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1. Integration Methods and Accuracy

Numerical Approximations with Taylor’s Series at t,,

~%

Carl Stérmer

3 dx (At?)d?x  (At3)d3x .
x(the1) = x(t,) + AtE-I- 21 F-I- 31 ﬁ-l- O(At™)

3 x (a2)d*x  (A3)dPx .
x(t,_1) = x(t,) — Ata'l' 21 ﬁ— 31 ﬁ‘l‘O(At )

x(tn+1) - Zx(tn) + x(tn—l) = AtZF(xn) + O(At4)

Second-Order Symplectic Integration Algorithms
Harmonic oscillator: g =p; p= —q; (q,p)o = (1,0)

Solve one second order equation or two first order equations :

Zz—tsz(x) %zv;%zf‘(x).
Stérmer-Verlet . Leapfrog ; 3 stages .
Xpi1 = 2Xp, — Xp_q + dt® F(x,) Xp = Xp_1 + Vn_(1/2) dt;
a, = F(x,) ;

Va+(1/2) = Va-(1/2) + apdt.

The Stormer-Verlet difference equation can be solved analytically :

qo = ele; qi1= elwdt; q-1= elw(—dt);

w = (1/dt) cos™1(1 —dt?*/2)

Then gqerror = max (\/(cos(time) — cos (wjdt))?2 )

Wm. G. Hoover and Carol G. Hoover, “Comparison of Very Smooth Cell-Model
Trajectories”, ariXiv:1504.00620 .
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Stormer-Verlet Coordinate and Enerqy Errors
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The momentum must be approximated from the values of the coordinates.
The two curves shown for the energy error are for second- and fourth-order
centered approximations for the momentum :

(q 1 q'—l) dtz "
P2: Pi="5q |6 )
o 2(qis1 + 4i-1)  (Qivz + qi-2) + d_t4 1
P4: P 3dt 12dt 30 )1

Notice that the energy remains second order. However, the calculated data
shows that the energy error is about five times smaller for the higher order
momentum .

Fourth-Order Symplectic Algorithm ( Candy and Rozmus )

The fourth-order symplectic algorithms solve first order differential equations.
The number of stages in a timestep is four .

q=p;p=F
Specify qo and p, ;
qi =qi-1+a;pi_1dt; p;=p;-1+b;Fidt; fori=1,4

ay=a,= (2+ 23 42°13)/6 ; by = by = (2 21/3)""
a, =az=(1-2Y3 —2713)/6 ; b, = (1— 22/3)" .

Programming steps : Q = Q + al*p*dt
P = P + bl*F*dt
Q0 = Q0 + a2*Pxdt
P = P + b2*F*dt
Q = Q + a2*p*dt
P = P + bl*F*dt
Q Q + al*P*dt

Stephen K. Gray, Donald W. Noid and Bobby G. Sumpter, “Symplectic integrators for large scale
molecular dynamics: A comparison of several explicit methods”, J. Chem. Phys., Vol. 101,
(September 1994).
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Fourth-Order Symplectic Monte-Carlo Algorithm

An algorithm with five force evaluations per timestep was developed by
Monte-Carlo sampling adjusting the coefficients subject to the constraints
of time reversibility and normalization so that the Monte-Carlo trajectory
optimization occurs in a four-dimensional space. This method was
successful in modeling many-body dynamics. There are 5 force evaluations
per step. The programming steps for the oscillator are given below.

g =g+ 0.005904d00%*p*dt
p=p+ 0.171669d00* (-q) *dt

g =g + 0.515669d00*p*dt In(qerror)
Pp=p - 0.516595d00% (-q)*dt N

g =q - 0.021573d00*p*dt 6\0(*’:/
p=p+ 1.689852d00* (-q)*dt

g =g - 0.021573d00*p*dt e

p=p - 0.516595d00* (-q)*dt In(dt)
g =g + 0.515669d00*p*dt ot
p=p+ 0.171669d00* (-q)*dt

g =g+ 0.005904d00*p*dt

Notice that for each variable the coefficients add up to 1.0 .

William G. Hoover, Oyeon Kum, and Nancy E. Owens, “Accurate symplectic integrators via random
sampling”, J. Chem. Phys., Vol. 103, No. 4, (22 July 1995).

Runge-Kutta Methods

Fourth-Order Runge-Kutta Method

—

Four steps calculate approximate derivatives :

« Calculate new values of v and F using updated values of x and p
( right-hand-side evaluation )
* Update x and v for dt/2 or dt .

