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1. Gibbs’ Canonical Thermodynamics ( 1902 )
Gibbs related microscopic mechanics to macroscopic thermodynamics .  We will
explore the computational aspects of this connection including expansions in the
density and inverse temperature .  The fundamental basis of Gibbs’ work is that all
“states” are equally likely .  Liouville’s Theorem , the phase-space continuity
equation , shows that this assumption is connected to Hamiltonian mechanics .
In one dimension the continuity equation is (∂r/∂t) = - (∂(rv)/∂x) and can be thought of as
representing the conservation of mass or probability ( or any other conserved quantity ) .

Gibbs’ microcanonical ensemble relates the entropy to the number of energy states .  Because the
probability of such states is proportional to the Boltzmann factor e - E/kT the properties of a system
with a given ( ideal-gas ) temperature T are given by the canonical “partition function” Z *,

Ω (E,V) = e [ S/k ] = # of E states ;
e[ S/k ] e[ - E/kT ] = e[ - A/kT ] à

Z(V,T) = e[ - A/kT ] =∏ ∫ ∫ [ dqdp/h ]e - [ H (q,p)/kT ]

* From the German “Zustandsumme” = state sum . A “Arbeit” [ or “work” ] is Helmholtz’ Free Energy .

1. Gibbs’ Canonical Thermodynamics ( 1902 )
Gibbs’ phase-space probability density is f(q,p) = e - [ H (q,p)/kT ] / Z .
If we average the logarithm < ln f > = - ( E/kT ) + ( A/kT ) = ( S/k ) .

( Remember that Z = e – [ A/kT ] ) .

Remember also Liouville’s Theorem from Hamilton’s motion equations :
(df/dt) = (∂f/∂t) + (dq/dt)(∂f/∂q) + (dp/dt)(∂f/∂p) =

– f[ (∂/∂q)(dq/dt) + (∂/∂p)(dp/dt) ] =
– f[ (∂/dq)(∂H/∂p) – (∂/∂p)(∂H/∂q) ] = 0 .

This seems like a very odd result , that the “entropy” is constant in any
Hamiltonian flow .  But it must be remembered that Gibbs’ work applies
to an “ensemble” of systems rather than the single system that is the
subject of molecular dynamics.  The entropy of a single system is not a
well-defined concept without carrying out at least a time average .
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2. Energy and Pressure Tensor

2. Energy and Pressure Tensor at V and T
Starting with the integral form of Gibbs’ canonical partition function all of thermodynamics
follows from differentiation with respect to E and V . The differentiation with respect to V is
Tricky , and relies on a change of variable q à (q/L) with the distances scaled by L :

Z a ∏ ∫0L dq e- [ H (q,p)/kT ] aVN ∏ ∫01d(q/L) e- [ H (q*,p)/kT ]

( ∂lnZ/∂lnV )T = ( PxxV/kT ) = N + < S(xx/r)F/kT > .
This Virial Theorem makes Pressure measurable in simulations .
Differentiation with respect to T to get Energy is straightforward :

( ∂lnZ/∂lnT )V = ( E/kT ) = N + < F/kT > .		[	in	2D ]

Likewise , all of thermodynamics follows from molecular dynamics or from
Monte Carlo . This is not to imply that any of the three routes will be “easy” .
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3. N! and Gibbs’ Paradox   

3. N! and Gibbs’ Paradox   
If we consider two containers of identical fluid separated by a membrane the extensive property
of entropy suggests that removing the membrane will not change the entropy, S1+2 = S1 + S2 .
This property follows from Gibbs’ partition function if the particles are treated as “identical”.  To
avoid duplication in the integral the number of states VN or (V/2)N is divided by N! or (N/2)! x (N/2)!  

(N/2)! x (N/2)! ≈ (N/2e)(N/2) x (N/2e)(N/2) ≈ N!/2N

(V/2) / (N/2) = (V/N)
For identical particles Gibbs’ partition functions include the identical-particles correction :

Ω (E,V) = e [ S/k ] = # of E states ;
e[ S/k ] e[ - E/kT ] = e[ - A/kT ] à

e[ - A/kT ] = (1/N!)∏ ∫ ∫ [ dqdp/h ]e[ - H (q,p)/kT ]

* Stirling’s Approximation is N! ≈ (2pN)1/2e(1/12N) + . . . ≈ (N/e)N
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3. N! and Gibbs’ Paradox   
If we consider two containers of different fluids separated by a membrane ( so that the white
and the black particles are distinguishable from one another ) things are different !  For
simplicity we can imagine that the two fluids are ideal gases ( argon’s isotopes with atomic
weights of 36, 38, and 40 are all stable – the other 21 are not ) .  We can imagine that the two
species are “red” and ”blue”.  Removal of the partition when the two gases are different gives
an entropy increase of kln2 for every atom as the number of states available to it has suddenly*
doubled :

Ω (E,V) = e [ S/k ] = # of E states ≈ (V/e)N :

( V/2 )N/2( 2pmkT ) N/2/(N/2)! ( V/2 )N/2( 2pmkT ) N/2/(N/2)!
becomes

( V )N/2( 2pmkT ) N/2/(N/2)! ( V )N/2( 2pmkT ) N/2/(N/2)!
* A local density of red and blue particles could be defined by using smooth-particle weighting 
functions , with both densities developing as functions of time, an irreversible mixing process .

