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1. Ergodicity and Its Importance in Small Systems

Gibbs’ microcanonical ( constant energy ) and canonical ( constant
temperature ) ensembles include all phase-space states , an ellipse
or a Gaussian distribution for the harmonic oscillator . This is an
important consideration for small systems , where fluctuations are
large . Nosé’s idea was to extend the ( q,p,s,(* ) phase space in order
to make all of the states accessible with Gibbs’ distribution :

f(q,p) o el-(/2(a”+p*)]
This attempt failed . The simpler Nosé-Hoover approach, with just ( q,p, ) and

f(q,p,) o el- (72)(a*+p*+) ]

is equally far from ergodic . This can be seen by looking at a chaotic Poincaré
section , choosing ( q, ) points to plot whenever p changes sign . Two chaotic
initial conditions are ( 3,3,0 ) and ( 0,5,0 ). Let us look at the Poincaré sections .

* Remember that ¢ is the “conjugate momentum” associated with the time-scaling s .

Ergodicity and Its Importance in Small Systems
Nosé-Hoover Poincaré Sections with initial (qp{) =(330) and (050 )

(dg/dt) =p; (dp/dt) =-q-Cp ; (df/dt)=p?-1

L C(c}) from ( 050 ).

IS

| ¢(a) from (330)

. . .
-4 2 0 2 4 -4 2 0 2 4

About 250 000 points appear in each of these ( q 0 ) sections
from trajectories of 1 000 000 000 steps of 0.001 each .
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2. Gibbs’ Ensembles and Linear-Response Theory

William G. Hoover
Ruby Valley Nevada
December 2016

Perturbation Theory Based on Gibbs’ Canonical Distribution

Gibbs’ distribution, like the Maxwell-Boltzmann velocity distribution, provides a
basis for perturbation theory , the “Green-Kubo” linear-response theory, based
on adding a perturbation to the Hamiltonian. When the distribution is linearized

so that
el (H+dHWKT]1 5 @ [-(HAT)[{ —(dH /KT ) +...]

It becomes possible to find the linear response, typically in the form of a time
correlation function which is to be evaluated in the equilibrium Gibbs’ ensemble .

By choosing appropriate perturbations ( a constant field can drive diffusion and
a constant strain rate , with x velocity proportional to y , can drive viscosity ) the
transport coefficients can all be written in terms of equilibrium correlation
functions .

This convenient perturbation theory is not so easily interpreted if the equilibrium
distribution is not actually realized by the system dynamics . Ergodicity is vital .
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3. Ergodicity of Hard-Disk and Soft-Disk Cell Models

William G. Hoover
Ruby Valley Nevada
December 2016

3. Ergodicity of Hard-Disk and Soft-Disk Cell Models

Nandor Simanyi has written a 58-page paper , arXiv:math/0008241 ,
entitled “Proof of the Boltzmann-Sinai ergodic hypothesis for
typical hard disk systems” . This 2003 work goes back to 1970 and
is noteworthy for its complexity . There is no reason to doubt that
this ergodicity is due to the effect of scattering from a convex
surface , as was demonstrated in Carol’s second lecture .

Back in 1996 Harald Posch , Franz Vesely , and | speculated that a
two-dimensional soft-disk system was likewise ergodic in our work
on the “Canonical Dynamics of the Nosé Oscillator” , Physical Review
A 33, 4253-4265 . Unlike the “event-dominated” hard-disk problem
the soft-disk problem , with ¢( r ) = 3( 1 — r )*and an energy of unity

is a good example . How do we best test such models’ ergodicity ?
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3. Ergodicity of Hard-Disk and Soft-Disk Cell Models
How do we best test such models’ ergodicity ?

An effective approach is to choose random initial conditions ,
all with the same microcanonical energy or from the same
canonical distribution and to look for differences in their long
time behavior ( moments, Lyapunov exponent,...).

With a soft-disk cell model problem it is apparent that regular
solutions can be obtained for specially symmetric initial
conditions such as a velocity nearly parallel to the cell axes .
So long as these conditions have a finite measure ( not just a
single orbit , but a measurable collection of orbits ) there is no
possibility of ergodicity and the phase-space dynamics will be
a messy collection of chaotic and regular regions .

3. Ergodicity of Hard-Disk and Soft-Disk Cell Models

Simanyi’s result is interesting in view of this mixed nature of the
soft-disk phase space ( part chaotic and part regular ) . Is it the
case that gradually making the potential steeper ( approaching
the hard-disk limit ) will eventually lead to ergodicity ? Another
approach to the same problem is to examine the stability of the
glancing-collision solutions .

