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1. Ergodicity and Its Importance in Small Systems
Gibbs’ microcanonical ( constant energy ) and canonical ( constant
temperature ) ensembles include all phase-space states , an ellipse
or a Gaussian distribution for the harmonic oscillator .  This is an
important consideration for small systems , where fluctuations are
large .  Nosé’s idea was to extend the ( q,p,s,z* ) phase space in order
to make all of the states accessible with Gibbs’ distribution :

f(q,p) a e[ - (1/2)( q2 + p2 ) ]

This attempt failed .  The simpler Nosé-Hoover approach, with just ( q,p, z ) and

f(q,p,z) a e[ - (1/2)( q2 + p2 + z2 ) ]

is equally far from ergodic .  This can be seen by looking at a chaotic Poincaré
section , choosing ( q,z ) points to plot whenever p changes sign .  Two chaotic
initial conditions are ( 3,3,0 ) and ( 0,5,0 ) .  Let us look at the Poincaré sections .

* Remember that z is the “conjugate momentum” associated with the time-scaling s .

Ergodicity and Its Importance in Small Systems
Nosé-Hoover Poincaré Sections with initial ( qpz ) = ( 330 ) and ( 050 )

{ ( dq/dt ) = p ; ( dp/dt ) = – q – zp ; ( dz/dt ) = p2 – 1 }
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About 250 000 points appear in each of these ( q 0 z ) sections
from trajectories of 1 000 000 000 steps of 0.001 each .
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2. Gibbs’ Ensembles and Linear-Response Theory

Perturbation Theory Based on Gibbs’ Canonical Distribution

Gibbs’ distribution, like the Maxwell-Boltzmann velocity distribution, provides a
basis for perturbation theory , the “Green-Kubo” linear-response theory, based
on adding a perturbation to the Hamiltonian.  When the distribution is linearized
so that

e[- ( H + dH )/kT ] à e [ - (H /kT ) ][ 1 – (dH / kT ) + . . . ] 
It becomes possible to find the linear response, typically in the form of a time
correlation function which is to be evaluated in the equilibrium Gibbs’ ensemble .

By choosing appropriate perturbations ( a constant field can drive diffusion and
a constant strain rate , with x velocity proportional to y , can drive viscosity ) the
transport coefficients can all be written in terms of equilibrium correlation 
functions .

This convenient perturbation theory is not so easily interpreted if the equilibrium
distribution is not actually realized by the system dynamics .  Ergodicity is vital .
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3. Ergodicity of Hard-Disk and Soft-Disk Cell Models

Nándor Simányi has written a 58-page paper ,  arXiv:math/0008241 ,
entitled  “Proof of the Boltzmann-Sinai ergodic hypothesis for
typical hard disk systems” .  This 2003 work goes back to 1970 and
is noteworthy for its complexity .  There is no reason to doubt that
this ergodicity is due to the effect of scattering from a convex
surface , as was demonstrated in Carol’s second lecture .

Back in 1996 Harald Posch , Franz Vesely , and I speculated that a
two-dimensional soft-disk system was likewise ergodic in our work
on the “Canonical Dynamics of the Nosé Oscillator” , Physical Review
A 33 , 4253-4265 .  Unlike the “event-dominated” hard-disk problem
the soft-disk problem , with f( r ) = 3( 1 – r )4 and an energy of unity
is a good example .  How do we best test such models’  ergodicity ?
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3. Ergodicity of Hard-Disk and Soft-Disk Cell Models

How do we best test such models’  ergodicity ?

An effective approach is to choose random initial conditions ,
all with the same microcanonical energy or from the same
canonical distribution and to look for differences in their long
time behavior ( moments, Lyapunov exponent , . . . ) .

With a soft-disk cell model problem it is apparent that regular
solutions can be obtained for specially symmetric initial
conditions such as a velocity nearly parallel to the cell axes .
So long as these conditions have a finite measure ( not just a
single orbit , but a measurable collection of orbits ) there is no
possibility of ergodicity and the phase-space dynamics will be
a messy collection of chaotic and regular regions .

