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3. Hard-disk cell model and correlated cell model
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From either of two viewpoints [ 1 ] the dynamics of a light particle, or [2 ] the repeated Monte 
Carlo moves of an arbitrary particle , there is a well-defined “free volume” .  The virial theorem
can be applied to relate the free volume to the pressure , PV/NkT = 1 + (s/4) < sf/vf > , where
it is assumed that all configurations of the free volume , bounded by the surface sf, are of
equal probability .  This assumption is certainly true for Monte Carlo simulations , and is an
accepted result , usually attributed to Sinai , in ergodic theory .  My 1978 work for disks , with
a single computation for hard spheres led to extensive results ( hundreds of data points )
for spheres by Sastry et alii in 1998 [ Molecular Physics 95, 289-297 ] .  The results can be 
summarized by generalizing the exact one-dimensional result to a two-parameter empirical fit :

∫vf(v)dv = ∫vdve-[ v/< v > ] /< v >2 à f(v) = vaexp[-vb] ,
Here a and b are close to 1/3 and 1/2 for spheres .  For disks a is approximately 0.1 . The
application of these ideas to continuous potentials is not so straightforward because the
possibility of escape from the cell is always present .  On the other hand a model , the
“Cell Model” can be implemented numerically as an approximation to the canonical
partition function’s Nth root .  This idea was pursued by Lennard-Jones and Devonshire in
1937-8 ( in the Proceedings of the Royal Society of London ) and was brought up to date
by Magee and Wilding ( in Molecular Physics ) in 2002 .  The Lennard-Jones-Devonshire
model is spherically smoothed which adds some arbitrariness to the model .  The results
they found are interesting .  First we will consider simple one- and two-dimensional systems .

1. Small-Mass Cell Model for Hard Particles
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Free Volume Calculation for a Periodic One-Dimensional Fluid *

Q = ∫ . . . ∫ dx1dx2 . . . dxN = VN/(N – 1)! is the configurational integral .
With periodic boundary conditions it is “obvious” that the
“first” particle can go anywhere along the “volume” V and

that the remaining (N – 1) particles can occupy VN-1/(N – 1) !

What is the ideal—gas probability of the separation x2 – x1 = v ?
P(v) = [ V(V – v)N-2/(N – 2)! ] / [ VVN-1/(N – 1)! ≈ Ne-Nv/V/V ,

which is properly normalized : ∫ [ Ne-Nv/V / V ] dv = 1 and which gives the mean
< v > = ∫ [ v [ Ne-Nv/V / V ] dv = ( V/N ) .

If the particles have length s the calculation is nearly the same and

< v > = ( V – Ns ) / N and Q1/N = ( V – Ns )e/ N
That extra factor of e gives Kirkwood’s “Communal Entropy” SC = Nk . 

* There is a paper in the 1936 Physical Review by Lewi Tonks on this subject .

1. Small-Mass Dynamics or Gibbs suggest “Cell” Models
The many-body problem can be approximated by a one-body problem .  We can select a typical 
many-body configuration and examine its one-body properties .  There are special cases in which
this idea is exact rather than approximate .  This idea can serve as a basis for “cell models” .

For simplicity we consider hard disks .  This simplifies the
graphics , the topology , and the dynamics .  Disks are a good
model system as they exhibit both fluid and solid phases .

To the left is an equilibrated fluid configuration of 48 hard
disks . The boundary conditions are periodic so that any
disk leaving the box is simultaneously introduced on the
opposite side . At this density , 4/5 that of the “triangular”
close-packed lattice , the solid phase is more stable than
the fluid .  

Such an equilibrium configuration can be obtained from
molecular dynamics or Monte Carlo simulations .  The two
approaches produce identical results with microcanonical
and canonical configurations identical .
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1. Small-Mass Cell Model for Hard Particles
Here the 48 disks have a solid configuration .  The free volume is 0.0261s2 for the solid while the
fluid free volume is considerably smaller , 0.0218s2 .  These free volumes have a direct connection
to equilibrium properties, including the pressure and the chemical potential . Disk diameter = s .

