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General Features of Our Approach to NESM & NEMD

Our main goal is to reach an understanding connecting microscopic and mesoscopic models to analogs
in the Real World of Macroscopic Physical Phenomena . We strive for simplicity . Our models are mainly
classical and nonrelativistic and typically two-dimensional . The main lines of thought we follow can be
traced to Abraham , Alder , Ashurst , Bhattacharya , Boltzmann , Bridgman , Bulgac , Debye , De Rocco ,
Dettmann, Duvall , Euler , Evans , Fermi , Feynman, Ford , Galton , Gauss , Gibbs , Jaynes , Hamilton ,
Holian , Kawai , Kratky , Krivtsov , Kusnezov , Lagrange , Landau , Lifshitz , Liouville , Lyapunov ,
Mareschal , Maxwell , the Mayers , Moran , Morriss , Newton , Nosé , Occam , Pars , Patra , Posch,
Rahman , Rice , Ruelle , Sommerfeld , Sprott , Steiner, Stell , Stull , Thoreau , Travis , Uhlenbeck ,
Vineyard , von Neumann, Wainwright , Wojciechowski . Wood , Zwanzig . Feynman’s ideas of pursuing
definite examples, along with his and Alder’s efforts toward simplicity are always with us .

Most of what you see will be in two dimensions , with graphic illustrations , using FORTRAN and gnuplot
and PowerPoint as our main expository tools , not because these are perfect but because we haven’t yet
found anything better .

In order to teach students rather than course material it is useful to have questions . This is the main job
of the student , not just for himself , but for all of us .

Let us thank Baidurya Bhattacharya for making this possible .
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1. Ideal Gas Thermometer - Temperature/Entropy
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Mechanics plus Temperature ( and Heat ) > Thermodynamics .
We have the luxury of using the ideal-gas temperature scale

Defining point (range)
Substance and its state

K °C °R °F
Triple point of hydrogen 13.8033 | -250.3467 | 24.8459 | -434.8241 Titanium melts at T = 3034F .
Triple point of neon 24.5561  -248.5939 | 44.2010 -415.4690
Triple point of oxygen 54.3584 | -218.7916 97.8451 -361.8249
Triple point of argon 83.8058 | -189.3442 | 150.8504 -308.8196 Temperatu re in the sun = 15,000,000 K.
Triple point of mercury 234.3156 | -38.8344 421.7681 | -37.9019
Triple point of water(note 11 273.16 0.01 491.69 32,02 . . .
Melting point("®'e 2] of gallium 302.9146 29.7646 5452463 85.5763 Temperature in the H Bomb Isa few times
Freezing point™2l of indium | 420.7485 | 156.5085 | 773.5473| 313.8773 greater than that of the sun.
Freezing point(™® 2] of tin 505078 231928 909.140  449.470
Freezing point™'e 2] of zinc 692,677 | 419.527 1,246.819  787.149
Freezing point™te 2] of aluminum | 933.473  660.323 | 1,680.251 | 1,220.581 PIOtti ng PV/ N k at IOW num ber denSity
Freezing point™® 2] of silver 123493 96178 2,222.87 | 1,763.20 defines the ideal-gas temperature scale .
Freezing point™'® 2 of gold 1,337.33  1,064.18 | 2,407.19  1,947.52
Freezing point™'e 2] of copper 1,357.77 | 1,084.62 2,443.99 1,984.32

Ideal-Gas Thermometer: Microscopic Mechanics = Thermodynamics
Gibbs’ Statistical Mechanics in the Microcanonical Ensemble *

‘deal | Fuid [ Qigea = (1/NY) TI(S J dg dp/h) oc (VN)ME/N)PN2

Gas

Q, is the number of states, with (dq dp/h)°N corresponding to a “state” >
Qiir = (E - Ep) Qp(Eg) = (E) Qf (E - E)
Thermal equilibrium corresponds to maximizing the number of states by varying the
fluid energy . The ideal-gas energy states comprise a DN-dimensional hypersphere .
Taking the logarithm of the number of states makes the maximization step easy :

Maximizing InQ > (8InQ,/0E;)=(0InQ¢/dE;)=DN/(2E) = (1/kT)

This definition of temperature makes thermometry possible and gives
the Zeroth Law of Thermodynamics : Ti=Toand Ty=T; > T,=T;

* Good references are Molecular Dynamics and Computational Statistical Mechanics @williamhoover.info
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Next Consider Mechanical Evaluation of Pressure , in 2D

L Vy - 2mu, vz \ _ NEkT,
V o= | ~-X(%) ()~

Notice that both pressure and temperature can be second-rank
tensors. Two directions are involved : [ 1 ] the orientation of
the wall on which the force per unit area is measured; and [ 2 ]
the direction of the force. At equilibrium the pressure and the
temperature are scalars. We will show this for the ideal gas
using the Boltzmann equation which - Maxwell-Boltzmann f.