3. Ergodicity of Hard-Disk and Soft-Disk Cell Models

Simányi’s result is interesting in view of this mixed nature of the
soft-disk phase space ( part chaotic and part regular ) .  Is it the
case that gradually making the potential steeper ( approaching
the hard-disk limit ) will eventually lead to ergodicity ?  Another
approach to the same problem is to examine the stability of the
glancing-collision solutions .

A similar “focusing” of orbits was observed by Vineyard in his
radiation damage studies .  Motion parallel to rows of atoms
is evidently stable to small transverse perturbations .

It is noteworthy that simulations provide conclusions 
much more rapidly than do theoretical analyses .
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A Soft-Disk Cell Model as of 1986 *

* Posch,	Hoover,	Vesely,	Physical	Review	A	33,	4253-4265 (1986)	.		Compare	to	2016	à

f(	r	)	=	3(1	– r)4 with	(	x,	y,	px,	py,	z )
=	(	0.1,	0.2,	+1,	-1,	0	)	.		Is	it	ergodic	?	

Probability	density	for	z compared	to
the	Gaussian	distribution	(	dashes	)	.

f(	z )

-5  <  z <  +5

2016 Comparison of the Chaotic and Regular Trajectories for Soft Disks *

* The energy is conserved to six figures in both these 2 000 000 timestep simulations .

l1 = 0.788 l1 = 0.000

Evidently the dynamics is not ergodic !
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George Vineyard’s Radiation-Damage Studies *

Structure of static defects as well as highly
energetic ”Knock-On” Collisions in Metals
Physical Review 120, 1229 - 1253 ( 1960 )

•

*Using	the	“Verlet”	algorithm	before	Verlet !

*
*

Kharagpur Lectures
4. Nosé-Hoover Oscillator and the Chaotic Sea
{ (dq/dt) = p ; (dp/dt) = – q – zp ; (dz/dt) = p2 – 1 }

Why is it that three dimensions are required for
Chaos ?  What about “maps” rather than ”flows” ?



11/25/16

8

The existence of multiple solutions for hydrodynamic
problems like Rayleigh-Bénard convective flows   à
shows that molecular dynamics can have multiple
chaotic seas .  No such degeneracy has yet been seen
in physically interesting small-system situations .

* L Wang and X-S Yang , arXiv 1501.03375 ( 2015 ) .

4. Nosé-Hoover Oscillator and its Chaotic Sea
Structures of a few of the simpler tori , courtesy

of Wang and Yang *, who chose to examine a = 10 :
{ (dq/dt) = p ; (dp/dt) = – q – zp ; (dz/dt) = a(p2 – 1) }
The constant parameter a is related to frequency2 :

a = n2 = 1/t2

Four Ways to Test for Ergodicity

1. Compare average values of E , P , < p2 > , < q4 >
2. Determine whether or not regular solutions are present
3. See whether or not l1 depends upon the initial conditions
4. Look at Poincaré sections for holes

Toroidal initial condition

x(1) =  0.0d00
y(1)  =  0.0d00
px(1) = +dsqrt(1.98d00)
py(1) = +dsqrt(0.02d00)

Chaotic initial condition

x(1)  =  0.1d00
y(1)  =  0.2d00
px(1) = +1.0d00
py(1) = -1.0d00

Two million steps with RK4 dt = 0.01d00 . Analyze last half .
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251 426 (330) points and 252 348 (050) Nosé-Hoover Poincaré section points*
Both simulations used 1 000 000 000 timesteps with dt = 0.001 using RK4 .

The holes in these sections suggest two interesting things to do :
[ 1 ] magnifying the sea to see its structure more clearly and the 
[ 2 ] starting with the (100) and (300) tori to see their complexity .
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*These are points along the trajectory where p vanishes , detecting a negative pold*pnew .
(330) and (050) are the initial values of (qpz) used to obtain these (q0z) section data .