Here is a solid configuration of 48 hard disks . The boundary
conditions are periodic so that any disk leaving the box
is introduced on the opposite side . At this density , 4/5 of
the close-packed , the solid phase is more stable than the
fluid .  The particle speeds are of order √ (kT/m) and have
the same distribution in either of the phases .
At each particle’s location the “free volume” vf it can access
is drawn in .  If one of the particles were “light”, much less
massive than the others , this is the area which it would
sweep out over a long time .  In classical mechanics the
phase integral ∫∫dqdp is a product ∫dq x ∫dp whether or not
the phase volume is weighted with the Boltzmann factor .
Microcanonical and canonical configurations are exactly
the same .  Looking at a configuration doesn’t reveal any
differences between the two ensembles .  This is also true
of the Maxwell-Boltzmann velocity distributions .

Magee and Wilding ( 2002 ) explored the spherically
smoothed LJD cell model using the 12-6 potential :

f ( r ) = 4 e [ (s /r)12 – (s /r)6 ] .
Here e is the well depth and s is the collision diameter .
They found the relatively bizarre phase diagram shown
here with two coexistence regions ( only one of these
had been found by LJD ) , along with two critical
points . Gholamreza Vakili-Nezhaad extended this
work by varying the coordination number, adding
more complexity to a model nearly 80 years old !

In the plots the units of T are ( e /k ) , of P are ( e /s3 ) ,
while those of r are ( m/s3 ) . Evidently there is food
for thought in the model . We next pursue simpler
applications, hard rods , disks , and spheres , as well
as crystal lattices held together with Hooke’s-Law
spring interactions , with f ( r ) = k(r – d)2/2 , where
d is the restlength of the springs .

1. Magee-Wilding Cell Model for Lennard-Jones f
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2. Einstein Model for the Harmonic Chain and Hard Rods 

Starting at one end of the harmonic chain and integrating exp[- kdx2/2kT	]ddx gives
the exact limiting result for the configurational Integral : Zq = (2pkT/k) (N/2) .

Einstein’s approximation , picking one oscillator in the middle , gives a smaller result :
exp[- 2kdx2/2kT	]ddxà (pkT/k)	(N/2)	, so that the oscillator integral is too small by √ 2 .
The exact entropy exceeds the Einstein model by 0.3466 Nk .

The hard-rod configurational integral gives a similar result .  In the exact case there
is an iterated integral over a space (V – N)N .  If the particles remain ordered then
the result is Zq =	 (V – N)N/N!  The result is exactly the same if the particles are
allowed any ordering and then the integral is corrected for indistinguishability .
The exact ( Stirling limit ) result Zq =	 [ (V/N) – 1 ] NeN , is bigger than the cell model
estimate [ (V/N) – 1]N2N by a factor of 1.3591 , similar to 1.4142 .  The entropy exceeds
the Einstein value by 0.30685 Nk .  Stirling’s approximation : N! ≈ √(2pN)(N/e)N + O(1/N) .

The one-dimensional models can be worked out easily .  In two dimensions the
harmonic crystal entropy ( using the triangular lattice , where each particle has six
nearest neighbors ) exceeds that of the Einstein model by 0.27326 Nk .

3.   Hard-Disk Cell Model and the Correlated Cell Model
The two-dimensional hard-disk model is complicated , even for the triangular
( solid ) lattice .  The entropy of the solid is most easily computed by integrating
The isothermal equation of state from the low-density limit to high density using
single-occupancy boundary conditions ( a trick ! ) * .  TdS = dE + PdV = PdV .

* Journal of Chemical Physics 49, 3609-3617 (1968) . 
[ The Communal Entropy comes in very gradually . ]
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3.   Hard-Disk Cell Model and Correlated Cell Model

* Alder and Wainwright, Physical Review 127 , 359-361 (1962) .
* M. Engel , J. A. Anderson , S. C. Glotzer , M. Isobe , E. P. Bernard , and W. Krauth , arXiv 1211.1645 .

*Alder and
Wainwright
870 Disks

72 Disks
ß à

David	Young	/	Francis	Ree
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3.   Hard-Disk Cell Model and the Correlated Cell Model

* Alder , Hoover , and Wainwright , Physical Review Letters 11 , 241-243 (1963) . 

3.   Hard-Disk Cell Model à Correlated Cell Model

* Alder , Hoover , and Wainwright , Physical Review Letters 11 , 241-243 (1963) . 

