }.  It is evident
that Leapfrog trajectories can be extended arbitrarily into the future or
past .  Future and past are interchangeable .  Just change the sign of { p } .

•
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What is microscopic reversibility ?  
Certainly	the	leapfrog	algorithm	,	which	generates	a	string	of	coordinates
equally	spaced	in	time	,	is time-reversible	.		Time	enters	into	the	motion
equations	as	(	dt )2 .		When	the	Lagrangian equations	of	motion	are	written
In	terms	of	the	second	derivatives	,	(	d2q/dt2 )	,	they	too	are	time-reversible	.
The	Hamiltonian	equations	of	motion	,	

(	dq/dt )	=	(	p/m	)	;	(	dp/dt )	=	F(	q	)	,
are	more	problematic	because	the	reversed	trajectory	breaks	the	usual
convention	that	momentum	is	the	time	derivative	of	the	coordinate	.		It
is	simpler	to	state	that	if	the	time-reversed	movie	of	the	motion	obeys	
the	same	motion	equations	as	those	in	the	original	forward	movie	,	the
motion	is	‘time-reversible”	.		It	is	my	view	that	this	is	a	good	definition	.
It	is	evident	that	if there	are	equations	describing	nature	well	they	are
not time-reversible	.		Nature	is	definitely	not	reversible	.

James	Gleick’s books	,	“Chaos	:
Making	a	New	Science”	and
“Time	Travel	:	A	History”	are
good	reading	.		Defining	“time”
has	puzzled	good	philosophers	.
We	will	be	happy	to	define	time
as	“What	a	Clock Measures”	.

We	will	make	the	usual	choice	:	a
particle	moving	to	the	right	has	a
positive	x	velocity	component	.
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microscopic	reversibility	and	MACROSCOPIC IRREVERSIBILITY

It is not evident that the Leapfrog algorithm is related directly to
Hamiltonian mechanics, but it is .  We just give one example .  If
the timestep dt and the mass and the force constant are all unity
the Leapfrog algorithm q+ - 2qo + q - = dt2(F/m)o gives this series
of repeating coordinates  for a harmonic oscillator and dt = 1 :

...,+1,+1,0,-1,-1,0,+1,+1,0,-1,-1...
With dt = 1 the motion equation is q+ = qo – q - .  Alternatively
we could use q+ + q - = qo which can be solved forward or back .

It is characteristic of microscopic motion equations that they
have this time-reversibility property .  The situation is quite
different in the mesoscopic or macroscopic cases where
irreversibility is the norm .

•

microscopic	reversibility	and	MACROSCOPIC IRREVERSIBILITY

There is a connection linking Leapfrog to Hamiltonian dynamics !

In order to see it consider Yoshida’s oscillator Hamiltonians :
H = (1/2)(q2 - qpdt + p2 ) or (1/2)(q2 + qpdt + p2 ) .

H generates exactly the same sequence of coordinates if one
starts with { q,p } = { 0,1 } or { 1,0 } .  The period is changed.  For
Yoshida’s Hamiltonian approach it is 2p√(4/3) rather than 6 .  This
correspondence shows explicitly that a drift-free energy can be
conserved by a finite-difference algorithm in both the future and
the past . We see that the Future and Past are interchangeable
for the usual types of classical mechanics .
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1. Two methods for generating  periodic oscillator orbits
Leapfrog method with a period 6 :
qnew = 2*qnow – qold – qnow

à qnew + qold = qnow

RK4 solutions of Hamilton’s
motion equations* using

2H ( q,p ) = p2 ± qpdt + q2

In the Hamiltonian case the period is (4/3)1/22p rather than 6 .

* Such an oscillator Hamiltonian was discovered by Yoshida .
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1. Two methods for generating  periodic oscillator orbits

2H ( q,p ) = p2 – qp + q2 [ Yoshida ]
( dq/dt ) = p – (q/2) ; ( dp/dt ) = – q + (p/2)

Because the equations are linear they have an analytic solution :

q = cos( w t ) ; p = - w sin( w t ) + (1/2)cos( w t ) where w = (3/4)1/2

The alternative better/faster method is fourth-order Runge-Kutta .