Microscopic Mechanics - Thermodynamics
J Willard Gibbs’ Statistical Mechanics *

\deal | Fig | Q= (1/N!) TT(ff dq dp/h) o (V/N)N(E/N)PNV2

Gas

Mechanical Coupling = Q¢ = Q(V - VE) Q(VE) = (V) Qe (V-V)) (1839-1903)

Mechanical equilibrium corresponds to maximizing the number of states by varying the fluid
volume . The ideal-gas volume states comprise an N-dimensional hypevolume VN . Again ,
taking the logarithm of the number of states makes the maximization step easy :

Maximizing INQ 2> (9InQ,/0V,)=(0InQ¢/dVe)=(N/NV ) =(P/KT)
This ideal-gas pressure makes it easy to describe mechanical equilibria and

gives the Zeroth Law of Mechanics/Dynamics if Py=P2and Py =P3 > P>=P;

* J. W. Gibbs, Elementary Principles in Statistical Mechanics ( Dover, 1960 ), originally 1902
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Thermodynamic Entropy S Corresponds to k In Q
eS/® = UE,V) x (1/NY) [ ... [ TI(dgdp/h) < (V/N)¥/E/N""

2(p2/2m) = E , a many-dimensional spherical surface with radius (2mE)*?2

[ 1] Entropy is a state function depending upon Eand V.
[ 2 ] Entropy increases in the absence of a constraint .
[ 3 ] Entropy is an extensive quantity for identical particles .

For an ideal gas (S/Nk) = In (V/N) + (D/2) In (E/N) + constant*
TdS = dE + PdV ( Combined First and Second Laws ) .

The microcanonical entropy shown here deviates only negligibly —
as ( 1/N ) — from Gibbs’ canonical entropy where the momentum
integral is (2rmkT)¥2 per degree of freedom .

The Mayers’ Statistical Mechanics expresses the hypervolume of a DN-dimensional
hypersphere in terms of Gaussian integrals , which are “gamma functions” .

What about using the Configurational
Temperature from Landau/Lifshitz ?

(V2H) = (VH)PKT — kT = ((VH)?/{(V*H).
KT[ [ (V2®) e®kTdr = [ (VD)2e*kTdr

This is just an application of integration by parts :
Jdu v =-[dv u where u = V® and v = e ®«T where
® vanishes at the two endpoints of the integrals .

There is a comprehensive literature detailing ( or obscuring ) what is a
relatively simple idea with plenty of generalizations . Unfortunately it
appears to be just a dead end . If you would like to read more see Carlos
Braga and Karl Travis’ two papers in the Journal of Chemical Physics :
123, 134101 (2005) and 124, 104102 (2006) .
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What about using the Configurational
Temperature from Landau/Lifshitz ?

(VPH) = (VH)?)KT — kT = ((VH)>)/{(V>*H).

An apparent disadvantage is the
occasional vanishing of the denominator .
Think about gravitational field forces !

An apparent advantage is the lack of dependence on velocity ,
where the local velocity might be hard to determine accurately .

Steady rotation increases the forces without increasing temperature
so that configurational temperature seems rather unphysical .

2. Isokinetic “Gaussian” Molecular Dynamics

Ordinarily (dK/dt) = — (d®/dt) . The upshot of a classic concept,
Gauss’ “Principle of Least Constraint” , Z §(F. ) = 0, is a motion
equation of the form (dK/dt) = — (d®/dt) + £ F - v as we shall see .
Remember that Gauss was famous for “Least Squares” already .
This idea is not a panacea , and gives incorrect results sometimes .

Pars’ text is a good reference for classical variational principles .
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Molecular Dynamics at Constant T,, Using
Gauss’ Principle of Least Constraint ( 1829 - 1982)

The desired constraint is : vaﬁ =N .
Equivalently, Z 2Mmu U, = Z 2mu,[ Fr + F.+ 0F, | ,

which can be combined with Gauss’ Z 2F0F. =0,

by using a Lagrange Multiplier { to give
ok 174900 2mv,( +2F, =0 — F, = —(muv, .
Finally, Z 2muU, = Z 2mu,[ Fr — (mu, | =0;

CG'a,uss - Z%E;/vai .