2. Calculate updated values of x and v over the full
time step using a weighted average of the derivatives
computed in the previous four-step calculation .

Fifth-Order Runge-Kutta Method

1. Six update steps to calculate approximate derivatives .
Some update steps use weighted derivatives .

N

Final step uses a weighted average of six approximate
derivatives .
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Derivative points for Runge-Kutta integrators

Harmonic Oscillator q = 1P
b= —q
5th order Runge-Kutta 4t order Runge-Kutta
dt = 2n/5 dt = 2x/10

Storage Layout for the Runge-Kutta Algorithms

5 particles

YY Array YYP Array

Position and Momenta Derivatives
x1 = yy(1) yyp( 1) = pl
X2 = yy(2) yyp( 2) = p2
x3 = yy(3) yyp( 3) = p3
x4 = yy(4) yyp( 4) = p4
x5 = yy(5) yyp( 5) = p5
pl = yy(6) yyp( 6) = fl
p2 = yy(7) yyp( 7) = f2
p3 = yy(8) yyp( 8) = f£3
p4¢ = yy(9) yyp( 9) = f4
p5 = yy(10) yyp(10) = f£5
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A Comparison of RK4 and RK5 for the Oscillator

with a Large Timestep

dt = 2it/4 ; 250 steps
Initial condition : q,p = (1.0,0.0)
60 periods

Results for a large timestep :

The Fourth-Order Runge-Kutta
solution decays.

The Fifth-Order Runge-Kutte
solutions grows.

Similarly the energy drifts upward
for the RK5 and decays for RK4.

Energy Errors for RK4 and RKS5 for the Harmonic Oscillator

-10

Total ti =2.0
In(dE) otal time

=15}

=20}

-25 |

=30}

-35

dt = {1/2"}, n=3,4,5,6,7,8,9

Global Energy Error ~ dt> for Both RK4 & RK5

4 -3
In(dt)
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2. Cell Model evaluation of integration techniques

Integration Accuracy for a Chaotic System

* A Cell Model
A Chaotic Trajectory generated with a very smooth, soft potential

* 6 Integration Methods

Symplectic :
2nd Order LeapFrog
4% Order Candy-Rozmus
4t Order Method with Coefficients determined by Monte-Carlo
6t Order Yoshida Method

Runge-Kutta Methods :
4t Order Runge-Kutta
5t Order Runge-Kutta

* Results compared with an accurate 8t order Telroy-Schlier-Sieter
symplectic method.

A Very Smooth Cell-Model Trajectory

t=(10, 20, 30, 40, 50)

1.0
y
0.5

0.0}

10300 < x < 10 307 < x < 10

®=73 [1- -1 for|r—r<1.

Periodic boundary conditions ; RK5 quadruple precision ; chaotic Hamiltonian .

Wm. G. Hoover and Carol G. Hoover, “Comparison of Very Smooth Cell-Model
Trajectories”, ariXiv:1504.00620 .
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Evaluation Criteria for the Cell Model Calculations

1. Trajectory Accuracy

We find the time for which the coordinates are accurate to 0.01 when

compared with the Schlier-Seiter-Telroy 8t" order integration.

2. Reversibility

The time for which a trajectory can be reversed to within 0.01 of the origin.

3. Energy Accuracy

Energy conservation is a diagnostic. The difference between the initial

energy and the energy at the final time is the energy error.

4. What else do we need to consider?

A Comparison of Integration Methods for the Cell Model

Method Order | Accurate | Energy | Reversal Force
Trajectory | Accuracy | Time |Evaluations
Time
Leapfrog | 2nd 18 107 47 1
Candy 4th 34 10715 42 3
o Rozmus
=]
Q | Monte Carlo| 4" 31 1013 43 5
=
€ | Yoshida | 6" 36 10715 42 7
n
Runge- 4th 35 1013 42 4
Kutta
Runge- 5th 34 10715 42 6
Kutta

Accurate trajectory time occurs for coordinate errors less than 0.01
compared to 8" order Telroy-Schlier-Sieter symplectic method. Coefficients

are extended precision. Here dt = 0.001, a typical MD timestep
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Conclusions
Comparison of 6 Integration Methods

« Energy conservation and reversibility do not guarantee an accurate
trajectory. Leapfrog integration is an example.

+ Leapfrog integration has a longer reversibility time than any of the other
more accurate integration methods. For chaotic systems it is nearly as
useful as the higher order, more accurate integrators because of the
Lyapunov instability for the cell model.