A similar “focusing” of orbits was observed by Vineyard in his
radiation damage studies . Motion parallel to rows of atoms
is evidently stable to small transverse perturbations .

It is noteworthy that simulations provide conclusions
much more rapidly than do theoretical analyses .
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A Soft-Disk Cell Model as of 1986 *

y
T 0.6 —- —_—
0.5 ; f( C)
4 I
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o p / \ |
0.0 5 ‘ -"’/" = o = '\\“‘ + :!
5<C<+5 =
¢(r)=3(1-r)*with (x,y, py Py C) Probability density for { compared to
=(0.1,0.2,+1,-1,0). Isit ergodic? the Gaussian distribution ( dashes ).

* Posch, Hoover, Vesely, Physical Review A 33, 4253-4265 (1986) . Compare to 2016 =

2016 Comparison of the Chaotic and Reqgular Trajectories for Soft Disks *

0.5 |
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A1 =0.000

* The energy is conserved to six figures in both these 2 000 000 timestep simulations .
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George Vineyard’s Radiation-Damage Studies *

Structure of static defects as well as highly
energetic ”Knock-On” Collisions in Metals
Physical Review 120, 1229 - 1253 ( 1960 )
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I'16. 6. Atomic orbits produced by shot in (100) plane at 40 ev.

* Using the “Verlet” algorithm before Verlet !

Kharagpur Lectures

4. Nosé-Hoover Oscillator and the Chaotic Sea
{ (da/dt) = p ; (dp/dt) =— q — Cp ; (d&/dt) = p2-1}

Why is it that three dimensions are required for
Chaos ? What about “ ” rather than ” ”?
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4. Nosé-Hoover Oscillator and its Chaotic Sea

Structures of a few of the simpler tori , courtesy
of Wang and Yang *, who chose to examine o =10 :

{ (do/dt) = p ; (dp/dt) =—q - Cp ; (dC/dt) = a(p?— 1) }
The constant parameter « is related to frequency? :
o=v?=1/7?

The existence of multiple solutions for hydrodynamic
problems like Rayleigh-Bénard convective flows ->
shows that molecular dynamics can have multiple
chaotic seas . No such degeneracy has yet been seen
in physically interesting small-system situations .

* L Wang and X-S Yang , arXiv 1501.03375 ( 2015 ) .

Four Ways to Test for Ergodicity

1. Compare average values of E,P,<p?>,<qg*>

2. Determine whether or not regular solutions are present
3. See whether or not A, depends upon the initial conditions
4. Look at Poincaré sections for holes

Toroidal initial condition Chaotic initial condition
x(1) = 0.0d400 x(1) = 0.1d400
y(1) = 0.0400 y(1) = 0.2d400
px(1) = +dsqrt(1.98d00) px(1) = +1.0d00
py(1l) = +dsqrt(0.02d00) PY(1) = -1.0d400

Two million steps with RK4 dt = 0.01d00 . Analyze last half .
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251 426 (330) points and 252 348 (050) Nosé-Hoover Poincaré section points
Both simulations used 1 000 000 000 timesteps with dt = 0.001 using RK4 .
The holes in these sections suggest two interesting things to do :
[ 1 ] magnifying the sea to see its structure more clearly and the
[ 2] starting with the (100) and (300) tori to see their complexity .

IS
T

. . . . . ) ) )
4 2 0 2 4 -4 2 ) 2 4

These are points along the trajectory where p vanishes , detecting a pold*pnew .
(330) and (050) are the of (qp¢) used to obtain these (q0¢) section data .

Here we plot every 1000th point out of 1 000 000 000 starting with (100) and (300)
= (qp¢) - Both simulations produce nonchaotic tori . Both used dt = 0.001 with RK4 .

v, oA, S o = N
o =o=unO
S amaman TR

o

0

Notice the different scales, with the 300 torus occupying mostly positive values
of the coordinate q . The 100 torus is symmetric about the origin. Very recently
Lei Wang and Xiao-Song Yang “The invariant tori of knot type and the interlinked
invariant tori in the Nosé-Hoover system” (.arXiv 1501.03375 ) have identified six
Nosé-Hoover tori and have found that they are interlinked ( wrapped around one
another ) . This new finding underlines the complexity present in a simple model .
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Magnified view of the chaotic sea with the RK4 dt = 0.0001 for additional clarity

The 2 522 740 (Iql, 0, IZl ) section points reveal tiny holes *
Notice that the chaotic sea displays fourfold symmetry .