4. The Mayers’ Virial Expansion
and van der Waals’ Equation of State
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4. The Mayers’ Virial Expansion
and van der Waals’ Equation of State

Clausius’ Virial Theorem : < 2K > = – < S F•r >

SF•r = Sma•r = Sm(d/dt)(v•r) – Smv2

Hamonic Oscillator : < p2/m > = < kq2 >
“Equipartition”

F1•r1 + F2•r2 = F12•r12
Positive for repulsions – Negative for attractions

Where F12 is the force on 1 due to 2
and where r12 = r1 – r2

4. The Mayers’ Virial Expansion à
van der Waals’ Equation of State

Three-body	example	with	Z	=	(2pmkT)3/2Q3/3!	and	periodic	boundaries	:

Q3 =	∫∫∫∏(	1	+	f	)dx3 =	∫∫∫[1	+	f12 +	f23 +	f31 +	f12f23 +	f23f31 +	f31f12 +	f12f23f31 ]dx3

Q3 = V3 +	3(– 2V2)	+	3(4V)	+	(– 3V)	=	V3 – 6V2 +	9V	=	V(V	– 3) 2

Here	f	is	the	Mayers’	f	=	e-f/kT – 1	,	with	the	same	range	as	f	.

The	clever	idea	is	to	convert	the	Helmholtz	free	energy	into	a	density	series	.
The	four-particle	case	involves	64	terms,	too	much	for	a	single	overhead	!

How	many	for	5	?		How	many	for	N	?
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4. The Mayers’ Virial Expansion for PV/NkT provides accurate fluid properties
PV/NkT = 1 + B2(N/V) + B3(N/V)2 + B4(N/V)3 + B5(N/V)4 + . . .

A particularly simple system is the hard-rod fluid , N particles of unit length in box of length V .
The canonical partition function is (1/N!) (V – N)N(2pmkT)N/2 à PV/NkT = V/(V – N) so that each
virial coefficient is equal to unity .  Carol showed how to calculate the hard-particle integrals
contributing to the virial coefficients by Monte Carlo integration .

A profound simplification of the Mayers’ formulæ includes Boltzmann-factor bonds ( indicated
below by wiggly lines ) in addition to the Mayers’ f bonds , resulting in a tremendous reduction
of the computational work.  Clisby and McCoy’s “Ninth and Tenth Order Virial Coefficients for
Hard Spheres in D Dimensions” [ arXiv 0503525 ] was the state of the art in 2005 :

4. Virial Expansion : PV/NkT = 1 + B2(N/V) + B3(N/V)2 + B4(N/V)3 + B5(N/V)4 + . . .
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4. Virial Expansion and van der Waals’ Equation of State

By	introducing	both	e[	- f/kT ]	bonds	and	e[	- f/kT ]	– 1
bonds	Monte	Carlo	evaluation	is	greatly	simplified	

ß From	2N to	just	1	!

4. Virial Expansion and van der Waals’ Equation of State

1. R W Zwanzig, “Virial Coefficients of Parallel Square and Parallel Cube Gases”, 
Journal of Chemical Physics 24, 855-856 (1956) .

2. W G Hoover, A G De Rocco, “Sixth and Seventh Virial Coefficients for the Parallel 
Hard Cube Model”, Journal of Chemical Physics 36, 3141–3162 (1962) .

Bob Zwanzig1 suggested that the virial coefficients 
for hard spheres could be bounded by considering 

the cubes fitting just inside and just outside the 
spheres .  This turned out to be wrong .

Despite more numerical work2 the situation is not 
yet clear for hard cubes .  It would be interesting to 
see how many of the Ree-Hoover diagrams vanish 

in the cases of the hard squares and cubes .
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“The Region of Confusion for Hard Parallel Cubes” from W G Hoover , C G Hoover ,
and M N Bannerman, “Single-Speed Dynamics of Hard Parallel Squares and Cubes”,

[ Journal of Statistical Physics 136, 715-732 (2009) ]

4. Virial Expansion and van der Waals’ Equation of State

4. Van der Waals’ equation of state and the critical point

If in addition to a hard repulsion there is a weak attractive potential we can approximate
the Canonical partition function by Z = (V – Nb)N(2pmkT)N exp[ N2a/VkT ] / N! à
PV/NkT = [ V/(V – Nb) ] – (Na/VkT) = 1 + r(b – a/kT) + r2b2 + r3b3 + . . .