* The Lyapunov instability is a physical instability rather than a numerical
inaccuracy that occurs in chaotic systems. The Lyapunov exponent
measures the exponential separation rate between two trajectories
initially separated by a “small” perturbation (~ 10¢). The largest
Lyapunov exponent for the cell model is 0.7 . Consider an initial error
of 10716, For a run to a time of 50 the separation will increase to 1015 :

At _ ,0.7x50 _ e35 ~ 1015 .

e e

» Trajectory accuracy is the most important criterion to use when
calculating detailed atomistic mechanisms such as energy barrier
crossings. Leapfrog integration (or the Monte-Carlo method) is a good
choice for equilibrium problems at constant energy.

3. Predictor — Corrector Methods

Used for stiff equations
Often stiff equations arise for problems with two time scales in the solution
Two steps :
The Predictor step is explicit
The Corrector step is implicit
Predictor-Corrector schemes are not self-starting
Fourth and fifth order Runge-Kutta algorithms are self-starting !
Combining the two Runge-Kutta algorithms results in an excellent
adaptive integrator for the Nosé oscillator
Second Order Stérmer-Verlet is self starting
Stability is important **
Stable time steps are usually larger for implicit than for explicit algorithms
Molecular dynamics : Nosé’s thermostated oscillator
Continuum mechanics : Viscoplasticity and other nonlinear effects
Other examples include chemical reactions with two time scales, and circuit
analysis
Milne’s two methods can be analyzed with the Harmonic Oscillator . The first
uses the two first order equations of motion and the second uses the second
order equation of motion

** For more details on implicit methods see the following :

http://qucs.sourceforge.net/tech/node25.html
http://qucs.sourceforge.net/tech/node24.html
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Milne’s Predictor-Corrector Methods for the Oscillator

Method 1 : Two first order differential equations — Error term is 5t order .
Predictor Step : Explicit

Dn+1 = Pn-3 + (4dt/3)(2pn —iPai T 2pn—2) o (28/90)dt5 q ; ( p=—q)

Corrector Step : Implicit

Method 2 : One second order differential equation — Error term is 6t order .

Predictor Step : Explicit

Predictor-Corrector Algorithms are not Self-Starting

If the analytical form of the solution is known, it can used to evaluate nearby
points to start up the algorithm .

Taylor’s series can always be used to generate the extra points needed to start
the algorithm . This can also be done numerically .

Evaluate the function and its derivative each at two nearby points. This is the
finite difference technique .

Accuracy can be evaluated using analytical solutions for the numerical
approximation and comparing the error when the time step in reduced in a

systematic way .

Student problem
Any of the algorithms can be evaluated with the oscillator .

Is the stability behavior different when using previous points versus future
points in Taylor series ?

11/27/16
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Numerically Evaluate the Order of the Global Error for Milne’s Methods
Using the Harmonic Oscillator

Coordinate Error g( 2 ) = True Solution - Numerical Solution
Plot : In( Error ) as a function of In( dt ) for several values of dt .
The slope of a straight line gives the power of dt in the error term .

Initial condition : ¢ = cos(t) ; p= —sin(t) ; F=—q .

o 2
50 7 100 " 1600

Starting values calculated from the analytical solution .

dt =

Method 1 : First Order-Equations Method 2 : Second-Order Equation
-10 -15
In( g error) In( q error ) Quadruple precisioy
14 : 3 -20 =
¢g=p;p=-q N Gd=—q
-18
Slope=5 30r  Slope=7"!
.22 PS
-35
N -40
In(dt) In( dt)
-30¢ -5 -4 -3 -2 456 -5 -4 -3 -2
Gear Predictor-Corrector Method
de2 de3
rfﬂit =71+ dt(vy) +Tat + Tbt + -
dt?
VY g = Vet dt(a) + b+
al .. =a,+dt(b,) + -
b}, 4 = b, Predictor Step
de*  de’
TP Tde 5 o\ r » ¢
(v> =lo1 a % <v> ; Toear = S
a 2 a p 2
b/ tiar 00 1 dt b/ Aay = (a§+dt - at+dt)dt /2
00 0 1
Corrector Step
0 r\P 1
v v 1/dt 15 1
(a) = (a) + (co + €1+ ¢z + c3)Aay 2/de? | (C1.Cz.03,c4)=<g'gJ1'§>
b/ ¢iar b/ ¢t 6/dt?

Student Problem
Consult Gear’s book for a fourth order gear algorithm with an iteration scheme for
the corrector step.