Molecular Dynamics at constant T,,
Using a Standard Lagrange Multiplier *

The Lagrange multiplier method leads to
Hur, = 2@ — K, + ® (Hoover — Leete)
where K, = (m¢*/2) ; K, = (p°/2m) .
This gives the following equations of motion :
{p=F; ¢=(p/m)\/(K,/Kp) } .

Sample Problem : Three masses with periodic boundary conditions
Choose a normal mode with ®? = 3 solving three motion equations .

* For references see our arXiv 1303.6190 paper : Hamiltonian Thermostats Fail to Promote Heat Flow
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Sample Problem # 1 : Three masses with periodic boundary conditions
Choose a normal mode with ®? = 3 solving three motion equations .

[}
X, ¥, and z are the displacements of the particles (i)
)
=+t 2—=28p p=24dc—2Y; z=0 T y—2
z = cos(V3t) ; y = cos(V3[t —7/3]) ; z = cos(V3[t +7/3])

This moving wave has constant kinetic and potential energies .
For this system’s isokinetic problems Cgauss =0 and K, =K, .

Sample Problem # 2 : Two masses in steady rotation with one spring .

RK4 solution of 4 equations for Particle 1.

i Spring force is ( 1 - r ) and with a speed of unity
There are 628 timesteps of dt = 0.01 each .

It isn’t necessary to add the centrifugal the centrifugal force is r/2 > r=2. You should
forces { @?r/2 }to the spring forces . Those be able to verify that the initial values
(Xi= 11y, 03Py =0:py=1)

are those for which the radial acceleration is
zero . Notice that the four variables for Particle
2 are just the negatives of those for Particle 1.

rl12=dsqrt ((xl-x2)**2+(yl-y2)**2)

fxl = (x2 - x1)*(rl2 - 1)/rl2
fyl = (y2 - yl)*(rl2 - 1)/rl2

05

It is also easy to see that the virial theorem is satisfied. Consider the theorem for the x coordinate

of Particle 1. The x coordinate is (r/2)cos(t) = cos(t) > <x x> =< (d/dt) (xx) > —<x%2>=0-(1/2).
A good way to start on such problems is to write the Lagrangian ( in terms of the coordinates and
velocities ) in order to discover the momenta and the Hamiltonian equations of motion they obey .
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Sample Problem # 3 : Five masses in steady rotation with four springs .

3

2

1

RK4 solution of 8 equations for Particles 1
and 2. 628 timesteps of dt = 0.01 each .
It isn’t necessary to add the centrifugal
forces { ®’r }to the spring forces . Those
Forces arise automatically from the motion .

Start and Finish with Five Particle Chain

-2 -1 0 1 2

Spring forces are 10( 1 —r ) and centrifugal
forces are r. You should be able to verify
that the initial values given below are those
for which all the radial accelerations vanish .

rl2
r23
fx1
fyl
fx2
fy2
fx2
fy2

dsqrt ((x1-x2)**2 + (yl-y2)**2)
dsqrt (x2*x2 + y2*y2)

10* (x2-x1)*(rl2 - 1)/r12

10* (y2-yl)*(rl2 - 1)/rl2

10* (x1-x2)*(rl2 - 1)/rl2

10* (yl-y2)*(rl2 - 1)/rl2

£fx2 + 10%(0-x2)*(r23 - 1)/r23
fy2 + 10* (0-y2)*(r23 - 1)/r23

X =-19/71 ; x, =-10/7.1 ; X3=0; X, =+10/7.1 ; X5 = +19/7.1
Initial values of p, are equal to the x coordinates > o =1.

Potential Energies for Newton, Hoover-Leete, and Gauss

Dynamics with Kinetic Energies initially equal to 7 .

Fourth-Order Runge-Kutta timestep = 0.001 .

zs-éD(t)
20

N

15}

10

HL

8 10
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3. Nosé and Nosé-Hoover Mechanics *

* Nosé’s 1984 papers [ Molecular Physics + Journal of Chemical Physics ] and mine in Physical Review A .

Shuichi Nosé’s Mechanics for an Oscillator( 1984 )
21y = (p/s)* +¢* + Tln(s*) + (¢) ;

g=(p/s") ; p=—q; §=C(; (= (P*/s*)— (T/s);
g=(p/s); p=—qs; $=3s(; (= (p*/s*)—T;

G=p; p=—q—(p; $=8; (=p*—T.