The critical point, above which gas and liquid cannot be distinguished , follows from
(∂P/∂r) = 0 with (∂2P/∂r2) = 0 à PV/NkT = 3/8 ; rare gases give about 0.30 .
Just using three virial coefficients gives PV/NkT = 1 + B2r + B3r2 from which 
1 + 2B2r + 3B3r2= 0 and 2B2 + 6B3r = 0 à B2r = – 1 ; B3r2 = 1/3 and PV/NkT = 1/3

Volume

Pressure The ”spinodal” region is
unstable in the sense that
The  fluid’s compressibility
– ( dlnV/dP )T is negative .

CO2
Isotherms à
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5. Partition Function for One-Dimensional Hard Rods of Unit Length

5. Partition Function for One-Dimensional Hard Rods of Unit Length

The B2 integral is – 2 for two rods of unit length with one at the origin à B2 = 1
The B3 integral is – 3 for three rods with one at the origin à B3 = 1
The B4 integrals are 3(16/3) – 6(14/3)  + 1(12/3) = – 8 à B4 = 1 [ all the BN = 1 ]

This Tonks’ Gas problem is a good introduction to Monte Carlo integration . See also
“The Complete Equation of State of One , Two , and Three-Dimensional Gases of Hard
Elastic Spheres” by Lewi Tonks in Physical Review 50 , 955-963 ( 1936 ) .
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Tonks and Molecular Dynamics and Virial Hard-Sphere Equations of State

Tonks’ idea in two or three dimensions was to reproduce the third virial coefficient
and to guarantee that the pressure diverged at close packing .  Let’s see how close
he came, in 1936,  to the truth for hard spheres , which came about twenty years later .
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Tonks and Molecular Dynamics and Virial Hard-Sphere Equations of State

Molecular Dynamics or Padé Fluid

Tonks ( 1936 )

Density relative to the close-packed density à

Padé :

Tonks :

PV/NkT

5. One-Dimensional Hard Rods Generalized as of 1936

6. Gibbs’ Canonical Partition Function for the Harmonic Chain
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6. Gibbs’ Canonical Partition Function for the Harmonic Chain

A chain of N+1 harmonic oscillators joined by N nearest-neighbor springs with the first
oscillator fixed at the origin provides a partition function that is a simple Gaussian
integral .  We can work it out for three springs from which the general case is clear :
∫∫	exp[	- k(q1 – q2)2/2kT	- k(q2 – q3)2/2kT	]dq2dq3 =	(2pkT/k)1/2 ∫	exp[	– k(q1 – q2)2/2kT	]dq	=	(2pkT/k)N/2

There is a general expression giving Gaussian integrals of a symmetric matrix kijxixj
in terms of the determinant of k . This makes it possible to work out partition functions
in many dimensions for crystals with defects such as holes or surfaces  .  Normal
modes of vibration , free energies , and mean squared displacements can be found by
solving the eigenvalue problem presented by the “dynamical matrix” k or A (below) .

7-8. Nonequilibrium Fluid Mechanics generalizes Thermodynamics 
to include nonequilibrium flows of momentum and energy
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To what extent is the Continuity Equation Obvious ?

dx
An important observation :
During the short time dt the flow into the fixed Eulerian bin is fvdt from the left with a
loss – fvdt on the right.  Evidently the change in fdx during dt becomes – ∂(fv/∂x)dtdx
So that the conservation law in one dimension is (∂f/∂t) = – ∂(fv)/∂x .  There is nothing
To stop us from summing up contributions in the x and y and z directions if desired, or
even in all the phase-space directions if we would like to prove Liouville’s Theorem .

The Flag of France

7-8. The Continuity Equation , or the “Control Volume” Approach ,
gives Eulerian and Lagrangian Versions of the Continuum Equations

The derivations are simplest in one space dimension where the change in
Mass, Momentum, or Energy is given by the flows into and out of a control
volume of length dx .  It is essential to recognize that the flow of comoving
momentum is given by the pressure tensor and that the flow of comoving
energy is given by the heat flux vector ( these two are P and Q ) .  See the
derivations in Molecular Dynamics + Computational Statistical Mechanics .