In this Hamiltonian case the period is (4/3)1/22p rather than 6 .
There is a “phase error” rather than an amplitude error . 
Are the motion equations reversible ? Not exactly , but

they could be made so by a rotation in the phase space .
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1. What is microscopic reversibility ?
The Nosé-Hoover oscillator , which Carol showed has Hamiltonian roots , is time-reversible .
The equations of motion, taken from the Dettmann Hamiltonian, reduce from four to three :

2H = p2/s + sq2 + sz2 + sln(s2) = 0 à
{ dq/dt = p/s ; dp/ds = – sq ;  ds/dt = sz ; dz/dt = (p/s)2 – 1 }

or { (d/dt)2q = – q – z(dq/dt) ; dz/dt = (dq/dt)2 – 1 } where
we can ignore the motion equation for (ds/dt) .

Alternatively , { dq/dt = p ; dp/dt = – q – zp ; dz/dt = p2 – 1 } .
This is reversible with p and z and dt changing signs .

Is the reversed motion stable as is { dq/dt = p ; dp/dt = – q } ?
Linearized perturbation theory reveals robust instability !

1. What is microscopic reversibility ?
The Nosé-Hoover oscillator, which Carol showed has Hamiltonian roots , is time-reversible .
The equations of motion, taken from the Dettmann Hamiltonian , reduce from four to three :

{ dq/dt = p ; dp/dt = – q – zp ; dz/dt = p2 – 1 } .
This quadratic set is reversible . p and z and dt change signs .

Is the reversed motion stable ? Unlike { dq/dt = p ; dp/dt = – q }
a linearized perturbation reveals robust instability !

The method involves starting with two neighboring solutions .
In the absence of Benettin’s idea that neighboring solutions

be constrained , the separations soon become macroscopic .
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1. What is microscopic reversibility ?
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{ (dq/dt) = p ; (dp/dt) = – q – zp ; (dz/dt) = p2 – 1 }
[ local ] Lyapunov exponent estimates without rescaling .
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1.		Microscopic	Reversibility	provides	Lyapunov Instability

<	l >

0  <  log(time)  <  2
Results	with	three	initial	conditions,	dq	or	dp or	dz =	0.000001	.
The	long-time-averaged	Lyapunov exponent	is	0.0139	.

à 0.0139



11/25/16

7

1.		Microscopic	Reversibility	provides	Lyapunov Instability

<	l >

time

Results	with	three	initial	conditions,	dq	or	dp or	dz =	0.000001
have	all	converged	to	similar	average	values	at	time	=	10	000	.
<	l >	=	0.0139	at	time	=	40	000	000	using	dt =	0.002	and	RK4	.

Three estimates using Benettin’s rescaling idea
rather than allowing d to become macroscopic

Q: Why is the direction of the perturbation irrelevant ?
A: The direction of most rapid growth wins out soon !

We demonstrate with an example in which one variable is unstable
and the other one is not .  { dq/dt = q ; dp/dt = 0 } .  We consider the
evolution of a linear perturbation ( dq,dp ) constrained to have unit
length by the Lagrange multiplier l :

ddq/dt = dq - ldq ; ddp/dt = - ldp à l = dq
2 / (dq

2 + dp
2 ) 

To solve the differential equations use (dq,dp) = ( +cos(q),- sin(q) ) .

- sin(q) (dq/dt) = +cos(q) - cos3(q) à (dq/dt) = - sin(q)cos(q)

which has the solution dq = [ 1 + e- 2t ]-½ ; dp = - [ 1 + e+ 2t ]-½

This example demonstrates that the dominant growth direction
wins out over all the others exponentially fast .
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2. What is the stability of the motion ?

