
11/25/16

1

Kharagpur Lectures
Simple Systems with Thermal Constraints

William G. Hoover
Ruby Valley Nevada

December 2016

1. The Lucy Fluid, a Prototypical Simple System
2. Simulation with Newtonian mechanics
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6. Multi-moment Thermostated Oscillators
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8. Harmonic Chain Dynamics
9. Bit-Reversible Levesque-Verlet Dynamics

Simple Systems Under Thermal Constraints
Summary Conclusions

The Lucy fluid in two dimensions is a simple model system .
Newton, Gauss, Hoover-Leete, and Nosé-Hoover mechanics are about equally costly .

For small systems ergodicity can be promoted through velocity moments .
Shockwave studies show that temperature can ( briefly ) be a tensor .
The scale of shockwave structure is the mean free path .
Smooth-particle weighting functions provide continuous field variables .
The f4 model provides Fourier’s law and chaos , even in one dimension .
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1. Lucy Fluid, a Prototypical Simple System

Simple Systems Under Thermal Constraints

Simplicity aids analysis .
Simulations take minutes .
Code development takes a few hours .
Two-Dimensional, in order to simplify graphics . 
Equilibrium equation of state is easily characterized .
Atomistic Equations of Motion same in 2D and 3D .
Boundary Conditions and Constraints likewise .

F = Sf with f(r< h) a 1 – 6(r/h)2 + 8(r/h)3 – 3(r/h)4

The Lucy Fluid is a Prototypical Simple System
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Lucy weight function in one dimension
Normalization such that ∫0w(x)dx = 1

w( r ) can also serve as a weak repulsive potential 

1

0 < separation = x < 1

Lucy Function w(x)

∫0w(x’)dx’
x

Simple Systems Based on the Lucy Fluid

The system is typically , though not necessarily , two-dimensional with
a relatively weak repulsive potential .  From the numerical standpoint
it is optimum due to the very smooth nature of the equations of motion .
One of the problems that we looked into is the confined expansion of a
hot fluid into a container four times the original area *.  Snapshots of the
motion include those shown here , where t is the sound-traversal time .

* Wm. G. Hoover and H. A. Posch, Physical Review E 59, 1770-1776 (1999) .
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Simple Systems Based on the Lucy Fluid

By using two thermostated regions it is possible to measure the heat
conductivity # .  If a gravitational field is added Rayleigh-Bénard instability
can result * .  Lucy’s potential has been investigated for many problems .

# Physical Review E 54, 5142-5145 (1996) ; * Physical Review E 52 , 1711-1720 (1995) .

Simple Systems Based on the Lucy Fluid
By using two moving regions , the entrance cool and the exit hot ,
we can maintain a stationary shockwave with Lucy-fluid forces* .

# Oyeon Kum and the Hoovers , Physical Review E 56, 462-465 (1997) .

The range of the forces is 3 with entrance and exit speeds 1.35 and 0.90 à compression of 3/2 .
The maximum for the Lucy potential f(0) = 0.17684 is of the order of the temperature maximum .
The number of particles in the simulation cycles between 144 x 72 and 143 x 72 .

1.35à 0.90à
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Simple Systems Based on the Lucy Fluid

Steady Isothermal Shear simulations make it possible to measure the
shear viscosity as a function of the thermodynamic state *.  The left plot
illustrates the energy dependence of h as a function of strain rate . The
right plot illustrates the structure induced by simple shear on the fluid .

à

àlog (dux/dy)

log h

* H. A. Posch, W. G. Hoover, and O. Kum, Physical Review  E 52, 1711-1720 (1995) .

The Lucy Fluid, a Prototypical Simple System + Constraints

Lenin’s Question : What to do ?