( Reversible )
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7-8. Nonequilibrium Fluid Mechanics generalizes Thermodynamics 
to include nonequilibrium flows of momentum and energy

The pressure tensor P is the comoving momentum flux . Let us imagine
averaging the momentum flux in a zone containing many particles . 
With pair forces a y line sampling momentum flux has a probability
| yij | /Ly of intercepting the flow of momentum Fy between particles i and j .
There is an addition a convective flow, in which a particle moving with
momentum py has a contribution to the flux proportional to ppy /m .
Adding the action-at-a-distance and convective contributions gives

PxxV =  S pxpx /m – S xxF/r and PxyV = PyxV =  S pxpy/m – S xyF/r
These same results are obtained if one takes the equation of motion ,
multiplies by x or y , and time averages , including wall forces .  That
was the method we used earlier to get Clausius’ Virial Theorem .

7-8. Nonequilibrium Fluid Mechanics generalizes Thermodynamics 
to include the nonequilibrium flux of momentum ( pressure tensor )

The two-dimensional Cartesian volume
element shown here has normal and shear
forces on each face .  The force per unit
length defines the pressure tensor ( same
as minus the stress tensor ) in the limit
that the element is small .

In that same limit it is necessary that Pyx
and Pxy are equal . Otherwise the forces
lead to infinite angular acceleration in
this limit .  For the details see Molecular
Dynamics or Computational Statistical
Mechanics . 

Force ≈	dx and mass ≈	dxdy à Trouble !
The Pressure Tensor is therefore symmetric !
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8. Two derivations of the nonequilibrium heat flux vector Q for pair forces

A first approach considers the changing energy of interacting particles :

de1 /dt = F12• (v1 + v2)/2 = de2 /dt *
Here F12 is the force on particle 1 due to its interaction with particle 2 . 
Thus there is an “action-at-a-distance”  contribution [ x12 F12 • < v > ] to 
the flux in the x direction in addition to the convective contributions e1v1
+ e2v2 in the directions of the particle motions . 
In molecular dynamics simulations we can maintain temperatures of
selected degrees of freedom by using Gauss’ or Nosé-Hoover forces .
Keeping track of the heat extracted or inserted by these forces is an
alternative method for measuring the flux .

* Each particle has (1/2)f12 .

8. Two derivations of the nonequilibrium heat flux vector Q for pair forces

A different approach, like Clausius’, takes the equation for (dei/dt) and
multiplies by ri .  We will simplify to one dimension and include only
a single pair force to keep the notation simple :

< x(de/dt) = (d/dt)(xe) – e(dx/dt) = x[ mv(dv/dt) – (1/2)F< v > ] = LQx >
The brackets < . . . > indicate a time average , which makes it possible to 
delete the term in black ( the time derivative of a bounded quantity has 
eventually to vanish ) . It is a good homework problem to expand this 
sketch to agree with the heat flux vector derived on page 59 of 
Molecular Dynamics ( where the components of Q and r match ) :

QV = S(pe/m) + SS r [ F • (pi+pj)/(2m) ]
It is “no problem” to extend this derivation
to mixtures with manybody forces .



11/25/16

16

9. Stress in systems with gravitational and rotational contributions .
Motivation for this work came from the configurational temperature :

9. Stress in systems with gravitational* and rotational contributions .
There is an extensive literature relating the atomistic pressure tensor , formulated
by Irving and Kirkwood ( JCP 1950 ) in terms of delta functions, to the continuum
stress tensor ( s = - P ) . To shed light on the subject we study two problems with
gravitational and rotational contributions to the stress . Notice that a constant
gravitational field has a vanishing second derivative, (d/dy)2(mgy) = 0 , so that a
straightforward implementation of configurational temperature * gives infinity !

For some reason there is an extensive literature composed of efforts to make
contact between the Irving-Kirkwood formalism ( atomistic , with delta functions )
and traditional continuum mechanics ( continuous differentiable field functions ) .
Because the two approaches differ in their underlying concepts there is no exact
link .  Resolutions of the difference are arbitrary so that picking the “best” one is
subjective .

*
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9. Stress in systems with gravitational and rotational contributions .

From	the	abstract:	“The	conceptual	flaw	in	the	generalization	from	the	virial	theorem	for	gas	pressure
to	stress	and	the	confusion	over	spatial	and	material	equations	of	balance	of	momentum	in	theoretical
derivations	of	the	virial	stress	that	led	to	its	erroneous	acceptance	as	the	Cauchy	stress	are	pointed	out	.”

!	à ß !

9. Stress in systems with gravitational and rotational contributions .
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This point of view simplifies life considerably.  Bridgman was a fan of operationalism .

