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General Features of Our Approach to NESM & NEMD
Our main goal is to reach an understanding connecting microscopic and mesoscopic models to analogs
in the Real World of Macroscopic Physical Phenomena .  We strive for simplicity .  Our models are mainly
classical and nonrelativistic and typically two-dimensional .  The main lines of thought we follow can be
traced to Abraham , Alder , Ashurst , Bhattacharya , Boltzmann , Bridgman , Bulgac , Debye , De Rocco , 
Dettmann , Duvall , Euler , Evans , Fermi , Feynman, Ford , Galton , Gauss , Gibbs , Jaynes , Hamilton , 
Holian , Kawai , Kratky , Krivtsov , Kusnezov , Lagrange , Landau , Lifshitz , Liouville , Lyapunov , 
Mareschal , Maxwell , the Mayers , Moran , Morriss , Newton , Nosé , Occam , Pars , Patra , Posch , 
Rahman , Rice , Ruelle , Sommerfeld , Sprott , Steiner , Stell , Stull , Thoreau , Travis , Uhlenbeck , 
Vineyard , von Neumann, Wainwright , Wojciechowski . Wood , Zwanzig . Feynman’s ideas of pursuing 
definite examples, along with his and Alder’s efforts toward simplicity are always with us .  

Most of what you see will be in two dimensions , with graphic illustrations , using FORTRAN and gnuplot
and PowerPoint as our main expository tools , not because these are perfect but because we haven’t yet 
found anything better .

In order to teach students rather than course material it is useful to have questions .  This is the main job 
of the student , not just for himself , but for all of us .

Let us thank Baidurya Bhattacharya for making this possible .
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1. Ideal Gas Thermometer à Temperature/Entropy
2. Isokinetic “Gaussian” Molecular Dynamics
3. Nosé and Nosé-Hoover Mechanics
4. The Boltzmann Equation and Entropy
5. The Krook-Boltzmann Equation, h and k
6. Direct Simulation Monte Carlo
7. Nosé-Hoover Knots from Yang and Wang

1. Ideal Gas Thermometer à Temperature/Entropy
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Mechanics plus Temperature ( and Heat ) à Thermodynamics .
We have the luxury of using the ideal-gas temperature scale

Titanium	melts	at	T	=	3034F	.

Temperature	in	the	sun	=	15,000,000	K	.

Temperature	in	the	H	Bomb	is	a	few	times
greater	than	that	of	the	sun	.

Plotting	PV/Nk at	low	number	density
defines	the	ideal-gas	temperature	scale	.

Ideal-Gas Thermometer: Microscopic Mechanics à Thermodynamics
Gibbs’ Statistical Mechanics in the Microcanonical Ensemble *

Ideal
Gas

Fluid

Thermal equilibrium corresponds to maximizing the number of states by varying the 
fluid energy . The ideal-gas energy states comprise a DN-dimensional hypersphere .
Taking the logarithm of the number of states makes the maximization step easy :

Maximizing lnW à ( ∂ lnW I / ∂EI ) = ( ∂ lnW F / ∂E F ) = DN/( 2E ) = ( 1/kT )

This definition of temperature makes thermometry possible and gives
the Zeroth Law of Thermodynamics : T1 = T2 and T1 = T3 à T2 = T3

WI is	the	number	of	states,	with	(dq	dp/h)DN corresponding to a “state” à
WI+F = WI(E	- EF)	WF(EF)	=	WI(EI)	WF (E	- EI)	

* Good	references	are	Molecular	Dynamics	and	Computational	Statistical	Mechanics	@williamhoover.info

WIdeal = (1/N!) ∏( ∫ ∫ dq dp/h) µ (V/N)N(E/N)DN/2
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Next Consider Mechanical Evaluation of Pressure , in 2D

Ly

Lx

vx

Notice that both pressure and temperature can be second-rank
tensors. Two directions are involved : [ 1 ] the orientation of 
the wall on which the force per unit area is measured; and [ 2 ] 
the direction of the force. At equilibrium the pressure and the 
temperature are scalars.  We will show this for the ideal gas 
using the Boltzmann equation which à Maxwell-Boltzmann f .  