Our Answer :  Look into thermal
constraints with a 10 x 10 periodic
fluid using Lucy’s Potential with
a maximum range h = 3 :

f (r< h) a 1 – 6(r/h)2 + 8(r/h)3 – 3(r/h)4

[ Two continuous derivatives everywhere ]

Boundary Conditions : 
if(x.gt.+5) x = x – 10
if(x.lt.+5) x = x + 10
if(y.gt.+5) y = y – 10
if(y.lt.-5) y = y + 10

Initial Conditions : 
index = 0
do i = 1,10
do j = 1,10
index = index + 1
x(index) = i – 5.5d00
y(index) = j = 5.5d00
enddo
enddo

px = rund(intx,inty) – 0.5d00
py = rund(intx,inty) - 0.5d00

The routine rund(intx,inty) generates 222

pseudorandom numbers in the range from 0 to 1 .
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The Lucy Fluid, a Prototypical Simple System

The velocities will take on a Maxwell-Boltzmann distribution by themselves .
The only help that they need is first to have their average value removed :
px(i) = px(i) – (sumpx/100) and py(i) = py(i) – (sumpy/100) 
Next, their mean-squared value needs to be imposed :
px(i) = px(i)*dsqrt(100*T/sumpxpx)

f (r< h) a 1 – 6(r/h)2 + 8(r/h)3 – 3(r/h)4

[ Two continuous derivatives everywhere ]

Boundary Conditions : 
if(x.gt.+5) x = x – 10
if(x.lt.+5) x = x + 10
if(y.gt.+5) y = y – 10
if(y.lt.-5) y = y + 10

Initial Conditions : 
index = 0
do i = 1,10
do j = 1,10
index = index + 1
x(index) = I – 5.5d00
y(index) = j = 5.5d00
enddo
enddo

px = rund(intx,inty) – 0.5d00
py = rund(intx,inty) - 0.5d00

Next comes RK4 Newtonian Motion !

2. Newtonian Motion with the Lucy Fluid
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The Lucy Fluid, a Prototypical Simple System

f (r< h) a 1 – 6(r/h)2 + 8(r/h)3 – 3(r/h)4

[ Two continuous derivatives everywhere ]
The derivative is computed as wp(r) .

There are 400 differential equations to solve : 
xdot(i) = px(i)
ydot(i) = py(i)
pxdot(i) = fx(i)
pydot(i) = fy(i)

A very conservative value dt = 0.01d00
replaced by two steps at dt = 0.005d00
can reveal errors in the differential
equations [ if the two agree but do not
conserve energy then the differential
equations are to blame ] .

do i = 1,99
do j = i+1,100
if(xij.lt.-5) xij = xij + 10 *
if(xij.gt.+5) xij = xij - 10
rij = dsqrt(xij*xij + yij*yij)
if(rij.lt.3) then
fx(i) = fx(i) - (xij/rij)*wp(rij)
fx(j) = fx(j) + (xij/rij)*wp(rij)
fy(i) = fy(i) - (yij/rij)*wp(rij)
fy(i) = fy(j) + (yij/rij)*wp(rij)
endif
enddo
enddo

Remember that xij = x(i) – x(j)
and likewise      yij = y(i) – y(j)

Next comes RK4 Newtonian Motion !

The Lucy Fluid, a Prototypical Simple System

A Few Minutes on the laptop provide a solution to a time of 1000 .

The density is calculated at each particle, by summing up the weight function wLucy : 
Do I = 1,100
rho(i) = w(0.0d00)
enddo
do i = 1,99
do j = i+1,100
rho(i) = rho(i) + w(dsqrt(xij*xij + yij*yij))
rho(j) – rho(j) + w(dsqrt(xij*xij + yij*yij))
enddo
enddo

The total energy E = 100 is conserved to 9-figure accuracy at a time of 1000.  The
kinetic energy, averaged from time = 500 to 1000 is 45.58 and the potential is 54.42
where the potential energy is the sum of rho(i)/2 for all 100 particles . Whether
or not to include w(0) in the potential energy is an  arbitrary choice .