Two steps are involved here :
[ 1] Scaling the time with s ( line 2 - line 3 ) and
[ 2 ] Redefining the momentum , (p/s) 2> p.
Alternatively one can compute the acceleration ¢ .

10
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To what extent is the Continuity Equation Obvious ?

in : fvdt fdx out : fvdt

€ dx > The Flag of France

An important observation :

During the short time dt the flow into the fixed Eulerian bin is fvdt from the left with a
loss —fvdt on the right. Evidently the change in fdx during dt becomes -9(fv/dx)dtdx so
that the conservation law in one dimension is (9f/dt) = -9(fv)/0x . There is nothing to
stop us from summing up contributions in the x and y and z directions if desired, or
even in all the phase-space directions if we would like to prove Liouville’s Theorem .

Liouville’s Steady Flow Equation for Nosé Mechanics
(8f/8t) = —V - (fv) = 0 [ Is This Obvious ? ] -
2H = (p/s)* + ¢* + In(s?) + ¢* [ Nosé ! |
For simplicity, we set the temperature equal to unity in what follows.
H—4=(p/s"); p=—a; $=C; (= #*/s*) = (1/s)
H— f(a,p,5,) = (1/s)e”l O/ a2,
Because V - v vanishes we just need to show that v - V f vanishes :
d(9f/0q) = (p/s*)(~af) ; P(9f/0p) = (~q)(~pf/s") ;
8(0f/0s) = (QL®*f/s*)=(f/5)]; C(8/8C) = [ (®*/s*)—(1/3) [(—(F) -

* Here f is a conserved quantity , like mass density or probability density , with a velocity v.

11
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Nosé-Hoover ( 1985 ) and Dettmann ( 1996 ) Mechanics *

2H = (p/s) + s¢” + sTn(s”) +5(¢*) = 0;
G=(p/s): p=—qs; $=s(;
C=("/25") = (¢"/2) = (T/2)In(s*) =T = (¢*/2) = (p/s)* T . €

Redefining (p/s) —p; ¢=p; p=—q—C(p; (=p*-T.

Alternatively ¢ = (p/s) — 4(s/s) = —q—Cgwith (=@ -T . €

Notice the two very different expressions for the d/dt . <
Notice that s is unneeded in the acceleration equation . <

* Dettmann and Morriss, Physical Review E 55, 3693 — 3696 ( 1997 ) .

Nosé-Hoover ( 1985 ) Mechanics

Suppose f(Q1pa C) = eﬁ‘p/kll'e*K/k'l'e*("f'-'/z '

Suppose also p = F — (p — { = [ (p*/mkT) — 1]/7%.

Then { ¢ = (p/m) ; p=F —(p}; (= (p*/mkT) —1]/7* [ NH!]

This motion is an application of the phase-space Continuity Equation :

0= (of/ot) = -V -(fv)=—fV-v—v-(Vf) where —fV-v:fpé and
B B C C A

—v - (Vf)=—p- (Ff/kT) — (F — (p) - (~p/mkT)f — [ (p*/mkT) — 1 ](—C)

Nosé-Hoover mechanics gives Gibbs’ statistical mechanics !

W G Hoover, Physical Review A 31, 1695 — 1697 (1985 .

12
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To what extent is the Continuity Equation Obvious ?

in : fvdt fdx out : fvdt

—>
dx

An important observation :

The Flag of France

During the short time dt the flow into the fixed Eulerian bin is fvdt from the left with a
loss —fvdt on the right. Evidently the change in fdx during dt becomes -9(fv/dx)dtdx so
that the conservation law in one dimension is (9f/dt) = -9(fv)/0x . There is nothing to
stop us from summing up contributions in the x and y and z directions if desired, or
even in all the phase-space directions if we would like to prove Liouville’s Theorem .

Liouville’s Steady Flow with Nosé-Hoover Mechanics
(8f/0t) = =V - (fv) =—> f = —fV - v [ Is this Obvious ? ] .
2H = (p*/s) + sq* + s1n(s®) + s¢* = 0 [ Nosé — Hoover — Dettmann ! |
For simplicity, we set the temperature equal to unity in what follows.
H—q¢=(p/s); p=—sq; §=5C;

=/ (p/s)* —¢* - C*—In(s*) | - 1= (p/s)* — 1.
H— f(g,p,5,C) o (1/s)'e™t @/)rsatssct /2,

Because the motion is Hamiltonian we know that H is a constant of the motion. But we

also know that fyy = —fygV -v , which is nonzero :
{d=p;p=—g-C(p;: (=P —1}yu —

Vv =(3p/3p) = —C.