Correlated Cell Model Free Volumes generate a van der Waals’-like pressure-volume loop .

Low Density :
ß d2 > (4/3)
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3. Evidently the Correlations seen in Movies Characterize “Hexatic” Phases . 

4. The Percolation Transition for Hard Disks
It is evident that the free volume is extensive at low density, vf à V – (N - 1)( ps2 ) .
Likewise at the high density of 0.8 relative to close packing the free volume is
intensive , vf a (V/N)[ 1 - √ (V0/V) ]2 .  This observation suggests a transition, called
the “percolation transition”.  The transition can be quantified by measuring the
cluster size S : < 1/S > = 28.8 [ 0.245  – (V0/V) ]2.4 à 1/< 1/S > = 56 at r = (V0 /V) = 0.200 .

< (1/S) >

(V0/V)

ß To the left the fit to
simulation data gives
an average cluster
size of 56 , somewhat
larger than the number
of particles in this 48
particle simulation with
seven clusters .

Variation of Hard-Disk
Cluster Size with Density
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4. Exact Cell Models and Percolation for Hard Particles
We have seen that both the “light-particle” dynamical approach [ 1 ] and the Monte Carlo
statistical approach [ 2 ] lead to the conclusion that the pressure ( or momentum flux ) can
be expressed in terms of the free volume vf and its surface area sf ( a length for disks ) :

(PV/NkT) = 1 + (1/4) < sf /vf >  = 1 + (1/4) < sf > / < vf > .
There is a comprehensive table in “Exact Hard-Disk Free Volumes”, Journal of Chemical
Physics 70, 1837-1844 (1969) showing the quantitative agreement of these equations of
state with the many-body simulations .  A generation later Srikanth Sastry et alii * carried
out a comprehensive study of the hard-sphere analog using a division of the many-body
configuration into Voronoi cells to partition the free volumes into manageable pieces .

Les Woodcock , in the 2012 Journal of the American Institute of Chemical Engineers , points
out that hard spheres have two very different “percolation transistions” .  The lower-density
excluded-volume percolation occurs when a single cluster of spheres excludes a volume
extending all the way across the system . The higher-density percolation occurs when the
volumes available for another sphere become a disjoint set of isolated holes .

* = Truskett , Debenedetti , Torquato , and Stillinger , Molecular Physics 95 , 289-297 (1998) .

5. Galton Board à Multifractal Chaotic Sea , Tori , and Limit Cycles
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5. Phase-space cross sections develop in time* 

* sin( b ) versus a for 0 , 1 , 2 , 3 , 5 , and 10 collisions of 10 000 initial conditions

5. Galton Board à Multifractal Chaotic Sea , Tori , and Limit Cycles

0   <   a   <   p
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5. Fractal Analysis of the Galton Board Sections
The fractals can be analyzed in terms of “measures”
based on #a where there are # points in the bins and
the exponent a varies ( here ) from 0 to 10 .  The most
useful measure is the “natural measure” # with a = 1 .

Fractals have fractional dimensionality in the sense
that the number of points # in the vicinity r of an
arbitrarily chosen phase-space point varies as a
fractional power of r .  The power is 1.832 in the
Galton Board problem where the field strength is 3 .

The numerical data show that the
apparent dimension varies only a
little with the size of the mesh .

5. The Deviations from Equilibrium are Quadratic *
Were it the case that the deviations
from equilibrium were smooth and
described by a Taylor’s series we
would expect to find a quadratic
dependence of dimensionality on
on the field strength E .  This idea
is not too far from true .

Keep in mind that conductivity
varies in a complicated way on
field strength .  Fractals have
structure on all scales , which
makes analytic dependences
unlikely . 

D1 = Sµ1 ln (µ1) / lnd
D2 = Sµ2 ln (µ2) / lnd
a2 = Sµ2 ln (µ1) / lnd
Here the measures are based
on [ 1 ] points or on [ 2 ] pairs . * Hoover and Moran, Physical Review A 40, 5319-5326 ( 1989 ) .
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6.  Conducting Oscillator Using Ergodic Thermostats *

10	x	8	Nonequilibrium Cross	Sections

In the equilibrium case, e = 0 , the cross section
of the distribution is a Gaussian .  The white

spaces indicate portions of the section where
the trajectory is parallel to the plane .  For example
( dp/dt ) vanishes when q and p are both zero .  The
white spaces are called “nullclines” .