Here we plot every 1000th point out of 1 000 000 000 starting with (100) and (300) 
= (qpz) . Both simulations produce nonchaotic tori . Both used dt = 0.001 with RK4 .

z
z

Notice the different scales, with the 300 torus occupying mostly positive values
of the coordinate q .  The 100 torus is symmetric about the origin .  Very recently
Lei Wang and Xiao-Song Yang “The invariant tori of knot type and the interlinked
invariant tori in the Nosé-Hoover system” ( arXiv 1501.03375 ) have identified six
Nosé-Hoover tori and have found that they are interlinked ( wrapped around one
another ) .  This new finding underlines the complexity present in a simple model .

q
p(100) (300)

Here a = 1
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Magnified view of the chaotic sea with the RK4 dt = 0.0001 for additional clarity

The 2 522 740 ( |q|, 0,  |z| ) section points reveal tiny holes *
Notice that the chaotic sea displays fourfold symmetry .

The ultrasimplified ‘Logistic Map’ , y = a y ( 1 – y ) , has similar features . 

*
*

The 2 522 740 ( |q|, 0, |z| ) section points reveal tiny holes .  The extreme
closeup to the right reveals that the holes themselves contain small
islands .  This “structure on all scales” is characteristic of Hamiltonian
Chaos , which is inherited from the Nosé-Hoover-Dettmann equations .

112 845 of 1012 points
*

*

Magnified view of the chaotic sea with the RK4 dt = 0.0001 for additional clarity
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Here is the torus which fits into the large pentagonal hole * .
The initial N-H conditions are  ( q, p, z ) = ( 2.68, 0.00, 2.03 )

112 845 of 1012 points

Kharagpur Lectures
5. More complicated Tori were discovered by Wang and Yang *

In 2015 by solving the Nosé-Hoover equations with a = 10 .

(	dq/dt )	=	p	;	(	dp/dt )	=	– q	– zp ;
(	dz/dt )	=	10(	p2 – 1	)

* Lei Wang, Xiao-Song Yang, “The invariant tori of knot type and the interlinked
invariant tori in the Nosé-Hoover system” arXiv 1501.03375



11/25/16

12

Illustrations of the 6 x 5/2 = 15 interlinked tori pairs from the Wang-Yang arXiv paper

Here a = 10 where (dz/dt) = a( p2 – 1 ) .

qp
z

à

Kharagpur Lectures
6. Ergodicity of Oscillator Models : 1984 - 2016
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6. Ergodicity of Oscillator Models : 1984 - 2016
Nosé and Nosé-Hoover Oscillators
Martyna-Klein-Tuckerman Oscillator
Kusnezov-Bulgac-Bauer papers
Sergi-Ferrario (qp) Oscillator
Sergi-Ezra-Patra-Bhattacharya Oscillator
Weak (qp) and (p2, p4) Oscillator Control
( Including solutions of Nosé’s problem )
‘Logistic Thermostat’ and the Mexican Hat

Nosé and Nosé-Hoover oscillators : 1984 - 1986

Question : Nosé’s Hamiltonian model added s and z
to the harmonic oscillator, giving more complexity ,
6% chaotic and 94% toroidal .  How do we know ?
Answer : Choose 1 000 000 initial conditions from the
solution of Liouville’s flow equation f a exp[ -H(q,p,s,z)/kT ] .  
About 60 000 of these have nonzero Lyapunov exponents .
To do this use Giancarlo Benettin’s Lyapunov Algorithm :
Propagate two nearby trajectories, rescaling their separation 
after each timestep .  Compute < l(t) >  = < -ln(factor)/dt > and 
determine whether or not it is significantly different to zero .  
The two trajectories have weights from exp[ -H(q,p,s,z)/kT ] .
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Giancarlo Benettin’s Lyapunov Algorithm (1980)

The simplest programming propagates two nearly identical ( q,p,z )
vectors for a time of 20 000 using dt = 0.01 .  The distance between them , 

r = dsqrt( (q1-q2)**2 + (p1-p2)**2 + (z1-z2)**2 )

is then returned to 0.000001d00 by “scaling” :
q2 = q1 + factor*(q2 – q1)
p2 = p1 + factor*(p2 – p1)
z2 = z1 + factor*(z2 – z1)

where factor = (0.000001d00/r) .

The Lyapunov exponent is the mean value of -ln(factor)/dt using
data from the last of half each run, with runtimes 20K , 80K , and 160K .
The l expression follows from exponential dependence : r a exp[ +lt ] .