9. Stress in systems with gravitational* and rotational contributions .

Both kinetic and potential contributions to the pressure are
important in this problem where the pair potential is a short-
ranged repulsion with an integral ( using 2prdr ) of unity : 

φCusp(r < h) = (10/πh2)[ 1 − (r/h) ]3

Evidently the potential energy of a particle is half its density .
The contribution of the interparticle forces to PV follows from
an integration by parts :

(1/2)SF•r = (N/4) < - f’r > = (N/2) < f > = (N/2) r à P = r2/2 .
The simulation is isothermal ( kT = 1 ) . We calculate the local
density and temperature < p2/2 > as Lucy-function averages :

w( r < 3 ) = (5/9p)( 1 – 6x2 + 8x3 – 3x4 ) where x = r/h = r/3 .
There are 9216 gas particles supported by 6•96 = 576 fixed
particles at the bottom .  The gravitational field is chosen so
that the maximum density matches the density at bottom , 2 .
* Hoovers and Lutsko arXiv 0901.2071
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9. Stress in systems with gravitational and rotational contributions .

Equation of State :
P = (r2 /2) + rT = (r2/2) + r

Force Balance :
dP/dy = (dP/dr)(dr/dy) = – rg

(r+1)(dr/dy) = – rg à
Integrate dr and dy :
∫ (r+1)dlnr = ∫ – gdy
With the result * :
r – 2 + ln(r/2) = – gy

Gravitational Force :
P(y) = g ∫y∞r(y)dy

* Now What ?

9. Stress in systems with gravitational and rotational contributions .

From the gravitational problem we see that the continuum force balance
between pressure and gravity is reproduced perfectly everywhere other
than at the base where the boundary condition for the atomistic situation
is not faithful to the continuum problem .  This slight variation on the
barometer problem confirms that the atomistic formulation of stress is in
excellent consonance with the continuum formulation .

Next we address rotational contributions to mechanical equilibrium . Again
we will find that the kinetic and potential contributions to the stress can be
similar in magnitude . Both are necessary to a proper mechanical equilibrium .
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9. Stress in systems with gravitational and rotational contributions .

T = 0.00w = 0.01 w = 0.01

2335 particles with 6828 Hooke’s-Law nearest-neighbor bonds .  The cold crystal
shows straight rows .  The initial structure is taken from a perfect triangular lattice
including all the particles within a maximum distance of √637 = 25.239 .  The force
balance for the rotating crystal requires both kinetic and potential contributions in
order to match the continuum stress calculation from linear elastic theory .

T = 0.01

9. Stress in systems with rotational contributions .
The equilibration phase involved thermostating the radial momenta while rescaling the
angular momenta to generate thermally-equilibrated steadily-rotating solid disks .  Ten
equally-spaced rotation rates were studied .  The figures show the molecular dynamics
cold and hot data as points and the predictions of linear elastic theory as lines .  The
outer boundary is poorly described by discrete points but the interior stress fields are
in good agreement with the predictions of linear elastic theory .  The thermal part of PV
is +0.01 in the right panel and 0.00 in the cold-crystal left panel .
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9. Stress in systems with rotational contributions* .
The linear elastic theory for a rotating disk requires the Lamé constants * and a
solution of the force-balance between the centrifugal and tensile stresses :

The solution which has a vanishing radial stress at the outer radius R is :

The preceding graphic showed that both stress tensor components agree nicely
with the results of molecular dynamics in which the potential and kinetic stress
contributions are both of the same order of magnitude as the rotational effects .

* with

Useful Exercise : Finding the Lamé Constants in a Hooke’s-Law Crystal
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10. Levesque-Verlet Bit-Reversibility

10. Levesque-Verlet Bit-Reversibility

do 30 it = 1,itmax
idtdtF = dt*dt*(-iqnow)
iqnew = 2*iqnow - iqold + idtdtF
iqnow = iqnew
iqold = iqnow
iqnow = iqnew
write(6,*) it,iqnow
30 continue

It is remarkable that using this trick
( integer arithmetic for the forces and
the coordinates ) allows the motion to
be reversed precisely , to the very 
last bit !  It is convenient to choose dt
equal to unity so that the forces and
the coordinates are similar in size .

Problems which obey the Second Law of Thermodynamics when
generated can be reversed to the very last bit , generating a flow
that contradicts the Second Law .  Using integers is very much
like recording pixels of a movie frame and playing the movie in
the backward direction .  So long as the equations of motion are
Hamiltonian there is no contradiction with classical mechanics .
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10. Levesque-Verlet Bit-Reversibility with
Smooth-Particle Continuum Mechanics *

* Kum and Hoover, Journal of Statistical Physics 76 , 1075 -1081 ( 1994 ) .

Simple equation of state with compressibility and thermal expansion :
P = – s = r2 – 1 – e

There is a stable leapfrog algorithm solution using :

ß w(r)
∫2prwdr

r [ Monaghan’s weight function ]

10. Levesque-Verlet Bit-Reversibility with
Smooth-Particle Continuum Mechanics *

* Kum and Hoover, Journal of Statistical Physics  76 , 1075-1081 ( 1994 ) .