The ultrasimplified ‘Logistic Map’,y =a y (1 -y ), has similar features .

Magnified view of the chaotic sea with the RK4 dt = 0.0001 for additional clarity

The 2 522 740 ( Iql, 0, ICl ) section points reveal tiny holes . The extreme
closeup to the right reveals that the holes themselves contain small
islands . This “structure on all scales” is characteristic of Hamiltonian
Chaos , which is inherited from the Nosé-Hoover-Dettmann equations .

10
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Here is the torus which fits into the large pentagonal hole
The initial N-H conditions are (q, p, {) =(2.68, 0.00, 2.03 )

Kharagpur Lectures

5. More complicated Tori were discovered by Wang and Yang *
In 2015 by solving the Nosé-Hoover equations with o = 10 .

(dg/dt)=p;(dp/dt)=-q-Cp;
(d&/dt)=10(p*-1)

* Lei Wang, Xiao-Song Yang, “The invariant tori of knot type and the interlinked
invariant tori in the Nosé-Hoover system” arXiv 1501.03375

11
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lllustrations of the 6 x 5/2 = 15 interlinked tori pairs from the Wang-Yang arXiv paper

Here o = 10 where (d¢/dt) = o( p2-1).
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Kharagpur Lectures

6. Ergodicity of Oscillator Models : 1984 - 2016

12
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6. Ergodicity of Oscillator Models : 1984 - 2016
Nosé and Nosé-Hoover Oscillators
Martyna-Klein-Tuckerman Oscillator
Kusnezov-Bulgac-Bauer papers
Sergi-Ferrario (qp) Oscillator
Sergi-Ezra-Patra-Bhattacharya Oscillator
Weak (gp) and (p?, p?) Oscillator Control
( Including solutions of Nosé’s problem )
‘Logistic Thermostat’ and the Mexican Hat

Nosé and Nosé-Hoover oscillators : 1984 - 1986

Question : Nosé’s Hamiltonian model added s and (
to the harmonic oscillator, giving more complexity ,
6% chaotic and 94% toroidal . How do we know ?

Answer : Choose 1 000 000 initial conditions from the
solution of Liouville’s flow equation f o. exp[ -#(q,p,s,5)/kT ] .
About 60 000 of these have nonzero Lyapunov exponents .

To do this use Giancarlo Benettin’s Lyapunov Algorithm :
Propagate two nearby trajectories, rescaling their separation
after each timestep . Compute < A(t) > = <-In(factor)/dt > and
determine whether or not it is significantly different to zero .
The two trajectories have weights from exp[ -#(q,p,s,c)/kT ] .

13
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Giancarlo Benettin’s Lyapunov Algorithm (1980)

The simplest programming propagates two nearly identical (q,p,z)
vectors for a time of 20 000 using dt = 0.01 . The distance between them ,

r = dsqrt( (gql-q2)**2 + (pl-p2)**2 + (21-22)**2 )
is then returned to 0.000001d400 by “scaling” :

q2 = ql + factor*(gq2 — ql)
p2 = pl + factor*(p2 — pl)
z2 = zl1 + factor*(z2 — zl)

where factor = (0.000001d00/r)

The Lyapunov exponent is the mean value of -1n(factor)/dt using
data from the last of half each run, with runtimes 20K , 80K , and 160K .
The A expression follows from exponential dependence : r a exp[ +At ] .

Giancarlo Benettin’s Lyapunov Algorithm

:’.?»' R '. : cor e, b ~'| " Nosé-Hoover Chaos is 6%
D > 62/1000 chaotic
] . .- | 80K~ 63/1000 chaotic

0.002

e ———— | 320K - 64 /1000 chaotic

-0.002
0

L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000

< 1000 Initial Conditions >

A is between 0.013 and 0.014 . We tabulate the fraction greater than 0.002 .

14
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Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat ( 1992 )
{ (do/dt) = p ; (dp/dt) =—q - Cp ; (d&/dt) = p? -1 - &C ; (d&/dt) =2 -1}
There are at(q,p, %, €)=(0,0,+1,—1)and (0,0,-1, +1)
Shown below are the (&, &) for g2 + p2 < 0.01

Exponentially unstable in £ and Exponentially unstable in g and p

Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat

The ( gpl§ ) fixed points are of two types,

stable in gp unstable in £§ vs unstable in qp stable in &g .

qp =0,0 > {(d&/dt) =—-1-C&; (de/dt) =2 -1} <

& =+1,-1 > {(dg/dt) =p ; (dp/dt) =—q-p }

gE=-1,41 > {(dg/dt) =p ; (dp/dt) =—q + p }
Both fixed points are unstable in one 2x2 plane .