Microscopic Mechanics à Thermodynamics
J Willard Gibbs’ Statistical Mechanics *

Ideal
Gas

Fluid

Mechanical Coupling à WI+F = WI(V	- VF)	WF(VF)	=	WI(VI)	WF (V	- VI)	

Mechanical equilibrium corresponds to maximizing the number of states by varying the fluid 
volume . The ideal-gas volume states comprise an N-dimensional hypevolume VN . Again ,

taking the logarithm of the number of states makes the maximization step easy :

Maximizing lnW à ( ∂ lnW I / ∂VI ) = ( ∂ lnW F / ∂V F ) = ( N/V ) = ( P/kT )
This ideal-gas pressure makes it easy to describe mechanical equilibria and

gives the Zeroth Law of Mechanics/Dynamics if P1 = P2 and P1 = P3 à P2 = P3

* J.	W.	Gibbs,	Elementary	Principles	in	Statistical	Mechanics	(	Dover,	1960	),	originally	1902

( 1839-1903 )

WI = (1/N!) ∏( ∫ ∫ dq dp/h) µ (V/N)N(E/N)DN/2
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Thermodynamic	Entropy	S	Corresponds	to	k	ln	W

[	1	]	Entropy	is	a	state	function	depending	upon	E	and	V	.
[	2	]	Entropy	increases	in	the	absence	of	a	constraint	.
[	3	]	Entropy	is	an	extensive	quantity	for	identical particles	.
For	an	ideal	gas	(S/Nk)	=	ln (V/N)	+	(D/2)	ln	(E/N)	+	constant*
TdS =	dE +	PdV (	Combined	First	and	Second	Laws	)	.

The	microcanonical entropy	shown	here	deviates	only	negligibly	–
as	(	1/N	)	– from	Gibbs’	canonical	entropy	where		the	momentum

integral	is	(2pmkT)1/2 per	degree	of	freedom	.

The	Mayers’	Statistical	Mechanics	expresses	the	hypervolume of	a	DN-dimensional
hypersphere	in	terms	of	Gaussian	integrals	,	which	are	“gamma	functions”	.

S(p2/2m) = E , a many-dimensional spherical surface with radius (2mE)1/2

What about using the Configurational
Temperature from Landau/Lifshitz ?

kT∫ [ (   2F) e-F/kTdr = ∫ ( F)2e-F/kTdr
This is just an application of integration by parts : 
∫du v = - ∫dv u where u =    F and v = e-F/kT where
F vanishes at the two endpoints of the integrals .

There is a comprehensive literature detailing ( or obscuring ) what is a
relatively simple idea with plenty of generalizations . Unfortunately it
appears to be just a dead end . If you would like to read more see Carlos
Braga and Karl Travis’ two papers in the Journal of Chemical Physics :
123, 134101 (2005) and 124, 104102 (2006) .

D D

D
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An apparent disadvantage is the 
occasional vanishing of the denominator .
Think about gravitational field forces !  

What about using the Configurational
Temperature from Landau/Lifshitz ?

An apparent advantage is the lack of dependence on velocity ,
where the local velocity might be hard to determine accurately .

Steady rotation increases the forces without increasing temperature 
so that configurational temperature seems rather unphysical .

2. Isokinetic “Gaussian” Molecular Dynamics

Ordinarily (dK/dt) = - (dF/dt) .  The upshot of a classic concept ,
Gauss’ “Principle of Least Constraint” , S d(Fc )2 = 0 , is a motion 
equation of the form (dK/dt) = - (dF/dt) + S F • v as we shall see .
Remember that Gauss was famous for “Least Squares” already .

This idea is not a panacea , and gives incorrect results sometimes .

Pars’ text is a good reference for classical variational principles .
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Molecular Dynamics at Constant Txx Using
Gauss’ Principle of Least Constraint ( 1829 - 1982 )

Molecular Dynamics at constant Txx
Using a Standard Lagrange Multiplier *

Sample Problem : Three masses with periodic boundary conditions
Choose a normal mode with w2 = 3 solving three motion equations .

* For references see our arXiv 1303.6190 paper : Hamiltonian Thermostats Fail to Promote Heat Flow
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Sample Problem # 1 : Three masses with periodic boundary conditions
Choose a normal mode with w2 = 3 solving three motion equations .