The colors show l > 0 and l < 0 .

* arXiv 1507.08302	(	2015	)

6. Conducting Oscillator Using Ergodic Thermostats *

* arXiv 1507.08302	(	2015	)	has	all	the	details	.

As a bit of review let’s show that these three
equations are consistent with an extended
Gibbs’ canonical distribution with T = 1 .

A																					B																										C																						C																						D																						E						 A																			D																								B																							E	
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6. Conducting Oscillator Using Ergodic Thermostats*

10	x	8	Nonequilibrium Cross	Sections

10	x	10	Equilibrium	Cross	Section,	T	=	1

* arXiv 1507.08302	(	2015	)	.	This	oscillator	model	,	the	0532	Model	,	is	likewise	ergodic	.

7.  Nonequilibrium Fractals : Galton Staircase*

(dq/dt) = p
(dp/dt) = 1 – 0.3 sin(q) – zp
(dz/dt) = 0.1 (p2 – 1)

* Hoover , Posch , Holian , Gillan , Mareschal , Massobrio, 1987 Molecular Simulation

1987

p

z

@PBC

@ q = 0

2016
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8.	Addendum	:	Entropy	Production

Extending thermodynamics to nonequilibrium situations requires constitutive relations
giving the stress and heat flux in terms of gradients .  The Boltzmann equation furnishes
a guide .  Here we will consider shear flow and heat flow as examples .  In periodic shear
the temperature can be stabilized by Nosé-Hoover control to reach a steady state .  In the
steady state heat is extracted by forces { - z p2 } and work is performed by the shearing
boundary conditions PxyV(dux/dy) with these energy sinks and sources balancing for long
time averages ,  < dE/dt > = < dQ/dt > – < dW/dt > . What is the “entropy” of the sheared
fluid ? By adding the extracted heat divided by the thermostat temperature T one finds
that the entropy decreases at the rate –S zp2 /T = - 2N < z > .  But of course in a steady
state there can be no steady decline – entropy ( if it exists ) must be constant .  The result
of this line of thinking is entropy production, dS/dt = – (V/T)dQ/dt – PxyV(dux /dy) /T .  If the
viscosity is defined by Pxy = - h (dux /dy) then the entropy production per unit volume can
be expressed as the square of the stress divided by viscosity or the square of the strain
rate multiplied by the viscosity, in either case dividing by the thermostat temperature T .

8.	Addendum	:	Entropy	Production

A similar idea can be applied to heat flow .  The heat extracted by the
cold reservoir gives an entropy loss Q /T while the heat added by the
hot reservoir provides an entropy gain .  Because there is no long time
change in system energy the entropy change is < Q > [ 1/TH – 1/Tc ] < 0 .
If the temperature difference is expressed in terms of the system length
multiplied by a temperature gradient then , just as in the case of shear ,
the “entropy production” can be expressed as the square of a current
divided by the heat conductivity or the square of a gradient multiplied
by the conductivity .  The entropy production can be viewed as an
artifice designed to preserve the Second Law of Thermodynamics .

In a steady shockwave the influx of cold low-entropy fluid does not
match the exiting higher-entropy value .  Again there is judged to be ,
or said to be , entropy produced within the system .  It is useful to
remember that entropy is a property of distributions of systems .
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8.	Addendum	:	Entropy	Production

There is a “fly in the ointment” associated with Entropy Production .

If it really were true that entropy is generated inside a fluid whenever
there is a shear stress or a heat flux we would expect to see entropy
increase even in an equilibrium fluid .  The lack of any entropy change
at equilibrium guarantees the artificiality of the “production” concept .  

The different points of view ( microscopic , a particle picture with reversible
equations of motion and continual fluctuations ) and ( MACROscopic , with
fields instead of point particles and with at least partially irreversible motion
and energy equations ) are only approximately consistent with each other .
Any consistency requires some averaging , in time , space , or both , and
will never lead to perfect agreement .