Giancarlo Benettin’s Lyapunov Algorithm

20K à 62 / 1000 chaotic

80K à 63 / 1000 chaotic

320K à 64 / 1000 chaotic

l is between 0.013 and 0.014 .  We tabulate the fraction greater than 0.002 .

Nosé-Hoover Chaos is 6%l

ß 1000 Initial Conditions  à
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Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat ( 1992 )
{ (dq/dt) = p ; (dp/dt) = – q – zp ; (dz/dt) = p2 – 1 – xz ; (dx/dt) = z2 – 1 }

There are two fixed points at (q, p, z, x) = (0, 0, +1, – 1) and (0, 0, – 1, +1)
Shown below are the (z, x) for q2 + p2 < 0.01 

Exponentially	unstable	in	q	and	pExponentially	unstable	in	z and	x
z z

x x

Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat

The ( qpzx ) fixed points are of two types ,
stable in qp unstable in zx vs unstable in qp stable in zx .

qp = 0,0 à { (dz/dt) = – 1 – zx ; (dx/dt) = z2 – 1 } ß ISO
zx = +1,–1 à { (dq/dt) = p ; (dp/dt) = – q – p }
zx = –1,+1 à { (dq/dt) = p ; (dp/dt) = – q + p }

Both fixed points are unstable in one 2x2 plane .

The zx plane equations are isomorphic to a falling mass :
{ (dv/dt) = – 1 – zv ; (dz/dt) = v2 – 1 } ß ISO
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Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat
Let	us	look	at	typical	zx orbits
in	the	(q,p)	=	(0,0)	plane	from
the	falling-particle	standpoint	:

(dv/dt)	=	– 1	– zv
(dz/dt)	=	v2 – 1

The	stability	is	easy	to	establish
By	linearization,	for	example	:

v = -1	+	dv	; z =	+1	+	dz
v	=	+1	+	dv	;	z =	-1	+	dz

O
O

This	is	a	good	homework	or	examination	problem	.		For	details	see	TRCSAC	.

v

z

Flow is from Red to Blue .

v	= -1	+	dv	;	z	=	+1	+	dz
v	=	+1	+	dv	;	z	=	-1	+	dz

O
O

* Such	problems	are	good	homework	or	examination	problems	.
For	details	see	Time	Reversibility,	Computer	Simulation,	and	Chaos.

v

zLinear Stability Analysis* involves truncating Taylor’s
series for differential equations after the linear terms .
We will give the detailed analysis for this thermostated
“Falling Particle” problem on the succeeding slide .
The idea is to analyze the dynamics in the vicinity of a
“fixed point” in order to see whether or not the point
Is “stable”.  For ergodicity we need instability .

Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat
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Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat*

O
O

* This	is	a	good	homework	or	examination	problem	.		For	details	see	TRCSAC	.

(d2x/dt2) = + / - (dx/dt) - 2x are the unstable / stable cases .

Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat *
The apparent “holes” in the vicinity of the fixed points are misleading !

Determining the ergodicity of this problem was the 2014 Snook Prize Problem .

Simulations with
from 1010 to 1012

timesteps show
the dimension of
the probability
density near the
fixed points is
uniform .

* CMST 21 (2015)
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Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat
Checking the moments ( for all four variables ) is another good test .

The fixed points are all unstable .
The measures around the fixed points are uniformly space-filling .
The moments agree with Gibbs’ canonical distribution .
The Lyapunov exponent is positive and universal .
This evidence is convincing .  The MKT Chain Thermostat is ergodic .
We did not consider investigating double cross sections . These are
now feasible on laptop machines .  Let’s look at an example * :

(dq/dt) = p ; (dp/dt) = - q – zp – xp3 ;
(dz/dt) = p2 – T ; (dx/dt) = p4 – 3p2T ;

where T = 1 + 0.4tanh(q)
* Simulation and Control of Chaotic Nonequilibrium Systems (2015)

[ Frontispiece illustration with z = x = 0 courtesy of Clint Sprott ]

Ergodicity of the Martyna-Klein-Tuckerman Chain Thermostat
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Simulation and Control of Chaotic Nonequilibrium Systems
[ Frontispiece illustration of p(q) courtesy of Clint Sprott ]

The Information Dimension of this Nonequilibrium Hoover-Holian Attractor is 3.687 .