This moving wave has constant kinetic and potential energies .
For this system’s isokinetic problems zGauss = 0 and Kq = Kp .

x, y, and z are the displacements of the particles

Sample Problem # 2 : Two masses in steady rotation with one spring .

Spring	force	is	(	1	– r	)	and	with	a		speed	of	unity
the	centrifugal	force	is		r/2	à r	=	2 .		You	should
be	able	to	verify	that	the	initial	values

{ x1 =  1 ; y1 =  0 ; px1 = 0 ; py1 = 1 }
are	those	for	which	the	radial	acceleration		is
zero	.	Notice	that	the	four	variables	for	Particle
2	are	just	the	negatives	of	those	for	Particle	1	.

r12=dsqrt((x1-x2)**2+(y1-y2)**2)
fx1 = (x2 - x1)*(r12 - 1)/r12
fy1 = (y2 - y1)*(r12 - 1)/r12

RK4	solution	of	4	equations	for	Particle	1	.
There	are	628	timesteps of	dt =	0.01	each	.
It	isn’t	necessary	to	add	the	centrifugal

forces		{	w2r/2		}	to	the	spring	forces	.	Those
forces	arise	automatically	from	the	motion	.

It is also easy to see that the virial theorem is satisfied.  Consider the theorem for the x coordinate
of Particle 1 .  The x coordinate is (r/2)cos(t) = cos(t) à < x �̈� > = < (d/dt) 𝐱�̇� > −	< �̇�𝟐 >	= 𝟎 − 𝟏 𝟐⁄ .
A good way to start on such problems is to write the Lagrangian ( in terms of the coordinates and
velocities ) in order to discover the momenta and the Hamiltonian equations of motion they obey .

r = 2 ••
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Sample Problem # 3 : Five masses in steady rotation with four springs .

x1 = -19/7.1 ; x2 = -10/7.1 ; x3 = 0 ; x4 = +10/7.1 ; x5 = +19/7.1
Initial values of py are equal to the x coordinates à w = 1 .

Spring	forces	are	10(	1	– r	)	and	centrifugal
forces	are		r	.		You	should	be	able	to	verify
that	the	initial	values	given	below	are	those
for	which	all	the	radial	accelerations	vanish	.

r12 = dsqrt((x1-x2)**2 + (y1-y2)**2)
r23 = dsqrt(x2*x2 + y2*y2)
fx1 = 10*(x2-x1)*(r12 - 1)/r12
fy1 = 10*(y2-y1)*(r12 - 1)/r12
fx2 = 10*(x1-x2)*(r12 - 1)/r12
fy2 = 10*(y1-y2)*(r12 - 1)/r12
fx2 = fx2 + 10*(0-x2)*(r23 - 1)/r23
fy2 = fy2 + 10*(0-y2)*(r23 - 1)/r23

RK4	solution	of	8	equations	for	Particles	1
and	2	.		628	timesteps of	dt =	0.01	each	.
It	isn’t	necessary	to	add	the	centrifugal
forces		{	w2r		}	to	the	spring	forces	.	Those

Forces	arise	automatically	from	the	motion	.

Potential Energies for Newton, Hoover-Leete, and Gauss
Dynamics with Kinetic Energies initially equal to 7 .

Fourth-Order Runge-Kutta timestep = 0.001 .

F( t )
G

HL
N
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3. Nosé and Nosé-Hoover Mechanics *

* Nosé’s 1984 papers [ Molecular Physics + Journal of Chemical  Physics ] and mine in Physical Review A .

Shuichi Nosé’s Mechanics for an Oscillator( 1984 )

Two steps are involved here :  
[ 1 ] Scaling the time with s ( line 2 à line 3 ) and 
[ 2 ] Redefining the momentum , ( p / s ) à p .

Alternatively one can compute the acceleration     .
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To what extent is the Continuity Equation Obvious ?

dx
An important observation :
During the short time dt the flow into the fixed Eulerian bin is fvdt from the left with a
loss –fvdt on the right.  Evidently the change in fdx during dt becomes -∂(fv/∂x)dtdx so
that the conservation law in one dimension is (∂f/∂t) = -∂(fv)/∂x .  There is nothing to
stop us from summing up contributions in the x and y and z directions if desired, or
even in all the phase-space directions if we would like to prove Liouville’s Theorem .