2 . RK4 Newtonian Motion

Apply periodic boundaries in computing xij and yij
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3 . RK4 Thermostated Motions
Gauss Dynamics for the Lucy Fluid

The Lucy Fluid, a Prototypical Simple System

A Few Minutes on the laptop provide a solution to a time of 1000 .

We have seen that the Gauss, Hoover-Leete, and Nosé-Hoover thermostats can be used
to keep the kinetic energy constant [ Gauss or Hoover-Leete ] or to constrain its time-
averaged value [ Nosé-Hoover ] .  In the Gauss case it is only necessary to start out
with an initial kinetic energy of 45.58 which can be preserved by computing the
isokinetic friction coefficient and applying it at each timestep :
fz = 0.0d00
twoK = 0.0d00
do i = 1,100
fz = fz + px(i)*fx(i) + py(i)*fy(i)
twoK = twoK + px(i)*px(i) + py(i)*py(i)
enddo

do i = 1,100
fx(i) = fx(i) – (fz/twoK)*px(i)
fy(i) = fy(i) – (fz/twoK)*py(i)
enddo

3 . RK4 Thermostated Motions

Gauss Dynamics
The kinetic energy remains constant to
ten figures and the mean total energy ,
averaged from time 500 to time 1000 is
100.07 , close to the Newtonian value .

[ Remember zGauss = S F•p / S p•p
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4. RK4 Thermostated Motions
Hoover-Leete Dynamics for the Lucy Fluid

The Lucy Fluid, a Prototypical Simple System

A Few Minutes on the laptop provide a solution to a time of 1000 .

We have seen that the Gauss, Hoover-Leete, and Nosé-Hoover thermostats can be used
to keep the kinetic energy constant [ Gauss or Hoover-Leete ] or to constrain its time-
averaged value [ Nosé-Hoover ] .  In the Hoover-Leete case it is only necessary to start out
with an initial kinetic energy of 45.58 which is preserved by computing scaled velocities
at each timestep :

do i = 1,100
xdot(i) = px(i)*dsqrt(ekq/ekp)
ydot(i) = py(i)*dsqrt(ekq/ekp)
pxdot(i) = fx(i)
pydot(i) = fy(i)
enddo

4 . RK4 Thermostated Motions

Hoover-Leete Dynamics
The kinetic energy remains constant to
ten figures and the mean total energy ,
averaged from time 500 to time 1000 is
99.93 , close to the Newtonian value .

[ Remember (dq/dt) = p*dsqrt(ekq/ekp)]

H = 2(KpKq)1/2 – Kq + F
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5 . RK4 Thermostated Motions
Nosé-Hoover Dynamics for the Lucy Fluid

The Lucy Fluid, a Prototypical Simple System

A Few Minutes on the laptop provide a solution to a time of 1000 .

We have seen that the Gauss, Hoover-Leete, and Nosé-Hoover thermostats can be used
to keep the kinetic energy constant [ Gauss or Hoover-Leete ] or to constrain its time-
averaged value [ Nosé-Hoover ] .  In the Nosé-Hoover case the initial kinetic energy is
unimportant as feedback will drive it to a mean value of 45.58.  Rather than solving just
the 400 { x,y,px,py } equations it is necessary to solve 401, with the last one giving the
Nosé-Hoover friction coefficient z :
sumpp = 0
do i = 1,100
sumpp = sumpp + px(i)**2 + py(i)**2
enddo

zdot = sumpp – 2*45.58d00
One can just as well use
zdot = ( sumpp/(2*45.58d00) ) - 1

5 . RK4 Thermostated Motions

Remember :
fx(i) = fx(i) – z*px(i)
fy(i) = fy(i) – z*py(i)

Nosé-Hoover Dynamics
The total mean total energy , averaged
from time 500 to time 1000 is 100.02  ,

close to the Newtonian value .
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A Few Minutes on the laptop provided these solutions at a time of 1000 .

2-5. RK4 Thermostated Motions with dt = 0.01

Gauss

Newton

Nosé-Hoover

Hoover-Leete
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A Few Minutes on the laptop provided these solutions at a time of 1000 .