The £ plane equations are to a falling mass :

{(dv/dt)=—1-Cv; (de/dt) =v2—1} <

15
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Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat

Let us look at typical € orbits
in the (q,p) = (0,0) plane from
the falling-particle standpoint :
(dv/dt)=—1-Cv
(dC/dt) =v2-1
The stability is easy to establish

By linearization, for example :
v=-1+dv;{=+1+dC

G

v=+1l+dv;{=-1+d(C

Flow is from Red to Blue.

This is a good homework or examination problem . For details see TRCSAC.

Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat

Linear Stability Analysis* involves truncating Taylor’s
series for differential equations after the linear terms .
We will give the detailed analysis for this thermostated
“Falling Particle” problem on the succeeding slide .
The idea is to analyze the dynamics in the vicinity of a
“fixed point” in order to see whether or not the point
Is “stable”. For ergodicity we need instability .

v=-1+dv;z=+1+dz

v=+1l+dv;z=-1+dz

G

* Such problems are good homework or examination problems .
For details see Time Reversibility, Computer Simulation, and Chaos.

16
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Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat*

(d2x/dt?) = + / - (dx/dt) - 2x are the unstable / stable cases .
To begin, expand the equations { # = —1 — (v ; ( =v2—1 } around (v,{) = (—1,+1) :

by 2 —(8y — v0C &~ —6, + d¢ 3 5< =~ 200, ~ —20, .

Differentiation and substitution gives second-order differential equations for ¢, and d; :

8y = —8, — 26, ; bc = —26, = 26, — 20c = —b — 25 .

Both variables obey the same damped-oscillator motion equations at the stable fixed point.
In the reversed motion we expect instability. To analyze this we expand around (+1, —1) :

Sv:5v_5(; 5(2251, .
Just as before we differentiate in order to get second-order motion equations :
51):81)_251); 5(:25v:25v_25(:(§c—25< .

This fixed point is unstable. It is interesting that in the neighborhood of both fixed points,
stable and unstable, the perturbed equations have ezactly the same form for both variables.

* This is a good homework or examination problem . For details see TRCSAC .

Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat *

The apparent “holes” in the vicinity of the fixed points are misleading !
Determining the ergodicity of this problem was the 2014 Snook Prize Problem .

25 — AT Simulations with
20! in(Ne) | from 10'° to 102
timesteps show
| R the dimension of
o the probability
10} density near the
fixed points is
51 uniform .
\ In(r)

% 4 3 =2 a4 0 1 2  *CMST21(2015)

17
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Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat
Checking the moments ( for all four variables ) is another good test .
Second Moments

Fourth Moments Sixth Moments

L] 1 I L] L] 1 1 1 1 L] L] 1
The Range Shown :
[2.9980,3.0010]

The Range Shown :
L [0.99970,1.00015] -

The Range Shown :
[14.980,15.005]

Time range shown is 100 000 000 to 200 000 000

Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat

The fixed points are all unstable .

The measures around the fixed points are uniformly space-filling .
The moments agree with Gibbs’ canonical distribution .

The Lyapunov exponent is positive and universal .

This evidence is convincing . The MKT Chain Thermostat is ergodic .
We did not consider investigating double cross sections . These are
now feasible on laptop machines . Let’s look at an example * :

(da/dt) = p ; (dp/dt) = —q - Cp - £p®;
(d¢/dt) = p2-T ; (d&/dt) = p* — 3p?T ;
where T =1 + 0.4tanh(q)

* Simulation and Control of Chaotic Nonequilibrium Systems (2015)
[ Frontispiece illustration with { = € = 0 courtesy of Clint Sprott ]

18
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Simulation and Control of Chaotic Nonequilibrium Systems
[ Frontispiece illustration of p(q) courtesy of Clint Sprott ]

The Information Dimension of this Nonequilibrium Hoover-Holian Attractor is 3.687 .

Kusnezov-Bulgac-Bauer papers

D. Kusnezov, A. Bulgac, and W. Bauer, “Canonical Ensembles from
Chaos” , Annals of Physics ( NY ) 204 and 214, (1990 and 1992).