The Flag of France

*

* Here	f	is	a	conserved	quantity	,	like	mass	density	or	probability	density	,	with	a	velocity	v	.
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Nosé-Hoover ( 1985 ) and Dettmann ( 1996 ) Mechanics *

Notice the two very different expressions for the dz/dt .
Notice that s is unneeded in the acceleration equation .

* Dettmann and Morriss, Physical Review E 55, 3693 – 3696 ( 1997 ) .

ß

ß

ß

ß

Nosé-Hoover ( 1985 ) Mechanics

W G Hoover, Physical Review A 31, 1695 – 1697 ( 1985 ) .

This motion is an application of the phase-space Continuity Equation : 

Nosé-Hoover mechanics gives Gibbs’ statistical mechanics !

A 

B                B        C                                                C               A
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To what extent is the Continuity Equation Obvious ?

dx
An important observation :
During the short time dt the flow into the fixed Eulerian bin is fvdt from the left with a
loss –fvdt on the right.  Evidently the change in fdx during dt becomes -∂(fv/∂x)dtdx so
that the conservation law in one dimension is (∂f/∂t) = -∂(fv)/∂x .  There is nothing to
stop us from summing up contributions in the x and y and z directions if desired, or
even in all the phase-space directions if we would like to prove Liouville’s Theorem .

The Flag of France

(1/s)s

“Time-scaling factor” s

Although the distribution 
function has a somewhat 
peculiar denominator it is 

well-behaved from the 
numerical standpoint .
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The Three Sections of the Nosé & NH Generate 
Conservative Tori and Points in the Chaotic Sea 

!"#$#%& !"#$%&$' !"#$%& !,!, ! =  ±1.2144, 0, 0  !"#$%&%"'%( 	

!"#$#%& !"#$%&%"# !,!, ! =  2.4, 0, 0  !"#"$%&"' !"#$%& !" !ℎ! !ℎ!"#$% !"# . 	

ß This complexity is
typical of Hamiltonian
mixtures of chaos and
toroidal solutions .

-4               <          q          <               +4

A Long Torus Penetrates the Chaotic Sea in 18 Places  
Initial condition 
!,!, ! =  2.4, 0, 2.4  



11/25/16

15

-4               <          q          <               +4

Initial condition 
!,!, ! =  ±1.6, 0, 0  

Two Long Tori Penetrate the Chaotic Sea

-4

-2

 0

 2

 4

-4 -2  0  2  4

Nosé is extremely stiff ( and slow to compute ), here the thick line .
Nosé-Hoover is much more efficient, here the thinner projection .

Chaotic starts : (qpsz) = (3310) and (qpz) = (330), both to time = 100 .
Fourth-order Runge-Kutta integration with dt = 0.001 and dt = 0.01 .

z

q

O									Initial	Condition	for	Both	Models	

H is 9 here , not 0 !
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Lyapunov Exponents for Nosé & Nosé-Hoover Mechanics

0.0135

0.0140

0.0145

350000      <    time    <     750000

λ
< λ > = .01414

< λ > = .01392

0.0135

0.0140

0.0145

350000      <    time    <     750000

λ
< λ > = .01414

< λ > = .01392

0.045

0.047

0.049

80000        <    time    <      180000

λ < λ > = .0475 Nosé

NH2

NH1

<  ! >!"#é !"##$%& !"#$ <  ! >!"  !" ! !"#$%& !" !/<  ! >!" =  !.!" = < ! ! >! . 
Initial condition : ( q,p,s, ζ ) = ( 2.4, 0, e-2.88, 0 )  so that H = 0 .  