2-5. RK4 Thermostated Motions with dt = 0.01

Gauss

Newton
Nosé-Hoover

Hoover-Leete

< F(time) > averaged from 500

time
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All four dynamics agree as to equation of state within a part per thousand .
None of these approaches presents any numerical difficulties .

The additional programming is no more than ten lines .
The Nosé-Hoover equations present no difficulty in choosing a relaxation time .
The Lucy Function provides a handy method for defining an interpolating field .

We can explore the usefulness of defining temperature as a fluctuation .

kTxx = < vxvx > – < vx >2 and kTyy = < vyvy > – < vy >2

1 . Begin by defining a regular xy grid ( we will use a million points )
2 .  At each grid point compute the velocity and its square as ratios :

< v >  = S vj w(rG – rj)/ S w(rG – rj)
< v2 >  = S vj vj w(rG – rj)/ S w(rG – rj)

3 . Compare averages computed with Lucy’s function ( maximum at r = 0 )
to averages computed with a symmetric quartic with maximum at r = (3/2)

4 .  We anticipated that the differences will be significant with a winner and loser .

2-5 . RK4 Thermostated Motions 

Simple Systems with Thermal Constraints

Simulation with Newtonian mechanics
considering defining local temperature

< v >  = S vj w(rG – rj)/ S w(rG – rj)
<  v2 >  = S vj vj w(rG – rj)/ S w(rG – rj)

These averages require summing over particles and the grid .
Neither Lucy’s weight function nor one which is zero at the origin
give good values of the kinetic temperature.  They are about 10%
lower than  expected .  What about the configurational temperature ?

Landau and Lifshitz à kTc = <  H >2  / < 2 H >

Unfortunately the curvature of H can have either sign. 
Evidently this is an excellent area for new research !

∆∆
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6.  Multi-Moment Thermostated Oscillators

Simple Systems with Thermal Constraints
6.      Multi-Moment Thermostated Oscillators
The harmonic oscillator, with H = K + F = (1/2)( q2 + p2 ) , can be “thermostated”
through any of its even moments : < q2 , q4 , q2p2 , p2 , p4 . . . >  .  Evidently the
moments cannot be constants of the motion so that some form of integral
control, based on feedback , needs to be used.  Nosé-Hoover “integral control”
of the kinetic energy is the simplest illustration of this idea :

( dq/dt ) = p ; ( dp/dt ) = – q – zp ; ( dz/dt ) = [ p2 – 1 ] /t2 .
A flurry of interest in the configurational temperature led to investigations of
“coordinate”, or better yet “force” moments .  Braga and Travis pointed out
that the configurational analog of the Nosé-Hoover oscillator problem is 
simply a relabeling of the variables :

( dq/dt ) = p – xq ; ( dp/dt ) = – q ; ( dx/dt ) = [ q2 – 1 ] /t2 .
The same symmetry could be applied to thermostating < q4 > or < q6 > .
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Simple Systems with Thermal Constraints
6.      Multi-Moment Thermostated Oscillators

q

p z

p

q

q

q

q p

z z

z

p

To make a z section simply plot p(q) if
the product z old z new is negative .

In the top row < p4 > is controlled with the
feedback equation ( dz /dt ) = p4 – 3p2.

In the bottom row < p6 > is controlled with
the feedback equation ( dz /dt ) = p6 – 5p4 .

All six sections are chaotic but not ergodic .
We know of no foolproof path to ergodicity .
Holes in cross-sections for 3-dimensional
problems clearly show a lack of ergodicity .

Simple Systems with Thermal Constraints
6.      Multi-Moment Thermostated Oscillators
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Probability density for { q, p, z } from left to right

Gibbs’ canonical ensemble gives a Gaussian
distribution for { q,p } and the Nosé-Hoover
equations are consistent with a Gaussian
distribution for the friction coefficient z .