Gear, G. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall,
Englewood Cliffs, N. J. (1971).

11/27/16
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Gear Algorithm with a single iteration of the Corrector Step

c Gear algorithm for the harmonic oscillator

ro
vo
ao
bo
dt

rp
vp
ap
bp

1.0d00
0.0d00

-1.0d00
0.0d00
(1/2)**n

! initial condition

! Pick dt for n = 1,9

0.0d00 ! Predictor values
0.0d00
0.0d00
0

.0doo

0.0d00 ! Corrector values
0.0d00
0.0d00
0

.0doo

0.0d00
0.5d00* (ro**2 + vo**2)
Ham

write(6,*)"energy ",time,Ham

c0
cl
c2
c3

1.0d00/6.0d00
5.0d00/6.0d00
1.0d00

1.0d00/3.0d00

do it = 1,itmax

c predictor

rp = ro + dt*vo + 0.5d00*(dt**2)*ao +
& (1.0d00/6.0d00)* (dt**3)*bo

vp = vo + dt*ao + 0.5d00*(dt**2)*bo
ap = ao + dt*bo

bp = bo

ac = -rp

dela = (ac - ap)

DA = 0.5d00*dela*dt*dt

c corrector

rc = rp + c0*DA

= vp + cl*DA/dt

ac = ap + 2.0d00*c2*DA/(dt**2)
= bp + 6.0d00*c3*DA/(dt**3)

time = it*dt

Ham = 0.5d00*(rc**2 + vc**2)

write(6,*)time,rc,vc,ac,bc,Ham

ro = rc ! reset the variables
vo = vc
ao = ac
bo = bc
end do

Gear Corrector Coefficients
for First and Second Order Equations

Table E.1 Gear corrector coefficients for a first-order equation

Values Co ¢, c; cy Cq Cs

3 5/12 1 12

4 3/8 1 3/4 1/6

5 251/720 1 11/12 13 1/24

6 95/288 1 25/24 35/72 5/48 1/120

Table E.2 Gear corrector coefficients for a second-order equation

Values Co ¢ c, cs Cq Cs
3 0 1 1

4 1/6 5/6 1 1/3

5 19/120 3/4 1 12 1/12

6 3/20  251/360 1 11/18 1/6 1/60

11/27/16

12



Gear integration for the Harmonic Oscillator
Energy, Coordinate, and Momentum Error in one period

Initial condition (q,p,a, b, 7 )=(1,0,-1,0,.5)
dt=m/2"forn=4,..., 11

-5
In(dq) In(dp)
15 15
25 25
log( dt)
355 -5 -4 -3 2 E] 0 g -5 -4 -3 2 E] 0

Gear’s method. Extra material for Introduction to Chemical Engineering
Computing, 2"¢ ed., Bruce A. Finlayson, Wiley (2012).

If the numerical problem has some components that change quickly, but you have to
integrate for a long time, the problem is called stiff (see p. 360 and Perry and Green,
p. 3-50, 2008). Implicit methods are then needed. The best ones are based upon the

work by Gear (1971). For the problem

5 http://www.chemecomp.com/Gear.pdf ;
7); =f(ty), y0) =y, https:/people.maths.ox.ac.uk/suli/nsodes.pdf

where y and f can be vectors, the methods of different order are:
®: Y™ =y"+ A fO™
4 1 2
2): y e Dyn Lyt ZAs n+l
2:y 37737 3 =)
L 18, 9 2

6
3): yHlammyt = Tyl L2 L D Ay n+l
3:y TR AT AT i 6)e8)

48 36 16 3 12
4): yl m oo gn Ol D a2 D a3 "L A, nsl
@:y 25)’ 25 25 25y 25 10
300 300 200 75 12 60
5: n‘l=__ AL n-l+_ n—Z__ n-3+_ n—4+_A, n+l
Oy Y T m? Y T e w0
In Gear’s method, the nonlinear equations are solved. If they cannot be solved, then
the step size is reduced and you try again. Keep reducing the step size until the
implicit equations can be solved. If the step size is extremely small, the computer
program will stop. The order can be changed, too, and it is changed in the Gear
algorithm to minimize the computational cost for a specified accuracy.

Reference

Gear, G. W., Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, N. J. (1971).

Perry, R. H. and Green, D. W. (ed.), Perry’s Chemical Engineers’ Handbook, 8% ed.,
McGraw-Hill: New York, 2008.