8.	Addendum	:	Entropy	Production

With	the	advantage	of	simulation	it	became	possible	to	study	the	Gibbs’	entropy
of	simple	systems	like	the	Galton	Board	or	the	conducting	oscillator	.	What
happens	is	that	the	distribution	function	in	the	phase	space	becomes	fractal	,	of
zero	volume	,	so	that	the	Gibbs’	entropy	actually	does	approach	(	mathematically	)
minus	infinity	.		Although	the	formation	of	the	fractal	takes	a	relatively	short	time
to	saturate	,	perhaps	20/l with	single	precision	,	40/l with	double	, and	80/l with
quadruple	,	we	see	that	the	limited	information	provided	by	computation	does
provide	a	steady	state	with	a	very	small	density	of	states	in	the	phase	space	.

The	overall	moral	is	that	extending	the	concept	of	entropy	to	nonequilibrium
systems	is	not	a	practical	activity* .		On	the	other	hand	the	fractals	produced	by
nonequilibrium simulations	can	be	viewed	and	analyzed	.		Let	us	look	in	detail	at
a	simple	model	for	the	fractal	character	of	nonequilibrium flows,	the	Baker	Map	.
* There is a nice article in the 2011 volume of Entropy by R M Velasco, Leo G-C Scherer and F J Uribe . 



11/25/16

15

A time-reversible map which goes everywhere within a two-dimensional phase
space but with some regions of the space contracting and some expanding is the
Baker Map .  The net result is a strange attractor, a fractal object in which the
probability density is not smooth and which is more and more concentrated as
The resolution of the map is increased. Here is the equilibrium Baker Map :

if(q.lt.p) then
qnew = +1.25*q - 0.75*p + dsqrt(1.125d00)
pnew = -0.75*q + 1.25*p – dsqrt(0.125d00)
endif
if(q.gt.p) then
qnew = +1.25*q - 0.75*p - dsqrt(1.125d00)
pnew = -0.75*q + 1.25*p + dsqrt(0.125d00)
endif

There is a “fixed point” where ( q,p ) = ( 0,√2 ) .  Can you find another ?

8.	Addendum	:	Entropy	Production	via the	Baker	Map

q

•

Here again if the Baker Map B which preserves area .  Bill Vance pointed out to
me that rotating this Baker Map 90o makes it time-reversible T , as shown here :

8.	Addendum	:	Entropy	Production	via the	Baker	Map	*

q

p The	Black	region	of	the	top	B	map

The	White	region	of	the	top	B	map

The combination of four mappings BTBT is the “Identity Map”.
If the area is not preserved by such a mapping the resulting
“Dissipative Baker Map” generates a multifractal (q,p) object .

Here is an interesting reference à *
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8.	Addendum	:	Entropy	Production	via the	Baker	Map

Here	is	a	nonequilibrium 2	x	2	Baker	Map	in	which	parts	of	the
square	“phase	space”	expand	or	shrink	by	factors	of	3	and	3/2	:

if(q.lt.p – dsqrt(2.0d00/9) then
qnew = +(11*q – 7*p)/6.0d00) + dsqrt(49.0d00/18)
pnew = +(11*p – 7*q)/6.0d00) - dsqrt(25.0d00/18)
endif
if(q.gt.p – dsqrt(2.0d00/9) then
qnew = +(11*q – 7*p)/12.0d00) - dsqrt(49.0d00/72)
pnew = +(11*p – 7*q)/12.0d00) - dsqrt( 1.0d00/72)
endif

After computing the “new” point ( qnew,pnew ) à ( q,p ) .
The following graphic shows what happens with half a million

iterations of the equilibrium and nonequilibrium maps .

p
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The “entropy” < ln(f) > has been calculated here using what is called the
“Natural Measure”, where f is the frequency with which the box is visited .
It is perfectly feasible ( but not necessarily useful ) to define other measures
by computing powers of f .  The “information dimension” is the one we have
calculated .  The “correlation dimension” is based on the square of frequency
and can alternatively be evaluated by computing the logarithmic dependence
of the number of pairs of points in each bin on the bin size .  The dimension
decreases as the power used in defining it increases .  Because information
dimension is directly related to Gibbs’ entropy it is the one most likely to be
useful for statistical mechanics .