These two comprehensive papers treat many examples , including the
Mexican Hat potential , which has a double well , and the diffusion of a
Brownian particle , which requires three thermostat variables rather
than two . At the time the papers were written it was unknown that
simple problems like the oscillator could be thermostated ergodically
with a single additional control variable , a nonlinear hyperbolic tangent .

Their papers emphasize that the motion equations can made consistent
with Gibbs’ canonical distribution by applying the continuity equation in
The three- , four-, or five-dimensional “extended” phase space .

19



11/25/16

In 2001 Sergi and Ferrario ( Physical Review E 64, 056125 ) introduced a
set of four-dimensional motion equations which coupled the coordinate
and momentum of an harmonic oscillator in an unusual way :

{ (do/dt) =p(1 +¢) ; (dp/dt) =—q —Cp ; (d&/dt) =p?>—1 —qp ; (ds/dt) =C }
They included several parameters all of which we have set equal to 1.
Because the variable “s” plays no role in the solution we can ignore it .
Sergi and Ferrario thought their equations ergodic , perhaps because they
considered all four dimensions in their numerical work . But starting

with (gp&) = (111) gives a nice torus ! The projection here shows p(q) .

Though not ergodic , this model suggested the useful
idea of combining controls of momenta with controls
of coordinates ( or, better yet , forces ) which led to
further work , which was ultimately successful .

The Sergi-Ezra-Patra-Bhattacharya Oscillator

was an attempt (2010 and 2014) to thermostat

the momentum and the coordinate ( or force )

in a symmetric way :

{ (do/dt) =p —&q ; (dp/dt) =— q - Cp ; (d&/dt) = p*> -1 ; (d&/dt) = 9> — 1}
Oddly enough the (gp) distribution turns out not to be
circularly symmetric so that this approach is not ergodic .
It appears that simple modifications , using cubic forces ,
are enough to attain ergodicity for the oscillator . Patra
and Bhattacharya have studied a large family of control

variables and we have carried out many collaborations
with them and with Clint Sprott at Madison Wisconsin .

20
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The Sergi-Ezra = Patra-Bhattacharya Oscillator
{ (dg/dt) = p — &q ; (dp/dt) =—q — Cp ; (d&/dt) = p? - 1 ; (d&/dt) = > -1}

0.08 p (@ (10).p(0).,(0).n,(0)) = (5,5,0,0)
006f ¢ =
-1
[ 'g
! /e o 3 1 '
0.04 ! /
£
0.02 o
O P M N M -
0 05 1 15 2 25 3 35 4

Position

Sergi-Ezra Patra-Bhattacharya

Weak (gp) and (p?, p?%) Oscillator Control
( Including solutions of Nosé’s problem )

Probably influenced by the earlier work various combinations of
ourselves with Patra and Bhattacharya and Sprott developed weak
controls of oscillator moments . It is easy to find combinations that
are consistent with the phase-space continuity equation and some

of them are ergodic . | will skip the (qp) controls and focus on joint
control of < p? > and < p* >, omitting < p® > as the equations tend to
be stiff . It is convenient to use a Monte Carlo approach , starting with

{ (do/dt) = p ; (dp/dt) = — q - {(op + ) ; (d&/dt) = o (p? — 1) + ((p* - 3p?) }
The parameters « and > can be varied between reasonable limits such
as [0,1] and one can watch a movie of the Poincaré sections with 100
or so frames , choosing good looking examples for more investigation .
In this way | found that “0532 Model” is ergodic .

21
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7. Singly-Thermostated Ergodicity

From J Willard Gibbs’ 1902 text , Elementary Principles in Statistical
Mechanics , page 183 :

“If a system of a great number of degrees of freedom is
microcanonically distributed in phase, any very small
part of it may be regarded as canonically distributed.”

From Gibbs’ time until relatively recently it was thought that a large
system “Thermodynamic Limit” had to be taken in order to model the
“Microstates” found in Gibbs’ canonical or microcanonical ensemble .
Now it is known that few-body singly- or doubly-thermostated systems
can exhibit these ergodic properties so that

7. Singly-Thermostated Ergodicity - Logistic Thermostat *

With an ergodic oscillator it is natural to try to extend the weak control
idea to a pendulum and to the Mexican Hat problem . All is well with
the pendulum but even the quartic potential seems difficult to treat ! |
tried thousands of combinations of parameters ( ) without success
on the quartic potential . With the cooperation of the Poznan Institute
of Bioorganic Chemistry of the Polish Academy of Sciences Carol and
| offered the 2016 lan Snook Prize of $1000 for the most interesting
contribution toward single-thermostat control of more complicated
nonlinear problems like the quartic potential or the Mexican Hat .