In fact, if we start with ((t=0)=1,
v.v=_<_,f:xe—j.;<.n' ,

so that f is not constant although H is zero, suggesting that f is everywhere the same .
Perhaps this is a good student puzzle ? Yes Indeed !

(1/s)®

“Time-scaling factor” s

L L
0.1 0.2 03 0.4 05 0.6 07 08

Although the distribution

function has a somewhat

peculiar denominator it is
well-behaved from the
numerical standpoint .

L
0.9

13
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The Three Sections of the Nose & NH Generate
Conservative Tori and Points in the Chaotic Sea

Initial periodic orbits {q,p,{} = ( £1.2144,0,0) incremented
by +0.1. The 12th increments lie in the chaotic sea .

< This complexity is
typical of Hamiltonian
mixtures of chaos and
toroidal solutions .

Initial condition {q,p,{} = ( 2.4,0,0) generates points in the chaotic sea .

A Long Torus Penetrates the Chaotic Sea in 18 Places

qg=p Initial condition
p=—q— Ip {q,p,3 = (2.4,0,2.4)

{=@*-1)
¢

14
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Two Long Tori Penetrate the Chaotic Sea

q=rp Initial condition
p=—q—4Gp {q,p,3} = (£1.6,0,0)
¢ =10(p*—-1)
10 :
5 L
0 L
.5 -
-10

Nosé is extremely stiff (and slow to compute ), here the thick line .
Nosé-Hoover is much more efficient, here the thinner projection .
Chaotic starts : (qpsC) = (3310) and (qp<) = (330), both to time =100 .
Fourth-order Runge-Kutta integration with dt = 0.001 and dt = 0.01 .

E

A
TN N
&‘(/‘ \~
ol ' k“)’{’“ \\QO' - Od4==Initigl Condition for Both Models
LA //},\
““‘“@34“
2} V&\,}" {1 His 9 here,not0!
X

15
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Lyapunov Exponents for Nosé & Nosé-Hoover Mechanics

Initial condition : (q,p,s, %) =(2.4,0,e28 0) sothat 7{=0.

< A >pnose differs from < A >yy bya factorof 1/< s >yy= 3.28=<1/s >,.

0.049 . : : :
N A <A >=.0475 Nosé
0.047 | 1
0.04 - - . .
045 80000 < time < 180000
0.0145 . :
<A>=.01414 NH1
A \
0.0140 f ¥ ]
AV <A>=.01392 NH2 -
Ve A AN ey
\v‘/\w ' \\ /‘M"\,«-«’Nww -
\

0.0135

350000 < time < 750000

Lyapunov Exponents for Nosé & Nosé-Hoover Mechanics

Comparison of 2 000 000 000 timestep < L > = 0.0138 for 4-equation NH1 and 3-equation NH2 oscillator motion equations

0.03

< M(time) > . .
Dettmann’s Hamiltonian =0 :
(da/dt) = (p/s); (dp/dt) =—sq;

VV\NW (ds/dt) =sg; (di/dt) =(p/s)?> -1
\

0015 |- \\\/ﬁ/\”/\mw 2> 0.0138
RS

001 - Nosé-Hoover Equations :
(do/dt) =p ; (dp/dt) =-q-Cp; (d&/dt) = p>—1

0.005 B

2 000 000 000 adaptive timesteps
0 1 1 1 1 1

1000 10000 100000 le+06 1e+07

200 < time <20 000 000 <--> 2.3 <log(time)<7.3

16
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4,

The Boltzmann Equation and Entropy

f = (df/dt) = (8f/0t) +v - (Of JOr) + (F/m) - (Of /Ov) = (Of /Ot)cotiisions

When does Boltzmann’s Equation for (r,p,t) apply ?

[ 1 ] When the density is low so that PV = NKT .
[ 2] When collisions occur at points ( not Enskog, not Knudsen ) .
[ 3 ] When collision orientations are random ( Py, =Py, ) .

These restrictions are all related to the basic assumption
f(r1, r2, p1, P2) = f(r, p4)f(r, p2) *
Remarkably, the Boltzmann Equation obeys the Second Law .

That is, the Boltzmann Equation is irreversible and provides
quantitative viscosities n and conductivities « .

( 9f/0t )conisions is calculated from two-body collisions by combining the
collisional “losses” with reversed-inverse collisions which give “gains”.
This expression gives the comoving time derivative following the motion.