Kusnezov-Bulgac-Bauer papers

D.	Kusnezov,	A.	Bulgac,	and	W.	Bauer,	“Canonical	Ensembles	from
Chaos”	,	Annals	of	Physics	(	NY	)	204	and	214	,		(	1990	and	1992	)	.	

These two comprehensive papers treat many examples , including the
Mexican Hat potential , which has a double well , and the diffusion of a
Brownian particle , which requires three thermostat variables rather
than two .  At the time the papers were written it was unknown that
simple problems like the oscillator could be thermostated ergodically
with a single additional control variable , a nonlinear hyperbolic tangent .

Their papers emphasize that the motion equations can made consistent
with Gibbs’ canonical distribution by applying the continuity equation in
The three- , four- , or five-dimensional “extended” phase space .
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In 2001 Sergi and Ferrario ( Physical Review E 64, 056125 ) introduced a
set of four-dimensional motion equations which coupled the coordinate
and momentum of an harmonic oscillator in an unusual way :
{ (dq/dt) = p(1 + z) ; (dp/dt) = - q – zp ; (dz/dt) = p2 – 1 – qp ; (ds/dt) = z }
They included several parameters all of which we have set equal to 1 .
Because the variable “s” plays no role in the solution we can ignore it .
Sergi and Ferrario thought their equations ergodic , perhaps because they
considered all four dimensions in their numerical work .  But starting
with (qpz) = (111) gives a nice torus !  The projection here shows p(q) .

Though not ergodic , this model suggested the useful
idea of combining controls of momenta with controls
of coordinates ( or, better yet , forces ) which led to
further work , which was ultimately successful .

p

q

The Sergi-Ezra-Patra-Bhattacharya Oscillator
was an attempt (2010 and 2014) to thermostat
the momentum and the coordinate ( or force )
in a symmetric way :
{ (dq/dt) = p – xq ; (dp/dt) = – q – zp ; (dz/dt) = p2 – 1 ; (dx/dt) = q2 – 1 }

Oddly enough the (qp) distribution turns out not to be
circularly symmetric so that this approach is not ergodic .
It appears that simple modifications , using cubic forces ,
are enough to attain ergodicity for the oscillator .  Patra
and Bhattacharya have studied a large family of control
variables and we have carried out many collaborations
with them and with Clint Sprott at Madison Wisconsin .
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The Sergi-Ezra = Patra-Bhattacharya Oscillator
{ (dq/dt) = p – xq ; (dp/dt) = – q – zp ; (dz/dt) = p2 – 1 ; (dx/dt) = q2 – 1 }

Sergi-Ezra Patra-Bhattacharya

Weak (qp) and (p2, p4) Oscillator Control
( Including solutions of Nosé’s problem )

Probably influenced by the earlier work various combinations of
ourselves with Patra and Bhattacharya and Sprott developed weak
controls of oscillator moments .  It is easy to find combinations that
are consistent with the phase-space continuity equation and some
of them are ergodic .  I will skip the (qp) controls and focus on joint
control of < p2 > and < p4 > , omitting < p6 > as the equations tend to
be stiff .  It is convenient to use a Monte Carlo approach , starting with
{ (dq/dt) = p ; (dp/dt) = – q – z(ap + bp3) ; (dz/dt) = a(p2 – 1) + b(p4 – 3p2) }
The parameters a and b can be varied between reasonable limits such
as [0,1] and one can watch a movie of the Poincaré sections with 100
or so frames , choosing good looking examples for more investigation .
In this way I found that a = 0.05 and b = 0.32 “0532 Model” is ergodic .
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From Gibbs’ time until relatively recently it was thought that a large
system “Thermodynamic Limit” had to be taken in order to model the
“Microstates” found in Gibbs’ canonical or microcanonical ensemble .
Now it is known that few-body singly- or doubly-thermostated systems
can exhibit these ergodic properties so that the thermodynamic limit is
thoroughly obsolete .

From J Willard Gibbs’ 1902 text , Elementary Principles in Statistical
Mechanics , page 183 : 

“If a system of a great number of degrees of freedom is
microcanonically distributed in phase, any very small
part of it may be regarded as canonically distributed.” 