Here we show the probability densities for all
three variables { q,p, z } from simulations that
control the second moment ( Nosé-Hoover ) as
well as those that control the fourth moment
by solving the integral-feedback equations :
(dq/dt) = p ; (dp/dt) = – q – zp3 ; (dz /dt) = p4 – 3p2 .
None of the distributions is close to Gaussian .
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Simple Systems with Thermal Constraints
6.      Multi-Moment Thermostated Oscillators

In Physics Letters A 211, 253-257 (1996) Bill and Brad Holian showed that simultaneous
thermostating of the second and fourth moments, < p2 > and < p4 > very likely gives an
ergodic distribution extending Gibbs’ two-dimensional Gaussian to a four-dimensional
distribution Gaussian in all four variables { q,p,z,x } .
The equations of motion are :

{ (dq /dt) = p ; (dp /dt) = – q – zp – xp3 ; (dz /dt) = p2 – 1 ; (dx /dt) = p4 – 3p2 }

In The Journal of Chemical Physics 97, 2635-2643 (1992) Martyna, Klein, and Tuckerman
suggested thermostating the thermostat variable(s) :

{ (dq /dt) = p ; (dp /dt) = – q – zp ; (dz /dt) = p2 – 1 – xz ; (dx /dt) = z2 – 1 }

Liouville’s phase-space continuity equation shows that (∂f/∂t) = 0 for both of these
four-dimensional sets of equations if f(q,p,z,x) is Gaussian in all four variables . A
variety of many-body problems have been solved successfully using these ideas .

Simple Systems with Thermal Constraints
6. Hoover-Holian Thermostated Oscillator

K,K2

K2

K

K

K2

K,K2

These simulations constrain
The mean values of p2 or p4

or both using two different
initial conditions .  When the
results depend upon the initial
conditions they are clearly not
ergodic.  When both moments
are controlled not only do the
results look similar .  Also, the
values of the second, fourth, 
and sixth moments are all very
close to the known results :
<  p2, p4, p6 > = 1, 3, 15 .

.
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Simple Systems with Thermal Constraints
6. Simultaneous control of < p2, p4, p6 > !

In the 90s Brad Holian, Harald Posch, and I concluded that it was unlikely that all 
three moments could be controlled simultaneously .  With a fixed timestep it is 
clear that eventually a point too far from the origin would appear ( because the 
Gaussian extends to infinity ) so that no fixed timestep algorithm can run forever .  
In 2015, working with Clint Sprott, we came across Nosé oscillator problems that 
required an adaptive integrator to solve .  Sure enough , if the adaptive integrator 
is applied to the three-moment control , there is no problem following the solution 
for long times .  The main check of the calculation is the set of moments as the 
five-dimensional phase space is far too complex for good topological studies .  
One can check to make sure that the largest Lyapunov exponent is independent of 
the initial conditions , taking a few hundred initial conditions and then running the 
two with the highest and lowest Lyapunov exponents longer , tens or hundreds of 
billions of timesteps , and confirming that the two values tend to agree within the 
expected statistical errors , proportional to time-1/2 .  Let’s look at the details à

Simple Systems with Thermal Constraints
6. Simultaneous adaptive control of < p2, p4, p6 > !

Comparison of two RK4 solutions requires very little new programming :
call rk(xx,xxp,dt/2)
call rk(xx,xxp,dt/2)
call rk(yy,yyp,dt/1)

error = error + (xx(i) - yy(i))***2
if(error.lt.10.0d00**-24) dt = dt*2
if(error.gt.10.0d00**-20) dt = dt/2

yy(i) = xx(i)

pdot = – q – z*p – y*p*p*p – x*p*p*p*p*p
zdot = p*p – 1
ydot = p*p*p*p – 3*p*p
xdot = p*p*p*p*p*p – 5*p*p*p*p

The mean timestep < dt > turns out to be very close to dt = 0.001 .
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Simple Systems with Thermal Constraints *
6. Simultaneous adaptive control of < p2, p4, p6 > !