Lyapunov Exponents for Nosé & Nosé-Hoover Mechanics

Dettmann’s Hamiltonian = 0 :
( dq/dt ) = ( p/s ) ; ( dp/dt ) = – sq ;

( ds/dt ) = sz ; ( dz/dt ) = ( p/s )2 – 1 

Nosé-Hoover Equations :
( dq/dt ) = ; ( dp/dt ) = – q – zp; ( dz/dt) = p2 – 1

200 < time < 20 000 000  à 2.3 < log( time ) < 7.3

Lyapunov Exponents for Nosé & Nosé-Hoover Mechanics

< l1(time) >
Dettmann’s Hamiltonian = 0 :

( dq/dt ) = ( p/s ) ; ( dp/dt ) = – sq ;

( ds/dt ) = sz ; ( dz/dt ) = ( p/s )2 – 1 

Nosé-Hoover Equations :
( dq/dt ) = p ; ( dp/dt ) = -q – zp ; ( dz/dt) = p2 – 1

200 < time < 20 000 000  ß-à 2.3 < log( time ) < 7.3

l1 à 0.0138

2 000 000 000 adaptive timesteps
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4. The Boltzmann Equation and Entropy

When does Boltzmann’s Equation for f(r,p,t) apply ?

[ 1 ] When the density is low so that PV = NKT .
[ 2 ] When collisions occur at points ( not Enskog, not Knudsen ) . 
[ 3 ] When collision orientations are random ( Pxx = Pyy ) .
These restrictions are all related to the basic assumption

f(r1, r2, p1, p2) = f(r, p1)f(r, p2) *
Remarkably, the Boltzmann Equation obeys the Second Law .
That is, the Boltzmann Equation is irreversible and provides
quantitative viscosities h and conductivities k .

( ∂f/∂t )collisions is calculated from two-body collisions by combining the
collisional “losses” with reversed-inverse collisions which give “gains”.
This expression gives the comoving time derivative following the motion.

* These f( . . . ) functions are all probability densities in phase spaces .
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Boltzmann’s Treatment of Two-Body Collisions
( ∂f/∂t )collisions = “Gain” – “Loss” a [ f3f4 – f1f2 ]
For the soft repulsive potential f(r) = ( 1 – r2 )4

a typical pair of collisions is shown below .
The “loss” velocities are indicated by arrows .
The “gain” collision is inverted in space and time .
The “gain” collision begins at the circled blue dots 
and finishes at the plain end points lacking the dots . 

Boltzmann’s Proof of the H-Theorem, (dS/dt) ≥ 0 . 

For simplicity we imagine that the system is homogeneous and 
isolated so that integrating over space is unnecessary .  Notice 
also that f is normalized so that its integral is constant .  The 
collision rates of corresponding gains and losses are identical
as both of them are integrated over the entire velocity space .
This irreversible result is surprising as the motion is reversible.  
Unless ln f is conserved, as in A + Bv + Cv2, the entropy S 
increases .  Evidently equilibrium corresponds to the Maxwell-
Boltzmann Gaussian distribution !
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Boltzmann’s Proof of the H-Theorem, (dS/dt) ≥ 0 . 

This irreversible result is surprising as the motion is reversible.  
Unless ln f is conserved, as in A + Bv + Cv2, the entropy S 
increases .  Evidently equilibrium corresponds to the Maxwell-
Boltzmann Gaussian distribution !

The surprise is usually stated as two paradoxes :

Zermélo : If the equations of motion are reversible then any
trajectory obeying the H-Theorem disobeys it if reversed .

Poincaré : If the equations of motion obey Liouville’s Theorem
then any initial state , no matter how odd , will recur in future .

Boltzmann’s Proof of the H-Theorem, (dS/dt) ≥ 0 . 

Poincaré : If the equations of motion obey Liouville’s Theorem
then any initial state , no matter how odd , will recur in future .

To prove this consider a small phase volume DW and follow it
long enough that the new volume DW’ does not overlap the old .
Call DW” all of the volume ever covered ( in infinitely long time )
which was originally in DW’ .  Then it must be the case that the
latter includes DW . Otherwise the volume DW + DW” would have
to violate Liouville’s Theorem .  This “Recurrence Theorem” is 
called Poincaré’s Recurrence Paradox .  Do not be dismayed
that the time required to recur exceeds the age of the Universe
for about a dozen argon atoms at liquid density .
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Maxwell-Boltzmann Distribution
Detailed balance suggests that f1f2 = f3f4 at equilibrium .
What happens to S ln[ f(v) ] when a collision occurs ?

Evidently it must be conserved .
We know that collisions conserve mass, momentum, energy .
Therefore ln[ f(v) ] = a + b v + g v2 where ( a,b,g ) are constants .