Consider the motion of a mass point on a stationary ball .

y

x

Initially (x,y) = ( 10-6,1.1 )
with a gravitational field
strength of 1 where the 
ball radius is 1 .  The total
number of bounces is
16 within a time of 13.92 .
* Aleksandr Lyapunov linear scale à

*

2. What is the stability of the motion ?
Consider the motion of a mass point on a stationary ball .

x

Initiallly (x,y) = ( 10-6,1.1 )
with a gravitational field
strength of 1 .  The total

number of bounces is
16 within a time of 13.92 .

l ≈ 6 x ln(10) /14 ≈ 1

y

d ≈	e+lt

log scale à
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2. What is the stability of classical motion ?
The Bouncing Ball Problem is typical :

Time-reversible equations of motion ;
Logarithmic measure of instability , l ;
l  depends on the past , not the future .

Many-Body Problems are more typical , but
they are more difficult to treat numerically .

Lyapunov analysis provides an Arrow .
We consider a manybody collision in
which Time’s Arrow is clearly evident .
We can understand IRREVERSIBILITY !

2. What is the stability of classical motion ?

Mesoscopic motion ( molecular dynamics simulations )  obeys the Second Law .  One way to see
this is to simulate a noticeably irreversible process .  Thus we consider the inelastic collision of
two 400-particle balls .  All 800 particles interact with a repulsive pair potential, ( 1 – r2 )4 .  The
attraction is furnished by an additional “embedded-atom” potential , S (1/2)( r – 1)2 , where each of 
the 800 terms in the sum depends on the deviation of the particle densities from unity .  The
particle densities are computed from Lucy’s weight function with a range of h = 3.5 ; here z = r/h  :

w(r < h = 3.5 ) = ( 5/ph2 )[ 1 + 3z ] [ 1 – z ]3 .  
In the continuum descriptions of macroscopic flows it is usual to use Newtonian viscosity and
Fourier heat conduction to describe the irreversible processes involving dissipation and transport .
These processes are irreversible in the sense that a reversed flow no longer satisfies the same
motion equations .  Fourier’s Law, Qx = -k ( dT/dx ) , that heat flows from hot to cold furnishes the
simplest example .  If the flow is instantaneously reversed ( changing the signs of all of the
velocities ) the heat flux will also be reversed but the temperature will remain unchanged .  In the
artificial reversed flow heat flows from cold to hot which would correspond to a negative heat
conductivity ( k < 0 ) and a violation of the Second Law of Thermodynamics .  Although the
dynamics of a few particles can violate the “law” for a short time 800 particles are enough to be
described by macroscopic phenomenological constitutive equations .  We will illustrate this now .
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2. What is the stability of classical motion ?
Here is a mesoscopic inelastic collision :

*

The stability of motion via “the” Lyapunov Exponent
At any time the direction of the Lyapunov instability vector ( satellite – reference )
can be determined by following two trajectories with the separation between them
constrained ( this is the Benettin + Shimada + Nagashima idea of 1979-1980 ) .  By
looking at the components of the vector one can identify the “important” particles
at any time .  It is good manners to recognize that these “local-exponent” properties
depend upon the choice of coordinate system, which causes mathematicians to fret .

In the previous ( forward view ) it is the leading-edge particles which contribute most
to the Lyapunov instability .  In the following ( backward reversed-velocity view ) the
important particles are the surface particles undergoing plastic strain .  Such a
calculation could not be reversed in continuum mechanics as the flow equations
are not time-reversible .

Although microscopic Newtonian mechanics is reversible the reversed results are
completely unstable and can only be obtained by storing or using Levesque-Verlet .
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2. What is the stability of classical motion ?
Here is the mesoscopic inelastic collision :

*

2. What is the stability of classical motion ?
Here is the mesoscopic inelastic collision 

with Forward at left, Backward at right .
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2. What is the stability of classical motion ?
Strain rate changes sign ;

Stress does not !

.2. What is the stability of classical motion ?