11/27/16
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4. Stiff Differential Equations

Purpose: To understand adaptive integration and to study techniques
for analyzing results

1. Hamiltonian mechanics with temperature

Nosé (1984) modified Hamiltonian mechanics to include temperature .

We compare two versions of the modified mechanics :

Nosé mechanics and Nosé-Hoover mechanics for the harmonic oscillator.
. We discuss numerical stiffness, errors, and Lyapunov instability

. We discuss fixed time step calculations (Fourth-Order Runge-Kutta) for the
Nosé and Nosé-Hoover oscillators ; we find numerical instability .

. We present an adaptive integration technique based on fourth-order
Runge-Kutta .

. We compare the adaptive method for the Nosé and Nosé-Hoover
oscillators

. Summary

The Thermostated Harmonic Oscillator

The Nosé oscillator is the motion of a harmonic oscillator with a
specified average temperature ! Nosé’s idea (1984) was to replace
isoenergetic mechanics with a temperature-based mechanics. To do
this he developed a temperature dependent Hamiltonian consistent
with Gibbs’ canonical distribution. When this Hamiltonian is applied
to the harmonic oscillator the resulting equations of motion are very

st 2H = q* + p?/s* + TIn(s?) + £2=0 -
Nosé Oscillator Equations
a=®/s*);p=—q;5=t; &= @/sH—1/s
fork, T, km=1.

Dettmann and Morris later modified the original Nosé Hamiltonian and
showed that the following Nosé-Hoover equations (Hoover 1985) can be
derived from it.

Nosé-Hoover Oscillator Equations

q=p/s;P=—Sq;S5=st;=p*/s?—1 #1
p/s->p;q=p;p=-q—(p;=p*—1. #2

11/27/16
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Adaptive Integration for stiff differential equations :
Compare the Nosé and Nosé-Hoover Oscillators

We will compare the smooth Nosé-Hoover equations to the stiff Nosé oscillator
equations with the same phase-space trajectories .

Nosé-Hoover oscillator trajectories are both (Lyapunov stable) and chaotic
(Lyapunov unstable) .

A trajectory is considered “Lyapunov” unstable if the distance between the
trajectory and nearby a neighbors’ trajectory grows exponentially :

8 o« et Lyapunov unstable A for > 0

Lyapunov stable for A< 0

The trajectory considered in this Lecture is Lyapunov unstable (chaotic).
However, Lyapunov instability occurs perpendicular to the trajectory whereas
numerical errors give rise to phase-error fluctuations parallel to the trajectory.

The unusual aspect of these two oscillators is that the two trajectories are
exactly the same but the dynamical rates of progress along the common
trajectory are different. This is referred to as “time scaling” in Nosé’s original
paper. We will show that this is the cause of the numerical stiffness !

Numerical Stiffness

+ In mathamatics, a stiff equation is a differential equation for which the
usual numerical methods for solving the equation are numerically
unstable, unless the step size is taken to be extremely small .

» Adaptive methods can be used in some cases to overcome numerical
instability. We will illustrate this with the Nosé oscillator example .

» Adaptive methods cannot be used for singular integrands such as the
“event-driven” hard sphere collision models.

+ Other examples of numerical stiffness arise in problems with two time
scales as in circuit analysis. In these cases the stiffness is treated with
predictor-corrector methods including implicit methods . Matrix
solutions are required for the implicit methods.

* Most molecular dynamics motion equations are solved with explicit
techniques !

11/27/16
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Fourth-Order Runge-Kutta Integration
for the Nosé and Nosé-Hoover Oscillators
If the Hamiltonian is set to 0 and p =¢ =0 initially then0< s <1, the Nosé and

Nosé-Hoover oscillator phase-space trajectories are identical. We can use this
fact to compare the integration results for the two oscllators.

Initial condition : (q,p,s, ) =(2.4,0,e28, 0); =0.

Nosé Nosé-Hoover
dt = 0.001 dt =0.01 Nosé-Hoover Oscillator
, time = 5. time = 25. . dt =0.01 ; time = 1000.
o st G
2
1 1
0
-1 N
2
q| ° q
33 0 i P) 3 s Y32 4 0 1 2 35 4 5

Identical phase-space trajectories. RK4 algorithm is unstable for Nosé oscillator
using dt = 0.001, time ~ 5.0 . Nosé-Hoover oscillator is stable for dt = 0.01 .

What is a stable time step for the Nosé Oscillator ?

The Hamiltonian will be zero if 0 <s <1. For the Nosé Oscillator the variables
scale as 1/(s?) . For small s the rates become large. What is the minimum value
of s for which the algorithm will remain stable and at what time does this
minimum occur?