*These f( . . . ) functions are all probability densities in phase spaces .

17
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Boltzmann’s Treatment of Two-Body Collisions

( 9f/0t )coiisions = “Gain” — “Loss” a [ fafy — 112 ]
For the soft repulsive potential ¢(r) = (1 —r?)*
a typical pair of collisions is shown below .

The “loss” velocities are indicated by arrows .
The “gain” collision is inverted in space and time .

The “gain” collision begins at the circled blue dots

end
N end
=S
A

and finishes at the plain end points lacking the dots .

Boltzmann’s Proof of the H-Theorem, (dS/dt) =0 .

(S/Nk) = —(d/dt)( flnf ) =— [dp: [dpT1a[ 1+1Inf |f =
— [dp: [dpoT'In fi[ fafa — fifo ] = =% [dpy [ dpoD In(f1fa/ f3fa) fafa— fif2 ]

For simplicity we imagine that the system is homogeneous and
isolated so that integrating over space is unnecessary . Notice
also that f is normalized so that its integral is constant. The
collision rates of corresponding gains and losses are identical
as both of them are integrated over the entire velocity space .

This irreversible result is surprising as the motion is reversible.

Unless In f is conserved, as in A + Bv + Cv2, the entropy S
increases . Evidently equilibrium corresponds to the Maxwell-
Boltzmann Gaussian distribution !

18
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Boltzmann’s Proof of the H-Theorem, (dS/dt) =0 .

This irreversible result is surprising as the motion is reversible.
Unless In f is conserved, as in A + Bv + Cv2, the entropy S
increases . Evidently equilibrium corresponds to the Maxwell-
Boltzmann Gaussian distribution !

The surprise is usually stated as two paradoxes :

Zermélo : If the equations of motion are reversible then any
trajectory obeying the H-Theorem disobeys it if reversed .

Poincaré : If the equations of motion obey Liouville’s Theorem
then any initial state , no matter how odd , will recur in future .

Boltzmann’s Proof of the H-Theorem, (dS/dt) =0 .

Poincaré : If the equations of motion obey Liouville’s Theorem
then any initial state , no matter how odd , will recur in future .

To prove this consider a small phase volume AQ and follow it

long enough that the new volume AQ’ does not overlap the old .

Call AQ” all of the volume ever covered ( in infinitely long time )
which was originally in AQ’. Then it must be the case that the
latter includes AQ . Otherwise the volume AQ + AQ” would have
to violate Liouville’s Theorem . This “Recurrence Theorem” is
called Poincaré’s Recurrence Paradox . Do not be dismayed
that the time required to recur exceeds the age of the Universe
for about a dozen argon atoms at liquid density .

19
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Maxwell-Boltzmann Distribution

Detailed balance suggests that f,f, = f;f, at equilibrium .
What happens to X In[ f(v) ] when a collision occurs ?
Evidently it must be conserved .

We know that collisions conserve mass, momentum, energy .
Therefore In[ f(v) ] = o + B v + y v?> where ( a,B,y ) are constants .

Evidently in the frame where <v > vanishes f(v) must be
Maxwell-Boltzmann with f(v) = exp(-mv%kT)/(2rmkT)32 .

It is useful to remember the identity
2n = [ 2nr exp(-r?/2) dr = [ [ exp(-x%/2) dx ] [ [ exp(-y%/2) dy ] .

The H Theorem , together with detailed balance, shows that
collisions cause a system to come to thermal equilibrium
with velocities matching the Maxwell-Boltzmann distribution .

5. The Krook-Boltzmann Equation, n and «

Max Krook
1913-1985
Cambridge(s)

20
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The Krook-Boltzmann Equation is Similar and Simpler

(df/dt) = (f;e — f)/t, where 1 is the collision time .
Now the H Theorem can be proved in a single line :

= — NK[ In (f/fig) 1[ fire — f1] >
Local Thermodynamic Equilibrium means having

exactly the same density, velocity, and energy .
For Maxwell molecules this KB approximation is exact .

(dS/dt) = < —Nk[1+Inf][f.—F]/

We illustrate its consequences for simple shear and for steady heat flow

The Krook-Boltzmann Equation is Similar and Simpler

Suppose that the distribution function has a linear increase
in u withy and that P, = P, =—n(du/dy) :

Tw
Tw

Y 2 da »_"v,z‘-. 2 joLT
foll;' x e (m[ v.—¢éy | Al,e muvg [2kT)

(9f/0t) +v- (8f/dr) + (F/m) - (8f /ow) =~ " [~

0+ (mvyév:/kT) frre = (frre — f)/7 v

f = furel 1 — ér(mvw, /kT) | = P, = —(NET/V)ér — = (NKT/V )7 = Py,T.