The Second Law is readily apparent in these plastic flows or in shear
flows or in heat flows .  In a viscous fluid the shear stress is proportional
to the strain rate in a thermostated isochoric flow .  In a heat flow the
heat flux Q is proportional to the temperature gradient :

- Pxy = sxy =	h [	(du/dy)	+	(dv/dx)	]	;	Qx =	- k (dT/dx)	.
We know from the virial theorem and the heat theorem that the stress
and the temperature gradient are independent of time reversal while
the strain rate and the heat flux are not .  Any flow which obeys the
phenomenological linear laws can easily be detected by computing h 
and k .  If these transport coefficients are negative the motion has
been reversed !  There is an obvious arrow of time with dt > 0 having
normal transport coefficients and dt <  0 having abnormal ones .
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The	Second	Law	is	automatically	satisfied	in	the	phenomenological
models	used	in	shockwave	simulations	.		Viscoelastic	models	of
material	response	stress	the	parallel	structures	of	homogeneous
linear	elasticity	and	fluid	linear viscosity	:

sxx =	2h(du/dx)	+	l[	(du/dx)	+	(dv/dy)	]	
and sxy =	 h[	(du/dy)	+	(dv/dx)	]	and

syy =	2h(dv/dy)	+	l[	(du/dx)	+	(dv/dy)	]	.
In	two	dimensions	h is	shear	viscosity	or	shear modulus	while
l + h is	the	bulk	viscosity	or	bulk modulus	.		(u,v)	are	displacements
or	velocities	.		The	products	of	stress	times	strain	or	strainrate
correspond	to	work	done	in	the	elastic	case	and	rate	of	heating	in
the	viscous	case	.		The	elastic l and h are	the	Lamé constants	.

3. Macroscopic Irreversibility ?

4. Irreversibility in Joule-Thomson Expansion ? *

The Second Law is likewise satisfied in adiabatic throttling ,
which will cool or heat the fluid through energy conservation .
In such a flow the throttling mechanism is a potential barrier .  

In this simulation we use
a quartic pair potential :

f( r < 1) = ( 1 - r2 )4

and a quartic barrier :
f( | x | < 1) = ( 1 - x2 )4

The system is 200 x 40 .
* Hoovers and Travis, PRL 112 ( 2014 )
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4. Irreversibility in Joule-Thomson Expansion ?

Interpretation of the irreversibility is tricky .  Evidently the irreversible process occurs in
the vicinity of the potential barrier at x = 100 . The flow is strictly Newtonian everywhere .
We simply notice that the entropies of the equilibrium states entering and leaving are not
the same . But the details depend upon the structure of the potential barrier .  In the shock
the structure of the wave is furnished by the fluid itself without any external influences .

4. Irreversibility in Shockwaves ?

The	Second	Law	is	satisfied	in	shockwaves	,	which	are	ideal	for	study	
because	they	require	no	special	boundary	conditions	.		From	the
standpoint	of	simulation	it	is	easy	to	add
displacements	or	velocities	to	particles
as	they	enter	the	system	.		Likewise	the
particles	about	to	leave	can	be	given	the
exit	velocity	as	they	near	the	boundary	.

One	can	look	locally	at	the	stress	and	the
heat	flux	and	see	that	the	corresponding
transport	coefficients	are	positive	.
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5. Back to Stationary Shockwave Structure with Unit Viscosity *

ru , Pxx + ru2 , and
ru[ e + (u2/2) + (Pxx /r ) ] ,
are the fluxes , of mass ,
momentum , and energy ,
are constant throughout .

Elimination of the cold and
hot speeds gives the
Hugoniot relation :
De = < P > DV .  0

 0.1
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-3 -2 -1  0  1  2  3

ß 4T

ß r - 1
Shock	width	is	directly
proportional	to	the
longitudinal	viscosity

which	is	l +	2h .

x

Twofold Compression

Pxx = P – l( du/dx + dv/dy ) - 2h( du/dx ) ;
Pyy = P – l( du/dx + dv/dy ) - 2h( dv/dy ) .

* h and l are the first and second viscosity coefficients, with h the “shear viscosity” .