0 H=0 /| Initial condition :
( q,p;S, C) = ( 24; 0, e-2.88, 0 )

In(s)-1} 1 4o,
2t ]
-3t
4t

s is a time scaling variable

71 dt =10 . > dg/dt~p /e

350 < time < 360
time

q=(p/s?);p=—q;5=C ; & = (p*/s®) —1/s Nosé

Gg=p/s;p=-sq;s=st;t=p*/s® -1 Nosé-Hoover

16



@ 4 »d b A b S 4o

D M 4 o =MW s

Nosé Oscillator Trajectories for dt = 1076

dg/dt~p /e

350

< _tlme < 360
time

t(a)

3

s(t)
25
2
15
, H=0
0 - O
350 < time < 360
time
5
af G(t) N~
3
2
1
0
-1
-2
3 PinY
350 < ti_me < 360
time

How well does the algorithm perform for dt = 0.0001 ?

1

I MMWM
0 10 20 t:;t:n . ) 50 5
1 m ﬂ ﬁ
0.1
log(s)
0.01
0.001
000015 10 20 30 40 50 60
time

<€ Double Precision

<€ Quadruple Precision

Conclusion: This algorithm is not
able to integrate successfully the
Nosé oscillator

Use a logarithmic scale to find
the minimum values of s .

What is another check can we
make on this calculation ?

11/27/16
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We gain physical insights by checking all of the results !!

259.0 < time < 259.5

25

0
T
15 C e T
0.5
-4
-0.5 "
1.5 8
9
2% 05 5 25 0 50 100 150 200 250 300
time
This trajectory in the time interval The Hamiltonian is not zero !
shown is reasonably smooth in spite
of the small values of s . But notice In fact the Hamiltonian deviates
the straight line approximations to from zero starting at a time of 5.0 !
the small radius-of-curvature loops . Smaller time steps have not

helped the numerical stability .

Conclusions

1. Always test your numerical results for errors and consistency with the
physical model .

» Check the dependence of the error on the time step

* Check the dependence of the results on precision (double versus quadruple)
» Check the physical diagnostics (energy in this case)

+ Compare the result to a known result (Nosé-Hoover)

2. The fourth-order Runge-Kutta algorithm is not useful for integrating the
Nosé oscillator

3. Develop an adaptive integration routine for the Nosé oscillator and
study the dependence of the stiffness on the time-scaling variable .

Student problems
1. Run Nosé-Hoover #1 trajectories with the RK4 algorithm for the chaotic
initial condition ( q,p,s, ¢) = (2.4, 0, €288, 0). Test all of the checks shown
above. Use a simulation time longer than 264.
2. Run Nosé-Hoover #2 trajectories for the stable-torus initial condition
(9,p,€) =(0.0, 1.55, 0.0 ). Test all of the checks shown above. How do these
calculations differ from the chaotic solution?

11/27/16
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An Adaptive Integration Algorithm
Based on the Fourth-order Runge-Kutta Method

+ Select an error band
For double precision ~ 1012 to 10-1°
For quadruple precision ~ 10-2* to 1020

» Calculate the root-mean-square error using the difference between
two dt/2 steps and the single dt step

* Change the time step if outside the error band
Half the time step for errors greater than the upper limit
Double the time step for errors less than the lower limit

* Reset the array with the dt step to the more nearly accurate
solution at the end of the time step.

call rk4(x,xp,dt/2.0d00)
call rk4(x,xp,dt/2.0d400)
call rk4(y,yp,dt/1.0d00)
error2 = (x(1)-y(1))**2 + (x(2)-y(2))**2 + (x(3)-y(3))**2 +
(x(4)-y(4))**2

error = dsqgrt(error2)

if (error.gt.10.0d00**(-10)) dt
if(error.1t.10.0d00**(-12)) dt

0.5d00*dt
2.0d00*dt

Adaptive Integration
Nosé’s Oscillator is much stiffer than the Nosé-Hoover Oscillator

100, 000 Adaptive time steps

. Nosé . Nosé-Hoover
g g

2 2

[] 0

-2 -2

q

4t = “5 3 A 1 3

<s>=0.660893 < 1/s > = 3.28299 <s>=0.3046773 < 1/s > =964.2
Time = 2,267,838.344 Time =9,319,142.032