(qp) Results after 1x109 timesteps : 1.002, 3.024, 15.226, 1.00000, 3.00000, 15.00002
(qp) Results after 4x109 timesteps : 1.001, 3.010, 15.145, 1.00000, 3.00000, 15.00001

Notice that the fixed moments of momentum are quite precise while the coordinate moments are not .
This situation would be reversed if the coordinates’ moments had been selected for the constraints .

This sampling of 1 000 000 { q,p } points looks rather
unlike the Gaussian distribution for Gibbs’ canonical
ensemble.  Why is there this apparent disagreement ?

* Carol described the application of adaptive integration to Nosé and Nosé-Hoover oscillators .

q

p

Simple Systems with Thermal Constraints
6.      Multi-Moment Thermostated Oscillators
For a many-body system the various thermostats are consistent with one another
and with Gibbs’ canonical distribution.  For small systems, with a few degrees of
freedom, there are relatively large differences.  The Gauss and Nosé-Hoover
thermostats are relatively not necessarily easy to generalize.

Suppose for example that it is desired to constrain the fourth moment rather than
the second , so that < p4 > is constant .  The constraint equation suggests trying

( dp/dt ) = F – zp3 with p3( dp/dt ) = 0 = Fp3 – zp6

It turns out that this idea fails , as without controlling the center of mass of the
three-oscillator problem the system simply moves away from the origin .  In the
early days of nonequilibrium molecular dynamics Bill Ashurst thermostated
manybody systems by [ 1 ] subtracting the center-of-mass velocity and then [ 2 ]
rescaling the second moment to reproduce T .  Although my attempts to use two
Lagrange multiplier constraints to control the moment and the center of mass
failed with a conservative timestep of 0.001 zeroing of the center of mass followed
by a rescaling of the fourth moment successfully reached a “normal mode” which
can be followed by reducing dt : 0.1 à 0.001 .  The next graphic shows the result.
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Simple Systems with Thermal Constraints
6.      Multi-Moment Thermostated Oscillators
Here is the result of solving the oscillator equations with a rescaling of the fourth
moment, p(1)4 + p(2)4 + p(3)4 .  This could be viewed as an example of “operator
splitting”, where two or more parts of the differential equation are applied in a
sequence rather than simultaneously.  Here are the coordinates of a travelling
three-particle wave with the fourth velocity moment held constant.

-0.6
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-0.2

 0

 0.2

 0.4

 0.6

 0  2  4  6  8  10

{ q }( time )

time

7. The f4 Model for Heat Conduction
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Simple Systems with Thermal Constraints
7. The f4 Model for Heat Conduction

Although the harmonic chain is particularly useful for evaluating integration
algorithms it is of little use away from equilibrium . Two examples make this
clear . Energy and momentum travel along a harmonic chain at the velocity
of sound . In more “realistic” systems heat obeys Fourier's Qx = -k (dT/dx) .
Flow proceeds outward from a source as the square root of the time .  This
qualitative difference ( linear versus square root ) can be understood . It is
due to the scattering of the phonons which travel at the sound speed.  The
mean free path of molecules in air is about a hundred nanometers and can
be nicely described by the Boltzmann equation .  Scattering in the f4 model
Is local with energy conservation but without any long wavelength phonons .