5. Back to Stationary Shockwave Structure with Unit Viscosity *
Let us consider the simplest possible fluid shockwave .  We imagine a fluid with a weak
repulsive energy proportional to r and a thermal energy T so that the thermomechnical
equation of state is : P = re = ( r2/2 ) + rT with e = (r/2 ) + T .  These relations , as well as
the entropy S follow from the corresponding Gibbs’ canonical partition function :

Z1/N = e[ - A /NkT ] = e [ + S /Nk ] e [ - E /NkT ] = (VT/N)e [ - N /2VT ]

A steady shockwave necessarily has constant fluxes of mass, momentum, and energy .
We choose to study a wave with twofold compression from the cold T = 0 state :

r : 1 à 2 ; u : 2 à 1 ; P : ( 1/2 ) à ( 5 /2 ) ; e : ( 1/2 ) à ( 5 /4 ) ; T : 0 à ( 1/4 ) .

Notice that the three fluxes are constant where we omit Qx for simplicity :

ru = 2 ; Pxx + ru2 = ( 9/2 ) ; ( ru )[ e + ( Pxx /r ) + ( u2/2 ) ] = 6 .
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5. Back to Stationary Shockwave Structure with Unit Viscosity, Pxx = re – (du/dx)

*

*	Remember	ru =	2	.	

5. Back to Stationary Shockwave Structure with Unit Viscosity *

ru , Pxx + ru2 , and
ru[ e + (u2/2) + (Pxx /r ) ] ,
are the fluxes , of mass ,
momentum , and energy ,
are constant throughout .

Elimination of the cold and
hot speeds gives the
Hugoniot relation :
De = < P > DV .  0
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Shock	width	is	directly
proportional	to	the
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which	is	l +	2h .

x

Twofold Compression

Pxx = P – l( du/dx + dv/dy ) - 2h( du/dx ) ;
Pyy = P – l( du/dx + dv/dy ) - 2h( dv/dy ) .

* h and l are the first and second viscosity coefficients, with h the “shear viscosity” .
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5. Back to Stationary Shockwave Structure with Unit Viscosity *

xx

S/Nk

kln(T/r) agrees perfectly
with the integral of (dS/dx)

= (1/u)(dS/dt) = (1/2T)(du/dx)2

The hot entropy is ln(1/8) = -2.079 and the cold entropy is – ∞ .

hot à

5. Solving the Navier-Stokes-Fourier equations for shockwave structure *

The	solution	of	the	Navier-Stokes-Fourier	equations	is	only	a	little	more	complicated.
We	illustrate	for	a	shockwave	structure	worked	out	in	1980	for	the	Lennard-Jones
liquid,	compressed	twofold	with	a	temperature	increase	of	about	10	000	kelvins	,
enough	to	begin	the	ionization	process	for	argon	,	the	fluid	being	modeled	.	Bulk	and
shear	viscosity	,	as	well	as	heat	conductivity	,	were	included	in	the	modeling	.	* As	a
result	one	can	solve	two	simultaneous	differential	equations	,	one	for	(dr/dx)	coming
from	the	momentum	flux	,	and	one	involving	both	(dr/dx)	and	(dT/dx)	,	coming	from
the	energy	flux	.		Alternatively	one	can	divide	and	solve	the	resulting	equation	for
(dr/dT)	.	In	order	to	complete	this	calculation	molecular	dynamics	simulations	for	the
viscosity	coefficients	and	the	thermal	conductivity	were	carried	out	and	fitted	with
convenient	functions	of	density	and	temperature	.		For	this	shockwave	the	maximum
value	of	Txx was	about	50%	larger	than	the	transverse	temperatures	Tyy and	Tzz .

* Holian,	Hoover,	Moran,	and	Straub	in	the	December	1980	Physical	Review	A	.
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5. Solving the Navier-Stokes-Fourier equations for shockwave structure *

There is a longstanding tradition of solving the Navier-Stokes equations .
The three equations for mass , momentum , and energy can be solved by
eliminating the entrance and exit velocities giving DE = < P > DV , the
“Hugoniot Equation” .