We can show that the rates for the Nosé oscillator are about 3 times faster but
progress along the trajectory is considerably reduced for the same number of
adaptive time steps. This is evidence for the numerical stiffness for the Nosé
oscillator. The trajectories are the same but progress at different rates.
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Adaptive Time Step Comparisons
Nosé-Hoover Oscillator Versus Nosé Oscillator

-5t

In,(dt)
7

Nosé-Hoover Oscillator
750 < time < 79

-10

In,(dt)
-20 +

Nosé Oscillator,
0 < time < 200

-30

q=p/s?);p=—q;5=C; & = @*/s%) —1/s Nosé

fl=p/S;iJ=—sq;.§:s;;';= p?/s? -1 Nosé-Hoover

Adaptive Time Step Comparisons
Double Precision Versus Quadruple Precision

Nosé Oscillator
Initial condition: (q, p,s,z)=(2.4,0,e28 0); H=0.

Time = 28.1097 , 22 crossings of p = 0 section .

Double precision Quadruple precision
-5 -5
log,(dt) log,(dt)
-10 -10
-15 -15
-20 -20
-25 -25
12, 201 steps 2, 000, 000 steps
05 5 10 15 20 %5 30 % 5 70 15 20 25 3
time time

q=@/s?):p=—-q;:5=(; L = @*/s®) —1/s
forx, T km=1.

11/27/16
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The Distance Between two p

= 0 sections

Measures a Length Along a Trajectory

A section is a two-dimensional set of points in the four-dimensional phase
space. A section is defined by setting both of the other two variables set to
0.0. In this special case, we look at two p = 0.0 sections and let s take on
whatever values that occur along the trajectory between the two sections.
This allows us to measure the rate at which the Nosé or Nosé-Hoover
oscillator travels between two known points on the trajectory.

Numerical results confirm p = 0.0 =Jo/s sections are identical !
5

o

g

q

q

-1 1 3 5 -5
Nosé Section

-3 -1 1 3 5

Nosé-Hoover Section

Compute the trajectory length between two crossings in a p = 0 plane

Trajectory length in a time step is dL; = \/5q,2 + 8p? + 8s2 + 8 T2 For N time steps

the trajectory length between two crossings of ap =0 planeis L .5 = Z dL; .

For 7 = 0 the trajectories for the two oscillators are identical .

Nosé-Hoover & Nosé crossings at p =0

13

12}

1
1

o

-
T

]’ I'Crossings

A O O N oo ©

100,000 adaptive steps

227 Nosé-Hoover crossings
173 Nosé crossings

&
0 50 100 150 200

Number of crossings

250

11/27/16
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The Variable s in the Equations of Motion Scales all of the Rates

Trajectory Length :
dL,; = length between two crossings of the p = 0 plane

L = 2 dL, for 178 crossings

1200

L 0<s<1;%H=0 Initial condition
1000 /"/ ] ( q,p; S, C) = ( 24,0, e-2.88’ 0 )
200 / " Nosé Chosen to insure that
/Faster rates ] H=0

600 / butstiffer “Nogé-Hoover

Slower rates
400 :
200f /

time
% 200 200 600 800

Notice that these equations differ by 1/s where s is the time-scaling factor .
q=p/s*);p=—q;$=C ; & = (p?/s®) —1/s Nosé

q=p/s;p=-s5q ;S‘=S§;é‘= pz/sz—l Nosé-Hoover

Nosé Oscillator with H{ =0 ;
What is the Best Initial Value of s ?

Vary s to maximize the number of crossings in 100,000,000 steps

Initial condition: s=2%=.06250
(d,p,8)=(24,0,0), s =28 =(0.056135
s=2", -11< n <11 §=2%=.03125
1e+06
log,,(crossings) . One more test :
Double precision Hamiltonian Systems
100000 } : 1 Are Conservative !
:
10000 } :
1
]
N g -4 Quadruple precision
1000 | - 1
I
I
' H
100 g——4—5 0 2 4 6 8 10 12

11/27/16
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Energy must be conserved in a Hamiltonian System !

Error in the Hamiltonian

s Double precision Quadruple precision
0.062500 -3.2702049634902863E-05 -4.997996331072645417188952190057969E-13
0.056135* -3.3960281428768724E-05 9.510041726002260340923701275951037E-13
0.031250 -3.3617859108492354E-05 -3.207674481318156868420757831612092E-11

* This is the value that corresponds to a vanishing Hamiltonian .