This density-independence of viscosity is a major success of the Boltzmann Equation !

21
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The Krook-Boltzmann Equation is Similar and Simpler

Suppose that the distribution function has a linear decrease
in T with x and that Q, = — x(dT/dx) : .' G .'
fLTE o (P/kT)e nnr"/?k']‘/(z,’rka)l)/'.Z

f=(0f/8t)+v-(8f/0r) + (F/m) - (8f |dv) =~
0 — v,(dInT/dz) frre( (D/2) +1 — (mv?/2kT) |+ 0= frre—f /7
Af =v,7(dInT/dz) frre( (D/2) + 1 — (mv?/2kT) | —
J=0; Q=—(dInT/dz)(5/2)pr(kT/m) - k = PrCp

This density-independence of conductivity is another Boltzmann Equation success !

6. Direct Simulation Monte Carlo
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Direct Simulation Monte Carlo ( developed by Greeme Bird )
provides simple solutions, both analytic and numerical .

Divide the space into “zones” or cells, each with several particles .
Some cells can act as boundary conditions as in a shock wave .
The basic algorithm then advances each particle for a time dt .
The number of collisions in each zone is computed from <1 v;; | >.
Pairs of particles in each zone are then selected for collision with
The impact parameters are chosen randomly .

The advantages of this method are speed and simplicity .

The Krook-Boltzmann idea would replace a particle with one drawn
from the LTE ( Local Thermodynamic Equilibrium ) distribution .

Ideal-Gas Thermometry — Massive Particle in a Thermal Bath

The Model : T
M =100 with V =1 and m = 1 with ¢ . :

a Maxwell-Boltzmann distribution o o .

Two Solution Methods :
1. Expand the Gaussian integrals for the bath in (m/M)"2,
2. Carry out a simulation along the lines of Krook-Boltzmann :

Algorithm for the Simulation :

Choose a Maxwell — Boltzmann bath particle v in 1D, 2D, or 3D .
Choose a random “ impact parameter ” in the 2D case .
Compute the momentum/energy changes in a collision with V .
Weight these changes with the relative speed, | (v-V)I.

Sum up a million or so collisions .

Simulation is certainly faster and likely more accurate !
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Reminder : How to Choose a Gaussian random number with rund (intx,inty)
random where rund returns a random number in the interval[0to 1].

intx = 0
inty = 0

10 vx = 10*dsqrt(T)*(rund(intx,inty) — 0.5d00)
Boltz = dexp(-vx*vx/(T+T))
If(rund(intx,inty).gt.Boltz go to 10

The Box-Muller algorithm is a more sophisticated method for generating Gaussian
random velocities , as Carol mentioned . See Wikipedia for details .

For the details of the analytic approach as well as the result of an elastic collision
Of M with V and m with v see HHP in Physical Review E 48, 3196-3198 (1993 ) :

=[(M—m)/(M+m)|X+2[m /(M +m)]x
[(m —M)/(M +m))x+2[M/(M +m)]X

Thermal Equilibration — Energy Change for M =100 in a bath withm=1atT

200 million-collision averages at temperatures 1, 2, ... 200

0 < KT < 200
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Two and Three-Dimensional Simulations of the Bath Interaction appear in the Hoovers’
Physical Review E 77, 041104 ( 2008 ) : “Nonequilibrium Temperature/Thermometry ...”

0 < kT < 100

Energy change, due to collisions, for a hard
disk of mass M and unit speed with an
equilibrium bath of point particles with mass
m = M/100 and temperature Ty . Zero energy
change corresponds precisely to that
temperature (50 for disks, 33.333 ... for
spheres, open circles in the figure) for which
the disk kinetic energy equals the mean bath
energy (mv/k). Also shown are analogous
results for a hard sphere immersed in a hard-
sphere ideal-gas thermometer.

Some points of interest that could use investigation

Smooth-particle averages provide local quantities :

Fir)=2 Fw(r —r)) where w(r) a. 1 — 6(r/h)? + 8(r/h)3 — 3(r/h)*

Computing the local temperature involves a local
Average of two velocity moments : <(v—-<v>)?>.