Traditionally	one	divides	and	computes	(dT/du)	or	(dT/dr)
though	it	is	easy	to	solve	two simultaneous	differential
equations	with	fourth-order	Runge-Kutta ,	giving	the	shock
profile	,	the	space	dependence	of	all	the	variables	.

* Holian,	Hoover,	Moran,	and	Straub
December	1980	Physical	Review	A	.

5. Solving the Navier-Stokes-Fourier equations for shockwave structure

Here is temperature versus density from
the Navier-Stokes equations using the
transport coefficients determined from
molecular dynamics solutions .  The red
point comes from the center of the shock
profile from this nonequilibrium molecular
dynamics simulation .  The Navier-Stokes
equations cannot be used to understand
the difference between Txx and Tyy , which
here are different by a factor of 3/2 .  This
shock à twofold Lennard-Jones r change .

•

r

T
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5. Planar shockwaves are stable in one dimension
f(	r	<	1	)	=	(10/p)(	1	– r	)3Twofold Compression of two blocks

F( r ) = S Fi w( ri – r ) / S Fi w( ri – r )  

5. Lucy Function averages provide smooth
continuum fields from molecular dynamics
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1. What is microscopic reversibility ?
Remember Leapfrog

2. What is the stability of the motion ?
Remember Lyapunov

3. Macroscopic Irreversibility
Remember the Second Law

4. Shockwave Structure Dynamics
Comoving Frame Dynamics is stationary

5. Shockwave Structure Models
Time delay, work/heat tensor Txx ≠ Tyy

microscopic	reversibility	and	MACROSCOPIC IRREVERSIBILITY

[ Shockwaves are an ideal test of nonlinear ideas ]

1. What is microscopic reversibility ?
q+ - 2qo + q- = (dt)2 (F/m)o

2. What is the stability of the motion ?
Remember that Lyapunov lives in the past .

3. Macroscopic Irreversibility
Pxy and (du/dx) versus Qx and (dT/dx) 

4. Shockwave Structure Dynamics
Entropy Production certainly works !

5. Shockwave Structure Models
Time delay, work/heat tensor Txx ≠ Tyy

microscopic	reversibility	and	MACROSCOPIC IRREVERSIBILITY

[ Shockwaves are an ideal test of nonlinear ideas ]
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6. Addendum : What sorts of simulations can be run in perpetuity ?
And , are they Reversible ?  What about Loschmidt and Poincaré ?

Levesque + Verlet Leapfrog ( forward/backward with finite precision ) .
iqnow = 1 034
iqold = 1 024
do i = 1,1063 ! GOING FORWARD
iFdtdt = -100*dsin(iqnow/1000.0d00)
iqnew = iqnow + iqnow - iqold + iFdtdt
write(8,*) i,iqold,iqnow,iqnew
iqold = iqnow
iqnow = iqnew
Enddo

iold = iqnow ! REVERSING THE VELOCITY
inow = iqold
iqnow = iold
iqold = inow

do i = 2,1064 ! GOING BACKWARD
iFdtdt = -100*dsin(iqnow/1000.0d00)
iqnew = iqnow + iqnow - iqold + iFdtdt
write(9,*) i,iqold,iqnow,iqnew
iqold = iqnow
iqnow = iqnew
enddo

The period is 1062 and corresponds to fifty oscillations .

The curve is forward and the points are backward

6. Addendum : What sorts of simulations can be run in perpetuity ?
And, are they Reversible ?  What about Loschmidt and Poincaré ?

Here we consider 4 unit shears, XYYX, in single-precision arithmetic .

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05  0  0.05  0.1

524288 Point Periodic Orbit beginning 4 XYYX iterations from (0.3,0.4)

Here is the central 1% of the 2x2 square .  Evidently
The XYYX mapping is ergodic .  Notice the symmetry !
On the fourth iteration * , beginning with (0.3,0.4) the
Map enters into the periodic orbit of 524 288 points . A
portion of the complete 2x2 mapping is shown above . 