H = K(p) + S(1/2)(qi - qj)2 + S(1/4)q4

7. Why Does Heat Travel as the Square Root of time ?

A simple explanation can be based on squaring the sum of N steps of unit length and averaging :
< L2 > = < ( Sl )2 > = N ( because the steps are not correlated ) .  There is a huge literature on
“random walks” including recurrence and fractal dimension .  Although the sum of all possible
walks gives the binomial distribution which approximates the Gaussian distribution for large N the
diffusion equation :  ( ∂r /∂t ) = ( ∂2r /∂x2 ) does not have a Gaussian as its solution .  Because the
diffusion equation provides an effect traveling faster than the speed of sound it is unphysical .
The many problems introduced by dimensionality , self-avoidance , time delay , and stochastic
models make this area of mathematics interesting today .  One might expect that solutions of the
Boltzmann Equation would agree with solutions of the diffusion equation but no doubt this is an
example of problems in which taking limits has to be done carefully ( if at all ) .  There is similarity
to computing < x2 > ≈ N , ln(N) , O( 1) using lattice dynamics in one , two , and three dimensions .
The Maxwell-Cattaneo equation ,  Q + t ( ∂Q/∂t ) = - ( ∂T/∂x ) , for instance , can be used to limit the
speed of the response to gradients , but can exhibit other problems , such as negative temperature .

7. Simple Systems with Thermal Constraints --
An aside regarding the diffusion of mass and heat

[ reminiscent of the Central Limit Theorem ]
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7. Random walk using rund( intx,inty ) = rund( 0,0 )
initially and using up all 222 available steps .

sum = 0.0d00
do i = 1,2**22
step = rund(intx,inty) - 0.5d00
sum = sum + step
write(77,77) i, step, sum
enddo

The square root of 222 is 2048 and
2048 x (1/2) is of the order of the
maximum excursion from the origin .
Our deterministic random numbers
are perfectly adequate for this if the
periodicity of the sum is acceptable .

Question for the students : why does
The Sum repeat ?

It turned out to be a Good Idea to
plot The Sum of the points rather
than the points themselves .  Though
the 4 194 304 pseudorandom points
can be distinguished on a 24” screen
they cannot be successfully entered
into PowerPoint.  Just too much info !

7. Simple Systems with Thermal Constraints --
[ an Aside regarding pseudorandom numbers ]

The Sum [ It has two maxima at 444.93854976 ]

Simple Systems with Thermal Constraints
7. The f4 Model for Heat Conduction

Shockwaves are supersonic [ travel faster than the sound speed ] with a “jump”
discontinuity in pressure, density, entropy, and energy . Such a pressure jump
in the harmonic chain spreads out as the cube root of the time . For harmonic
and anharmonic simulations see B. L Holian and G. K. Straub in Physical Review
B 18, 1593-1608 (1978) . 

The unphysical harmonic behavior is most easily cured with a tethering potential.
The resulting scatter of phonons results in ordinary Fourier conductivity .  Aoki
and Kusnezov emphasized that the phi-4 model, with simple quartic tethering
makes possible the study of heat conductivity in a variety of one-, two- and three-
dimensional lattices . The Hamiltonian for the model is the usual harmonic
Hamiltonian plus a sum of quartic tethers . In the one-dimensional case, where 
the { q } represent displacements from the regular lattice sites it is simplest to
choose all the parameters equal to unity . Let’s look at the two-dimensional case .

H = K(p) + S(1/2)(qi - qj)2 + S(1/4)q4
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Simple Systems with Nosé-Hoover Control
7. The f4 Model for Heat Conduction

H = K(p) + S(1/2)(qi - qj)2 + S(1/4)q4

T = 0.015T = 0.005

There are 16 Newtonian
particles of the 24 total .

Simple Nosé-Hoover flow with f4 Thermometer

7. The f4 Model for Heat Conduction
H = K(p) + S(1/2)(qi - qj)2 + S(1/4)q4

f4 Thermometer
registers 0.024 .

0.030.01

The thermometer “measures” a temperature about
ten percent higher than the kinetic temperature of 
the Newtonian particle’s 0.021 .  The measurement
depends very little on the length of the thermometer
which was varied from 4 ( as shown here ) to 21 .

The conductivity of the f4 model is insensitive to system
size .   Although the model is harmonic at low temperature
and non-conducting at high temperature, where particles
simply oscillate in quartic wells, there is a very wide range
where Fourier’s Law describes the hot-to-cold heat flow .
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Simple Systems Under Thermal Constraints
7. The f4 Model for Heat Conduction

Typically systems which exhibit ordinary
( linear ) transport have chaotic dynamics .
In chaotic systems two nearby trajectories
separate from one another exponentially
rapidly in time, as e+lt .  The graphic here
illustrates that exponential growth for 16
and 500 particle chains of f4 particles.