Simple equation of state with compressibility and thermal expansion :
P = – s = r2 – 1 – e

There is a stable leapfrog algorithm solution using :

Notice the lack of any dissipation .  There is no viscosity and no heat conductivity .  The algorithm is
stable for timesteps of 0.01 and 0.02 with kinetic and interal energies of 1 per particle and 25 particles
In a 2.5 x 2.5 box.  The time-averaged energy values are E = 33.94 and K = 16.05 .
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10. Levesque -Verlet Bit-Reversibility with
Smooth-Particle Continuum Mechanics *

Initial	=	Final	Coordinates	and	Coordinates	at	Time	Reversal	Time

Time à

Energy Errors

Time-Reversal	at	Time	=	10

dt =	0.02

dt =	0.01

P = – s = r2 – 1 – e

10. Levesque -Verlet Bit-Reversibility with
Smooth-Particle Continuum Mechanics *

Because the weight function is smooth and includes
a few dozen particles typical morphologies are fluid .
By choosing a weight function range of 1 and simple
Isentropic equations of state [ de = - Pdv = (P/r2)dr ] ,

P = ( r3 – r2 ) ß or à P = (1/2)(r- 1 – r- 2) ,
it is possible to obtain reasonable solids with the

close-packed triangular lattice structure .  This one
started out as a 20 x 20 square lattice with very little

kinetic energy and ended up in a triangular lattice with
just a few defects .  h = 1 and constant energy .

Such models should provide a good start to
some interesting research questions .

* P	=	(	r – 1	)/r2
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10. Levesque -Verlet Bit-Reversibility with
Smooth-Particle Continuum Mechanics *

These started off with identical structure and velocities, but with two different equations of state and h = 1 .

* P	=	(	r – 1	)r2

11. Stationary Shockwaves amd Free Expansion
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11. Stationary Shockwave Structure with Unit Viscosity *

ru , Pxx + ru2 , and
ru[ e + (u2/2) + (Pxx /r ) ] ,

The fluxes of mass ,
momentum, and energy ,
are constant throughout .

Elimination of the cold
and hot speeds gives the

Hugoniot relation :
De = < P > DV .  0

 0.1
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 1

-3 -2 -1  0  1  2  3

ß 4T

ß r - 1
Shock	width	is	directly
proportional	to	the

longitudinal	viscosity	.

x

Twofold Compression

Pxx = P – l( du/dx + dv/dy )
- 2h( du/dx ) ;
Pyy = P – l( du/dx + dv/dy )
- 2h( dv/dy ) .

* h and l are the first and second viscosity coefficients, with h the “shear viscosity” .

11. Shockwave and Free-Expansion ( isentropic ) Curves
Fluxes of Mass, Momentum, and Energy

Stationary states are the simplest to analyze .  In a one-dimensional shockwave
we can examine a differential “control volume” and note that the mass entering
and the mass leaving are identical , ru , where r is the mass density and u is the
velocity . We choose the systematic flow parallel to the x axis .
The x momentum entering and leaving our control volume are likewise identical
and equal to the momentum flux Pxx + ru2 ( per unit area and time ) .  The change
in energy is relatively complicated .  It includes the work done by the pressure
forces at the boundaries of our volume , Pxx u .  The complete energy flux is
the sum of the four contributions : Qx + ru[ e + (u2/2) + (Pxx /r ) ] .
If we choose an equation of state P = re = (r2 /2) + rT with e = ( P/r ) = (r/2) + T ,
we can identify the fluxes and equilibrium end conditions for a stationary shock :

u : 2à1 ; r : 1à2 ; P : (1/2)à(5/2) ; e : (1/2) à (5/4) ; T : 0 à (1/4)
Constant fluxes : ru = 2 ; Pxx + ru2 = (9/2) ; ru[ e + (Pxx /r) + (u2/2) ] = 6 .

We have assumed P = (r2 /2) + rT – (du/dx) and Q = 0 à (dr/dx) = (3r/2)(r – 1)(2 – r)
This single ordinary differential equation can be solved with our RK4 integrator .
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We have assumed viscosity * h = - l = 1 with no thermal conductivity giving
Pxx = re – h (du/dx) = (r2/2) + rT – (du/dx) and Q = 0

à (dr/dx) = (3r/2)(r – 1)(2 – r) .
This single ordinary differential equation with a positive righthand side for 1 < 
r < 2 can be solved using RK4 .  Heat flux could be included, resulting in two 
equations rather than one .  It is noteworthy that Pxx varies linearly with 
volume and that the viscosity determines the width of the shock . The 
partition function can be evaluated from e and P :

Z = VTe( -r/2T ) à P = rT + (r2/2) = re with e = T + (r /2T) ; S = ln(T/r)
so that the original entropy is -∞ . An isentrope results if T a r and P a r2 .
Let’s have a look at Pxx , P , and the hot and cold isentropes nearby à

* The “bulk” viscosity is h + l ; setting it equal to zero is “Stokes’ approximation” .