An instantaneous recipe would be handy. One idea
is to eliminate the “self contribution” to the local
temperature . Irving and Kirkwood, and later Hardy,

seem to have confused several researchers .
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Percy Williams Bridgman > Quotes > Quotable Quote

| “Not only are there meaningless questions, but many of the problems with
which the human intellect has tortured itself turn out to be only 'pseudo
problems,' because they can be formulated only in terms of questions which
are meaningless. Many of the traditional problems of philosophy, of religion, or
of ethics, are of this character. Consider, for example, the problem of the freedom of the
will. You maintain that you are free to take either the right- or the left-hand fork in the
road. I defy you to set up a single objective criterion by which you can prove after you
have made the turn that you might have made the other. The problem has no meaning
in the sphere of objective activity; it only relates to my personal subjective feelings
while making the decision.”

— Percy Williams Bridgman, The Nature of Physical Theory

Ensembles versus trajectories and atomistic mechanics versus continuum mechanics contain examples .

Lucy’s weight function and a weight function
which vanishes at r =0 : w(r) = 30r3(1 —r)2.
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Lucy’s and Monaghan’s weight functions
Lucy =1—-6r2 +8r3-3r*; Monaghan=1-6r2+6r3>2(1-r)3

0o | 1. Peak at Zero
0l 2. Very Smooth
3. Normalized

4. Finite Range

w

07
06 -
05
04
03
02

0.1

r

0 I I L I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

7. Nosé-Hoover Knots from Yang and Wang
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Interlocking Rings in Oscillator Phase Space

(do/dt)=p; (dp/dt)=—q-Cp; AN
(d¢/dt) =p?—T; T =1 +stanh(q)

Clint Sprott (2015)

The topology of knots is fascinating ,
even in the case of just three rings .
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Knots are Everywhere !
Trefoil or overhand knot

Luxor
Las Vegas

(—\\/'\ Piotr Pieranski’s research
7 N in Poznan, Poland :
.\/// \ He has written software for

simplifying, classifying, and
even untying knots by |
increasing the diameter of the s
rope to its maximum . NS

“The invariant Tori of Knot Type and the Interlinked Invariant Tori in the Nosé-Hoover System”
Lei Wang and Xiao-Song Yang, arXiv 1501.03375

[A somewhat stiffer Nosé-Hoover oscillator : (dg/dt) = p ; (dp/dt) =— q - &p ; (d&/dt) = 10(p%—1) ]

Initial (q,p,¢) = (-0.72,0,0) and (2.4,0,0) ( 6x5/2 ) Pairs of Tori turn out to be Interlinked !

@ e

(a) Tr2 (b) Tas (c) Tua d) Tis e) Tie
(f) Trs (8) T2a (h) Tos ) Te ) T34

@Q@@@@‘@

(k) Tss () Tse (m) Ty5 (n) Tag (0) Ts6
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Is This a Nosé — Hoover Knot ?

qg=p Initial condition
p= —q— ¢{p {a,p,¢} = (1.6,0,0)
s 2
¢ =10(p 1) p>0;p<0
10 :
iKY
2 L
ol
Bt
-10 5
Is This a Nosé — Hoover Knot ?
qg=mp Initial condition
p" = —q — (p {q,p,{} = (2.4,0,2.4)
(=@ -1 p>0;p<0
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Is This a Nosé — Hoover Knot ?

q=rp Initial condition
I.j = —q— {p {q,p,0} = (24,0,2.4)
{=@ -1 (>0;7<0

Is This a Nosé — Hoover Knot ?

g=p Initial condition
Ij = —q —_ (p {Q:p:(} = (16,0,0)

¢ =10(p% - 1) {>0;7<0

31



11/25/16

Summary of things it would be good to know up to the present

1. Temperature is best measured with the ideal-gas thermometer .
2. Gauss and Hoover-Leete algorithms are isokinetic and useful .

3. Nosé mechanics is unnecessarily stiff and not very useful .*

4. Nosé-Hoover mechanics is convenient and robust .

5. The Boltzmann Equation covers many applications beyond 1, x .
6. The linear Krook-Boltzmann equation is nearly as useful as is B .

7. Direct Simulation Monte Carlo is a simple tool for gas problems .
8. Knots should appeal to those interested in topology and chaos .

* These problems demonstrate the usefulness of adaptive integration, already explained by Carol .

Things it would be good to think about :

1. How to make a Boltzmann Equation boundary condition for P, ?
2. Can you solve the Krook-Boltzmann equation for a shockwave ?
3. Is entropy a dynamical property of a single dynamical system ?
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