Just last month Tapias , Bravetti , and Sanders * took up this challenge

and formulated a new “Logistic Thermostat”, which solves the problem.

* Tapias , Bravetti , and Sanders “Ergodicity of One-Dimensional Systems ... ” = arXiv 1611.05090
The “logistic equation” dx/dt = o x (1 — x ) resembles the ‘logistic map’x=a x (1-x).

22
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7. Singly-Thermostated Ergodicity : 2016 Snook Prize

2| ¢ i=p=—-q-Cp; (=p"-1..
| »"

o 5
ulk
) IAN SNOOK
: : (1945 -2013)
2t q {1 Tasmaniaand

Melbourne OZ

Cubic forces provide mechanisms enhancing ergodicity , as stressed by Bulgac
and Kusnezov In their informative papers in the 1990 and 1992 Annals of Physics .

VJida L,
Y %

The Logistic Thermostat * Q

il

Logistic functions and distributions are applied in statistics, physics, hydrology, and chess .
A special case is e¥/(1 + €2 = (1/4)sech?(x/2) , and a slight modification evidently provides an
Ergodic Distribution for the harmonic oscillator, the quartic oscillator and the Mexican Hat !

>

In the case of the harmonic oscillator Tapias + Bravetti + Sanders solve three equations :
{dg/dt) = p ; (dp/dt) =—q - ap ; (dz/dt) = p>— 1 } where a = 10e'%%/(1 + €'%?)2. The Poincaré
Sections forq=0, p =0, and z =0 look very promising :

Yot 11 w23 " oz

[ z(p) EC) 1 Tpla)

15
" 4 2 o 2 4 0

* Tapias, Bravetti, and Sanders “Ergodicity of One-Dimensional Systems ... ” = arXiv 1611.05090

23
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The Logistic Thermostat for the Quartic Potential *

Although the moment-based thermostats are apparently insufficient for the quartic and
Mexican Hat potentials , the Logistic Thermostat can be used to solve those problems .

In the case of the quartic oscillator Tapias + Bravetti + Sanders solve three equations :
{ dg/dt) = p ; (dp/dt) =- g% — ap ; (dz/dt) = p2 - 1 } where just as before a = 10e'%%/(1 + e'%%)2.
The Poincaré Sections forq=0, p =0, and z = 0 again have the appearance of ergodicity :

o 21" w23 15

2(p) 2(q) [p@

A simpler way to think about this thermostat is that the probability e*¥T/cosh(z) is consistent with
a nonlinear friction coefficient tanh(z) . This control is stiffer than the linear or cubic or quintic
versions that were unable to thermostat the quartic and Mexican Hat potentials . It seems to work !

* Tapias, Bravetti, and Sanders “Ergodicity of One-Dimensional Systems ... ” = arXiv 1611.05090

The Logistic Thermostat for several potentials *

The use of an even logistic function , a solution of dinf/dx = 1 — f(x) provides flexible models

for saturated growth . The logistic map x; a Xo( 1 — X, ) is a discrete form of the same idea .

It can be written in terms of hyperbolic functions [ as we formulated temperature in the case

of the thermostated oscillator , with T =1 + tanh( q ) ], or in terms of exponentials , as with

T=1+(e"9-e9)/(e*9+e9)=2/(1+e29). Wikipedia has applications for flows and maps .
The Harmonic Oscillator The Mexican Hat

FIG. 4. Histograms compared with exact marginal distribu- FIG. 6. Histograms compared with exact marginal distribu-
tions (solid line) for the harmonic potential. tions (solid line) for the Mexican hat potential.

Tapias, Bravetti, and Sanders “Ergodicity of One-Dimensional Systems ... ” = arXiv 1611.05090

Please think about suggestions for the 2017 lan Snook Prize !
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A Useful Exercise : Relating Sound Velocity to the Bulk Modulus

Calculation of the Sound Velocity ¢ from the Adiabatic Bulk Modulus B

Define displacement u(z,t) in a rightward traveling sound wave with wave vector k , fre-
quency w , and sound velocity ¢ = (w/k) as follows :

u=sin(kz —wt) ; k=(27/A) ; w=27mv.

Substitution of this traveling wave into the equation of motion relates the sound velocity to
the ( adiabatic ) bulk modulus B :

pii = —VP = BV?*u — —pw’u = —Bk?u — ¢ = (w/k) = /(B/p) .
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