11. Continuation of the stationary shockwave problem

11. Continuation of the stationary shockwave problem

P

V

P = rT + (r2/2) = re

( P/r2 ) =  (1/2) or (5/8)
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11. Shockwaves , Free Expansion , Joule-Thomson Experiment

The usual explanation of a shockwave’s singular nature is to state that the
denser portion of the wave catches up .  If P = r2/2 then c2 = ( ∂P/∂r )S = r .
In the case of free expansion the enthalpy E + PV is converted into kinetic
energy, v2/2 with the velocity greater than the sound speed v = √2	c	.  Note
that the sound velocity in the comoving frame is continually decreasing in
that it is proportional to the local density .

As the wave spreads out the velocity gradient approaches zero and the free
expansion is isentropic .  Evidently free expansion is a way to determine the
isentropic equation of state .

In the Joule-Thomson experiment the velocity is ignored so that energy
balance just gives the information that the enthalpy E + PV is conserved .
If the potential energy decreases the comoving temperature ( relative
kinetic energy ) increases and vice versa .  All of these one-dimensional
flows are related to enthalpy .

A Useful Exercise : Relating Sound Velocity to the Bulk Modulus
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Summary of Lecture 6 :

Gibbs’ partition function provides e and P with mechanical
fluxes providing P and Q even far from equilibrium.  The
virial series provides equation of state information which
is useful for gases .  The use of weight functions makes it
possible to generate fields from point data with stress and
strains consistent with the predictions of linear elasticity .
Shockwaves, isentropes, and adiabatic flows provide good
exercises in computational fluid dynamics .  Levesque and
Verlet’s bit-reversible algorithm allows for the analysis of
nonequilibrium flows in either time direction .

Addendum	:	Entropy	Production

Extending thermodynamics to nonequilibrium situations requires constitutive relations
giving the stress and heat flux in terms of gradients .  The Boltzmann equation furnishes
a guide .  Here we will consider shear flow and heat flow as examples .  In periodic shear
the temperature can be stabilized by Nosé-Hoover control to reach a steady state.  In the
steady state heat is extracted by forces { -z p } and work is performed by the shearing
boundary conditions Pxy V(dux/dy) with these energy sinks and sources balancing for long
time averages ,  < dE/dt > = < dQ/dt > – < dW/dt > .  What is the “entropy” of the sheared
fluid ? By adding the extracted heat divided by the thermostat temperature T one finds
that the entropy decreases at the rate –S zp2 /T = - 2N < z > .  But of course in a steady
state there can be no steady decline – entropy ( if it exists ) must be constant .  The result
of this line of thinking is entropy production, dS/dt = - (1/T)dQ/dt - PxyV(dux /dy) /T .  If the
viscosity is defined by Pxy = -h (dux /dy) then the entropy production per unit volume can
be expressed as the square of the stress divided by viscosity or the square of the strain
rate multiplied by the viscosity, in either case dividing by the thermostat temperature T .
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Addendum	:	Entropy	Production

A similar idea can be applied to heat flow .  The heat extracted by the
cold reservoir gives an entropy loss Q/T while the heat added by the
hot reservoir provides an entropy gain .  Because there is no long time
change in system energy the entropy change is < Q >[ 1/TH – 1/Tc ] < 0 .
If the temperature difference is expressed in terms of the system length
multiplied by a temperature gradient then , just as in the case of shear ,
the “entropy production” can be expressed as the square of a current
divided by the heat conductivity or the square of a gradient multiplied
by the conductivity .  The entropy production can be viewed as an
artifice designed to preserve the Second Law of Thermodynamics .

In a steady shockwave the influx of cold low-entropy fluid does not
match the exiting higher-entropy value .  Again there is judged to be
entropy produced within the system .

Addendum	:	Entropy	Production

With	the	advantage	of	simulation	it	became	possible	to	study	the	Gibbs’	entropy
of	simple	systems	like	the	Galton	Board	or	the	conducting	oscillator	.	What
happens	is	that	the	distribution	function	in	the	phase	space	becomes	fractal	,	of
zero	volume	,	so	that	the	Gibbs’	entropy	actually	does	approach	(	mathematically	)
minus	infinity	.		Although	the	formation	of	the	fractal	takes	a	relatively	short	time
to	saturate	,	20/l ,	with	single	precision	;	40/l ,	with	double	precision	;	and	80/l
with	quadruple	precision	,	we	see	that	the	limited	information	provided	by		our
computations	does	provide	steady	states	with	a	very	small	density	of	states	in	the
phase	space	.