The plot, which shows the variation of the
Lyapunov exponent* with energy , reveals
a range of chaotic behavior over about
ten orders of magnitude in temperature .

* Technically, the l here is the largest one .

Simple Systems Under Thermal Constraints
Points to remember and consider :
Two-dimensional Lucy-Fluid simulations provide insight into shear and heat flows ,
hydrodynamic instabilities like Rayleigh-Bénard , and steady shockwaves .
Many thermostat types are available with both instantaneous and time-averaged control
of velocity , energy , temperature , . . .
By eliminating the propagation of long waves the f4 model provides simple examples of
systems obeying Fourier’s Law in one , two , and three dimensions .

Problem :
Does the one-dimensional harmonic chain provide insight into the shockwave problem ?
The motion of such a chain , where we choose the force constant and particle mass equal
to unity , is governed by nearest-neighbor linear forces :

{ Fi =  qi+1 – 2qi + qi-1 } reminiscent of the wave equation (d/dt)2q = c2(d/dx)2q .
We can generate a “shockwave” through the collision of two mirror-image systems .
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8. Harmonic Chain Dynamics

Dynamics of a 400-particle harmonic chain with initial velocities of +1 and -1

From the analogy with the wave equation we expect that the sound ( or maybe shock ) speed
will be unity .  The { q } in the equations of motion can represent either coordinate values or
displacements .  We choose displacements so that the initial { q } are all zero .  We choose to
look at the coordinates and velocities and forces at a time of 100 when we expect half the
particles to have been affected by the “shock” .  The calculations below confirm the expectations .
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In a typical fluid case one would obtain a shockwave or a rarefaction fan .
The harmonic chain solutions just change sign and exhibit no asymmetry .
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Compression = Expansion in Harmonic Chains

Dynamics of a 400-particle harmonic chain with initial velocities of +1 and -1

The harmonic chain problem has a long and continuing history .  The solution can be written
in terms of Bessel functions .  It turns out that the easiest way to find the Bessel functions is
to solve the corresponding harmonic chain problem !  Look at “Molecular Dynamics of Shock
Waves in One-Dimensional Chains” by B L Holian and G K Straub in Physical Review B 18 , 
1593-1608 ( 1978 ) .  There is no obvious visual difference between the velocities shown here
for two different system sizes . Note that the analytic solution shows that the shockwidth varies
as the cube root of the time ( vanishing on the macroscopic scale ; large on the microscale ) .
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More realistic models of interparticle
forces show that the shockwidth is
governed by viscosity and is only a
few particle diameters .  The profile
is planar in 3D and a straight line in 2D .

The snapshots at the right show a 2D
shock at two different times using a
smooth finite-range repulsive potential .
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9. Levesque-Verlet Dynamics

Simulations of Irreversible Processes Using the Levesque-Verlet Integer Leapfrog Algorithm

Carol has explained that integer arithmetic makes it possible to reverse any leapfrog history .
The shockwave problem is an interesting example because it includes an irreversible process
converting cold low-density fluid into hot compressed fluid with a greater entropy .

If one begins a simulation with hot compressed fluid expanding into a vacuum rather than a
shock one sees a “rarefaction fan” in which states of nearly the same entropy vary smoothly
from the original density to low density .  It seems to me that the velocity gradient , which
produces entropy through the viscosity , gets smaller as the system size is increased .  In
the shockwave things are different : the velocity gradient stays at the inverse mean free path
so that the viscous entropy production does not change as the system size is increased .

The rarefaction fan is also irreversible , but for another reason .    When , as is usual , the
sound velocity is an increasing function of density , the denser part of a rightmoving wave
moves faster than the rarefied part .  A shockwave is formed !