8. Addendum : Entropy Production via Ergodic Baker Maps
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Edwin Jaynes ( 1922-1998 ) believed that “entropy” - k < ln(f) >
could be used to predict nonequilibrium probabilities, not just
equilibrium ones . His maximum-entropy principle suggests  to
me that he would expect larger-entropy situations more likely
to be observed than their smaller-entropy relatives.  A good
test of this idea is the degenerate Rayleigh-Bénard problem .

Addendum : Maximum Entropy as a Predictor

Vic Castillo ( at the Lawrence Livermore National Laboratory ) did his 1999 PhD work with Bill in the
University of California’s Department of Applied Science at Livermore .  He studied the Rayleigh
Bénard problem with an emphasis on entropy and chaos .  Many of his interesting publications
can be found on Research Gate .  Here Vic is mentoring new students in computational physics .

Addendum : Maximum Entropy as a Predictor
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8. Maximum Entropy as a Structural Predictor ? 
We know that gravity and temperature can interact to cause Rayleigh-Bénard instability .
An enclosed fluid , heated from below with vertical gravity , can generate convection
currents .  We can imagine a competition between Fourier’s Law , where the entropy 
production depends on the temperature gradient , and convection currents , which add
dissipation from velocity gradients .  Because we expect a stationary state when the 
boundary temperatures are fixed we can measure the entropy production in two ways :
[ 1 ] Q [ ( 1/TCOLD ) – ( 1/THOT ) ] , from heat transfer at the top and bottom boundaries .
[ 2 ]  Integrate the local production over the entire volume V : ∫ dV ( s : ∇u - q·∇ ln T ) / T .
These two methods agree precisely for the following model :

Solve the Eulerian Fluid Equations : Simple Constitutive Fluid Model :

PV = NkT with constant n = ( h/r ) and 
k . Centered differences in space with
v and e at nodes and r in cell centers ;
g = DT/H à constant density with a
constant temperature gradient .

8. Maximum Entropy Production as a Structural Predictor 

[ There are several papers by Vic Castillo, Oyeon Kum, Harald Posch, and the Hoovers in the late 1990s ]
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8. Maximum Entropy as a Structural Predictor * 

In two dimensions the two-roll and four-roll patterns were stable to machine acccuracy while
the six-roll solution is unstable at a time of 470 sound-traversal times , after which it changes
to either the two-roll or the four-roll structure .  In three dimensions an intermediate pattern
forms in which the orientation of the rolls is rotated 45 degrees .

Based on energy , heat flux , and Lyapunov growth rate the Table suggests that the six-roll
structure is most stable .  Evidently what happens depends upon the initial conditions .  For
our constitutive model Ra = ( H /n )2 with 2300 the threshold for convection .  For Rayleigh
numbers above 140 000 oscillating and chaotic solutions coexist , with the oscillating rolls
providing 20% more heat transfer with the
result about three times greater than the
heat transfer due to Fourier conduction  :

Because the continuum solutions are no
doubt correct for “large systems” they
strongly suggest that molecular dynamics
loses ergodicity for large systems .

* Castillo-Hoover references are in the December 1998 PRE and PRL .

8. Maximum Entropy as a Structural Predictor 
In	Nonlinear	Conductivity	and	Entropy	in	the	Two-Body	Boltzmann	Gas	in	the
Journal	of	Statistcal Physics	42,	587-600 (1986)	I	compared	the	solution	of	the	
Boltzmann	equation	for	two	hard	disks,	driven	in	opposite	directions	by	a	
field,	to	the	“Information	Theory”	distribution	corresponding	to	the	same
current	.		The	two	solutions	are	quite	different,	indicating	that	Information
Theory	is	unreliable .		q is	the	direction	of	the	velocity	relative	to	the	field	.

f(	q )

q
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Statistical Mechanics of Small Systems
EQUILIBRIUM IDEAS :
1. The small-mass limit à cell model , the Einstein

model for a chain of oscillators .
2. Tonks’ hard-rod model validates Mayers’ theory
3. Hard disks validate cell-model ideas .
4. Percolation transition à interesting topology .
NONEQUILIBRIUM IDEAS :
5. Galton Board à Fractal Sea , Tori , and Limit Cycles .
6. Conducting oscillator à 7. Fractals , Linear response .
8. Maximum Entropy seems to be a Failure .