7. Singly-Thermostated Ergodicity

With an ergodic oscillator it is natural to try to extend the weak control
idea to a pendulum and to the Mexican Hat problem .  All is well with
the pendulum but even the quartic potential seems difficult to treat !  I
tried thousands of combinations of parameters ( abg ) without success
on the quartic potential .  With the cooperation of the Poznan Institute
of Bioorganic Chemistry of the Polish Academy of Sciences Carol and
I offered the 2016 Ian Snook Prize of $1000 for the most interesting
contribution toward single-thermostat control of more complicated
nonlinear problems like the quartic potential or the Mexican Hat .

Just last month Tapias , Bravetti , and Sanders * took up this challenge
and formulated a new “Logistic Thermostat”, which solves the problem.

7. Singly-Thermostated Ergodicity à Logistic Thermostat *

* Tapias , Bravetti , and Sanders “Ergodicity of One-Dimensional Systems … ” = arXiv 1611.05090
The “logistic equation” dx/dt = a x ( 1 – x ) resembles the ‘logistic map’ x = a x ( 1 – x ) .
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7. Singly-Thermostated Ergodicity : 2016 Snook Prize

Cubic forces provide mechanisms enhancing ergodicity , as stressed by Bulgac
and Kusnezov In their informative papers in the 1990 and 1992 Annals of Physics .

IAN SNOOK
( 1945 – 2013 )
Tasmania and
Melbourne OZ

The Logistic Thermostat *

* Tapias, Bravetti, and Sanders “Ergodicity of One-Dimensional Systems … ” = arXiv 1611.05090

Logistic functions and distributions are applied in statistics, physics, hydrology, and chess .
A special case is ex/(1 + ex)2 = (1/4)sech2(x/2) , and a slight modification evidently provides an
Ergodic Distribution for the harmonic oscillator, the quartic oscillator and the Mexican Hat !

In the case of the harmonic oscillator Tapias + Bravetti + Sanders solve three equations :
{ dq/dt) = p ;  (dp/dt) = – q – ap ; (dz/dt) = p2 – 1 } where a = 10e10z/(1 + e10z)2 .  The Poincaré
Sections for q = 0 , p = 0 , and z = 0 look very promising :

z(p) p(q)z(q)
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The Logistic Thermostat for the Quartic Potential *

A simpler way to think about this thermostat is that the probability e-H/kT/cosh(z ) is consistent with
a nonlinear friction coefficient tanh(z ) .  This control is stiffer than the linear or cubic or quintic
versions that were unable to thermostat the quartic and Mexican Hat potentials .  It seems to work !
* Tapias, Bravetti, and Sanders “Ergodicity of One-Dimensional Systems … ” = arXiv 1611.05090

Although the moment-based thermostats are apparently insufficient for the quartic and
Mexican Hat potentials , the Logistic Thermostat can be used to solve those problems .

In the case of the quartic oscillator Tapias + Bravetti + Sanders solve three equations :
{ dq/dt) = p ;  (dp/dt) = – q3 – ap ; (dz/dt) = p2 – 1 } where just as before a = 10e10z/(1 + e10z)2 .
The Poincaré Sections for q = 0 , p = 0 , and z = 0 again have the appearance of ergodicity :

z(p) p(q)z(q)

The Logistic Thermostat for several potentials *

Tapias, Bravetti, and Sanders “Ergodicity of One-Dimensional Systems … ” = arXiv 1611.05090

Please think about suggestions for the 2017 Ian Snook Prize !

The use of an even logistic function , a solution of dlnf/dx = 1 – f(x) provides flexible models
for saturated growth .  The logistic map x+ a xo( 1 – xo ) is a discrete form of the same idea .
It can be written in terms of hyperbolic functions [ as we formulated temperature in the case
of the thermostated oscillator , with T = 1 + tanh( q ) ] , or in terms of exponentials , as with
T = 1 + ( e+q - e-q ) / ( e+q + e-q ) = 2/( 1 + e-2q ) .  Wikipedia has applications for flows and maps .

The Harmonic Oscillator                                                 The Mexican Hat
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A Useful Exercise : Relating Sound Velocity to the Bulk Modulus