* This is worth investigating !

subroutine xit(xin,yin,xout,yout)
xout = xin + 2*yin
if(xout.gt.+1) xout = xout - 2
if(xout.lt.-1) xout = xout + 2
yout = yin
return
end ! This is the X shear map

subroutine yit(xin,yin,xout,yout)
yout = yin + 2*xin
if(yout.gt.+1) yout = yout - 2
if(yout.lt.-1) yout = yout + 2
xout = xin
return
end ! This is the Y shear map
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microscopic	reversibility	and	MACROSCOPIC IRREVERSIBILITY

Notice that all of  the motion equations which we have considered are time-reversible .  This
includes equilibria as well as shear flows , heat flows , and stationary shockwaves .  These
systems and these flows are typically time-reversible stationary states .  How can such flows 
be “irreversible” ?

The simplest irreversibility can occur if there is the possibility of phase-volume change , as
In the nonequilibrium Baker Map which will be much discussed in the next lecture .  If parts
of the comoving phase-space volume expand while other parts contract the time-averaged 
volume change cannot be positive , producing a strange attractor in the nonequilibrium case .

What are the characteristics of nonequilibrium steady states ?  They generate with
vanishing phase volume .  The sum of the Lyapunov exponents describing the flow must be
negative , corresponding to contraction , with d lnÅ /dt = –d(S/k)/dt = åz , where the sum 
includes all of the thermostated degrees of freedom .  Suppose that we wish to characterize
a nonequilibrium strange attractor with 106 points in a two-dimensional space .  1012 points 
should be enough because the logarithm of the probability of finding 106 nonoverlapping
points is :

ln( 1 – 1/N ) + ln( 1 – 2/N) + . . .  + ln( 1 – n/N ) ≈ ∫ n dk( – k/N ) = – n2/( 2N ) à n ≈ √ N . *

* it is a good exercise to show that taking additional terms in the
expansion of ln( 1 – d ) does not change the reasoning for large N .

microscopic	reversibility	and	MACROSCOPIC IRREVERSIBILITY

Typically the transient and periodic parts of a forward trajectory are of the same average length .
One can imagine going “backward” to the strange repellor or “source” and going “forward” to
the strange attractor “sink”.  We will consider this irreversible reversible Baker Map next time :

p                                                p

Attractor à ß Repellor

q                                                q    

Although the flow is reversible with the attractor and repellor mirror images of one another the
stability of the two fractals is different : the flow in the neighborhood of the attractor collapses
and flow in the neighborhood of the repellor expands .  The net flow is from “source” to “sink” .
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microscopic	reversibility	and	MACROSCOPIC IRREVERSIBILITY

Before leaving this subject let us consider the difference between equilibrium and nonequilibrium
steady states .  In both cases fluctuations obey the Central Limit Theorem in time and space.  An
equilibrium system has no heat flow and no viscous forces.  On the other hand it can have mass , 
momentum , and energy gradients of the kinds typical of gravitational forces , configurational
temperature gradients caused by rotation .  Notice that a two-dimensional particle circling the
origin has a centrifugal force + mw2r which can be offset by a spring force – k( r – 1 ) so that even a
situation of steady rotation and constant angular momentum would produce an apparent gradient
in temperature for a rotating solid held together by Hooke’s Law forces .

Nonequilibrium steady states would give rise to heat flux , gradients , dimensionality loss in phase 
space, strange attractors .  Notice that the continuity equation is the only one of the three
conservation laws which is time reversible, ( ∂r/∂t ) = - (∂/∂x)(rvx) , with both sides of the equation
changing sign if the clock runs backwards .  The equations in two or three dimensions have this
same form .  If the velocities are reversed in a Rayleigh-Bénard problem or a shockwave it is easy
to see that the continuum pressure tensor , P = P( r,e ) – h[ (∂vx/∂y) + (∂vy/∂x) ] is typically mixed .  
Likewise , in a heat flow problem the heat flux is odd in the time while the temperature is even.

An interesting aspect of Hamiltonian Thermostats is that they cannot generate heat flow .  There
are several examples in our paper “Hamiltonian Systems Fail to Promote Heat Flows”, available
in the arXiv 1303.6190 .
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