The	overall	moral	is	that	extending	the	concept	of	entropy	to	nonequilibrium
systems	is	not	a	practical	activity	.		On	the	other	hand	the	fractals	produced	by
nonequilibrium simulations	can	be	viewed	and	analyzed	.		Let	us	look	in	detail	at
a	simple	model	for	the	fractal	character	of	nonequilibrium flows,	the	Baker	Map	.
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Addendum	:	Entropy	Production	via	a	Modified	Baker	Map

What is the Classic Baker Map ?  It maps a square portion of the ( x,y ) plane onto
itself through a shear deformation ( A à B ) followed by a placement of the right
half above the left ( B à C ) .  Locally the horizontal distance between points is
doubled : ( dx à 2dx ) while the vertical distance between points is cut in half :
( dy à dy/2 ) .  There are two “fixed points” ( • ) which are not displaced by the
mapping .  If one tries to implement the mapping on a digital computer the
compression in the y direction loses a “bit” of information each time the map
is implemented .  [ This corresponds to shifting digits to the right . ]  Expansion
In the x direction shifts bits to the left . ]  D shows the results of two iterations .

A                                        B                                       C                          D          

• •

• ••

•

Addendum	:	Entropy	Production	via	the	Baker	Map

A	time-reversible	map	which	goes	everywhere	within	a	two-dimensional	phase
space	but	with	some	regions	of	the	space	contracting	and	some	expanding	is	the
Baker	Map	.		The	net	result	is	a	strange	attractor,	a	fractal	object	in	which	the
probability	density	is	not	smooth	and	which	is	more	and	more	concentrated	as
the	resolution	of	the	map	is	increased.	Here	is	an	equilibrium	2	x	2	Baker	Map	:

if(q.lt.p) then
qnew = (5*q – 3*p)/4.0d00 + dsqrt(1.125d00)
pnew = (5*p – 3*q)/4.0d00 – dsqrt(0.125d00)
endif
if(q.gt.p) then
qnew = (5*q – 3*p)/4.0d00 - dsqrt(1.125d00)
pnew = (5*p – 3*q)/4.0d00 + dsqrt(0.125d00)
endif q
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Addendum	:	Entropy	Production	via the	Baker	Map

Here	is	a	nonequilibrium 2	x	2	Baker	Map	in	which	parts	of	the
square	“phase	space”	expand	or	shrink	by	factors	of	3	or	(3/2)	:

if(q.lt.p – dsqrt(2.0d00/9) then
qnew = +(11*q – 7*p)/6.0d00) + dsqrt(49.0d00/18)
pnew = +(11*p – 7*q)/6.0d00) - dsqrt(25.0d00/18)
endif
if(q.gt.p – dsqrt(2.0d00/9) then
qnew = +(11*q – 7*p)/12.0d00) - dsqrt(49.0d00/72)
pnew = +(11*p – 7*q)/12.0d00) - dsqrt( 1.0d00/72)
endif

After computing the “new” point ( qnew,pnew ) à ( q,p ) .
The following graphic shows what happens with half a million
Iterations of the equilibrium and nonequilibrium maps .

p

Addendum	:	Entropy	Production	via Ergodic	Baker	Maps
Half a million Iterations of the equilibrium and nonequilibrium maps .

q

p

By spanning the space with cells of size e and measuring the mean value of the 
logarithm of the probability < ln f > we can determine the dimensionality .
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Addendum : Fractal Information Dimension via Baker Maps

< ln( f ) > as a function of the inverse box size
*Juraj Kumičák , Physical Review E 71, 016115 ( 2005 )

ln(1) = 0.00000

ln(104) = 9.21034 ( 1/e ) 

Addendum : Entropy Production via Ergodic Baker Maps

The “entropy” < ln(f) > has been calculated here using what is called the
“Natural Measure”, where f is the frequency with which the box is visited .
It is perfectly feasible ( but not necessarily useful ) to define other measures
by computing powers of f .  The “information dimension” is the one we have
calculated .  The “correlation dimension” is based on the square of frequency
and can alternatively be evaluated by computing the logarithmic dependence
of the number of pairs of points in each bin on the bin size e .  This is a little
complicated because at small e the one-dimensional trajectory dimension
dominates the statistics . The dimension decreases as the power used in
defining it increases .  Because information dimension is directly related to
Gibbs’ entropy it is the one most likely to be useful for statistical mechanics .