Evidently in the frame where  < v >  vanishes f(v) must be
Maxwell-Boltzmann with f(v) = exp(-mv2/kT)/(2pmkT)3/2 .

It is useful to remember the identity
2p = ∫ 2pr exp(-r2/2) dr = [ ∫ exp(-x2/2) dx ] [ ∫ exp(-y2/2) dy ] .

The H Theorem , together with detailed balance, shows that
collisions cause a system to come to thermal equilibrium

with velocities matching the Maxwell-Boltzmann distribution .

5.    The Krook-Boltzmann Equation, h and k

Max	Krook
1913-1985

Cambridge(s)
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The Krook-Boltzmann Equation is Similar and Simpler

(df/dt)	=	(fLTE – f)/t ,		where	t is	the	collision	time	.
Now	the	H	Theorem	can	be	proved	in	a	single	line	:

(dS/dt)	=	< – Nk[	1	+	ln	f	][	fLTE – f ] /t =	– Nk[	ln	(f/fLTE)	][	fLTE – f	]	>
Local	Thermodynamic	Equilibrium	means	having
exactly	the	same	density,	velocity,	and	energy	.

For	Maxwell	molecules	this	KB	approximation	is	exact	.

We	illustrate	its	consequences	for	simple	shear	and	for	steady	heat	flow	.	

The Krook-Boltzmann Equation is Similar and Simpler

Suppose	that	the	distribution	function	has	a	linear	increase
in	u	with	y	and	that	Pxy =	Pyx =	– h(du/dy)	:

This density-independence of viscosity is a major success of the Boltzmann Equation !
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The Krook-Boltzmann Equation is Similar and Simpler

Suppose	that	the	distribution	function	has	a	linear	decrease
in	T with	x	and	that	Qx =	– k(dT/dx)	:

This density-independence of conductivity is another Boltzmann Equation success !

6.      Direct Simulation Monte Carlo
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Direct Simulation Monte Carlo ( developed by Græme Bird )
provides simple solutions, both analytic and numerical .

Divide the space into “zones” or cells, each with several particles .
Some cells can act as boundary conditions as in a shock wave .
The basic algorithm then advances each particle for a time dt .
The number of collisions in each zone is computed from < | vij | > .
Pairs of particles in each zone are then selected for collision with
The impact parameters are chosen randomly .
The advantages of this method are speed and simplicity .

The Krook-Boltzmann idea would replace a particle with one drawn
from the LTE ( Local Thermodynamic Equilibrium ) distribution .

Ideal-Gas Thermometry – Massive Particle in a Thermal Bath

The Model :
M = 100 with V = 1 and m = 1 with
a Maxwell-Boltzmann distribution

Two Solution Methods :
1. Expand the Gaussian integrals for the bath in (m/M)1/2 .
2. Carry out a simulation along the lines of Krook-Boltzmann :

Algorithm for the Simulation :
Choose a Maxwell – Boltzmann bath particle v in 1D, 2D, or 3D .
Choose a random “ impact parameter ” in the 2D case .
Compute the momentum/energy changes in a collision with V .
Weight these changes with the relative speed, | ( v – V ) | .
Sum up a million or so collisions .

Simulation is certainly faster and likely more accurate !
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Reminder : How to Choose a Gaussian random number with rund(intx,inty)
random where rund returns a random number in the interval [ 0 to 1 ] .

intx = 0
inty = 0

10    vx = 10*dsqrt(T)*(rund(intx,inty) – 0.5d00)
Boltz = dexp(-vx*vx/(T+T))
If(rund(intx,inty).gt.Boltz go to 10

The	Box-Muller	algorithm	is	a	more	sophisticated	method	for	generating	Gaussian
random	velocities	,	as	Carol	mentioned	.		See	Wikipedia	for	details	.

For	the	details	of	the	analytic	approach	as	well	as	the	result	of	an	elastic	collision
Of	M	with	V	and	m	with	v	see	HHP	in	Physical	Review	E	48,	3196-3198	(	1993	)	:

DE

Rods

Thermal Equilibration – Energy Change for M = 100 in a bath with m = 1 at T

200 million-collision averages at temperatures 1, 2, . . . 200

0          <     kT <          200
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Two and Three-Dimensional Simulations of the Bath Interaction appear in the Hoovers’
Physical Review E 77, 041104 ( 2008 ) : “Nonequilibrium Temperature/Thermometry …”

Some points of interest that could use investigation

Smooth-particle	averages	provide	local	quantities	:

F(r)	º S Fjw(r – rj) where w(r) a 1 – 6(r/h)2 + 8(r/h)3 – 3(r/h)4

Computing the local temperature involves a local
Average of two velocity moments : < ( v – < v > )2 > .

An instantaneous recipe would be handy.  One idea
is to eliminate the “self contribution” to the local 
temperature .  Irving and Kirkwood, and later Hardy,
seem to have confused several researchers .
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Ensembles	versus trajectories	and	atomistic	mechanics	versus continuum	mechanics	contain	examples	.

Lucy’s weight function and a weight function
which vanishes at r = 0 : w(r) = 30r2(1 – r)2 .

Lucy
w

0   <   r   <   1
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Lucy’s and Monaghan’s weight functions
Lucy ≈	1	– 6r2 +	8r3 – 3r4 ;	Monaghan ≈	1	– 6r2 +	6r3 à 2(	1	– r	)3

1. Peak at Zero
2. Very Smooth
3. Normalized
4. Finite Range

w

r

7.  Nosé-Hoover Knots from Yang and Wang
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Interlocking Rings in Oscillator Phase Space

z

à( dq/dt ) = p ; ( dp/dt ) = – q – zp ;
( dz/dt ) = p2 – T ; T = 1 + e tanh(q)

The topology of knots is fascinating ,
even in the case of just three rings .
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Knots are Everywhere !

Piotr Pieranski’s research
in Poznań, Poland :

He has written software for 
simplifying, classifying, and 

even untying knots by 
increasing the diameter of the 

rope to its maximum .

Trefoil or overhand knot Luxor
Las Vegas

“The invariant Tori of Knot Type and the Interlinked Invariant Tori in the Nosé-Hoover System” 
Lei Wang and Xiao-Song Yang, arXiv 1501.03375

[A somewhat stiffer Nosé-Hoover oscillator : (dq/dt) = p ; (dp/dt) = – q – zp ; (dz/dt) = 10(p2 – 1) ]

Initial	(q,p,z)	=	(-0.72,0,0)	and	(2.4,0,0)																													(	6x5/2	)	Pairs	of	Tori	turn	out	to	be	Interlinked	!																																																																																
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Is This a Nosé – Hoover Knot ?
Initial condition 
!,!, ! =  1.6, 0, 0  
! > ! ;  ! < ! 

Is This a Nosé – Hoover Knot ?
Initial condition 
!,!, ! =  2.4, 0, 2.4  
! > ! ;  ! < ! 
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Is This a Nosé – Hoover Knot ?
Initial condition 
!,!, ! =  2.4, 0, 2.4  
! > ! ;  ! < !  

Is This a Nosé – Hoover Knot ?

above

below

Initial condition 
!,!, ! =  1.6, 0, 0  
! > ! ;  ! < !  
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Summary	of	things	it	would	be	good	to	know	up	to	the	present

1. Temperature	is	best	measured	with	the	ideal-gas	thermometer	.
2. Gauss	and	Hoover-Leete algorithms	are	isokinetic	and	useful	.
3. Nosé mechanics	is	unnecessarily	stiff	and	not	very	useful	.*
4. Nosé-Hoover	mechanics	is	convenient	and	robust	.
5. The	Boltzmann	Equation	covers	many	applications	beyond	h ,	k .
6. The	linear	Krook-Boltzmann	equation	is	nearly	as	useful	as	is	B	.
7. Direct	Simulation	Monte	Carlo	is	a	simple	tool	for	gas	problems	.
8. Knots	should	appeal	to	those	interested	in	topology	and	chaos	.

* These	problems	demonstrate	the	usefulness	of	adaptive	integration,	already	explained	by	Carol	.

Things	it	would	be	good	to	think	about	:

1. How	to	make	a	Boltzmann	Equation	boundary	condition	for	Pxy ?
2. Can	you	solve	the	Krook-Boltzmann	equation	for	a	shockwave	?
3. Is	entropy	a	dynamical	property	of	a	single	dynamical	system	?