Lyapunov Exponents and Chaos

The instantaneous Lyapunov exponent measures the exponential growth of
the separation of two nearby neighboring trajectories, § = 16. We choose a
neighboring satellite trajectory x; constrained a distance 6 = 0.000001 from a
reference trajectory x, . After a time step dt, the distance is rescaled to
providing a measure of the growth of separation during that interval.

x, = x,+ g(x; —x,) whereg = (6/\/ (xg — xr)z) = g Adt
—> A(t) = —In(g)/dt

This instantaneous or local Lyapunov exponent averaged over a very long
trajectory gives the Lyapunov exponent for the phase-space trajectory.

A =2 (A()d)/ X (dt)

This Lyapunov is the maximum of the four Lyapunov exponent
measuring the growth in phase space for the oscillator. Bill will present
algorithms for calculating the full spectrum in a later lecture. The
solutions of the thermostated oscillator are characterized by the value
of the maximum exponent :

A > 0 chaotic solution; A = 0 conservative tori.

11/27/16
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Calculated Results for the Lyapunov Exponents
using the time-scaling factors

Ay =.0468 ; d# = 0.000197
A =.0140 ; d7{ = 0.000006

< 1/8 Sygee Ay = 0.0140 ( 3.28 ) = 0.0460

<'S >y Myose = 0.305 ( 0.0468 ) = 0.0143

Nosé Nosé-Hoover
<s>=0.661;<1/s>=3.28 <s>=0.305; <1/s >=964.0

Myose = 3:28 Ay 5ty = 3.28 tyoe

Student Problem

<s><1/s>= (0.661)3.28=2.17
which is true for all Nosé s-values calculated .

<s><1/s>= (0.305)964.0 =294.0
Is this true for any Nosé-Hoover s-values ?

The Nosé Oscillator Local Lyapunov
Exponent Is Another Measure of Stiffness

Adaptive Integration
Quadruple precision with error band between 1028 and 1024

0.8 0.8
At) /108 AMt) /108
0.4} 0.4
0.0 0.0
-0.4} -0.4
-0.8 -0.8
4< time < 6 5.0860 < time < 5.0866
Time interval between Time interval between

1.63x108 and 3.07x10° steps 2.01x108 and 2.16x10° steps

The corresponding time 16.42 for the Nosé-Hoover #2 dynamics and
corresponds to a broad minimum in s. The amplitudes and the required
number of steps differ by about six orders of magnitude. Fixed dt = 0.001 !

Nosé Oscillator 4 = (p/s*); p= —q; 5= ; ¢ = (p?/s*) - 1/s
(a,p,s,C)p=(24,0, e288 ¢ ); 0= 106

11/27/16
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The Nosé-Hoover #1 Oscillator Local Lyapunov
Exponent Is Orders of Magnitude Smaller

Adaptive Integration
Double precision with error band between 10716 and 10-14
Typical Local Lyapunov Peaks for Resolution of Lyapunov Peak
the Nosé-Hoover Oscillator for the Nosé-Hoover Oscillator
60

sl A A
20
0 Ml
-20
-40 —> —_—
-60
360 < time < 440 393 < time < 395

(9,p;%)p=(24,0,0); d=10°
Nosé-Hoover Oscillator Equations
q=p/s;Pp=-sq;§=s¢;t=p*/s*—1 #1
p/s>p;q=p;p=—q-(p;t=p°—1. #2

Correlation of Ipl, A, and s with dt

Linear correlation on the log-log plot for all 3 variables and both oscillators !

10 10
Nosé-Hoover Nosé-Hoover

5 E 5
In( Ipl Jo In(A)o
In(s) 5 In(s ¥

-10

-15

20 <L In(dt)] 20 ‘ , In( dt)
-3.5 -2

-6.5 -5.5 -4.5 -3.5 -25 -6.5 -5.5 -4.5

15} Nosé 1 Nosé

i
In(lpl)_ ()T

In(s) - In(s)
l','. gl

(3]

o BE
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Analyzing the Results With Histograms

We can understand better the motion of the oscillators by looking at the
probability density for the logarithm of the time scaling variable and the
time steps.

» With a variable time step care must be taken in computing the
probability density for the time scaling variable S . A trajectory value,
In(Sy,,)) ; is associated with the ith bin if

In(s); < In(sy,) < In(s);, .
However, the probability that the trajectory values will fall into the bin

is equal to the fraction of the time that the trajectory spends within the
bin. Thus, the probability density in the ith bin is given by

N
p(In(s); < In(s,,,;) < In(s;,;) =i§ At; | 2 At

for 4 000,000,000 time steps .

The time-step histograms show that there were three values of dt used for
the smooth Nosé-Hoover equations and more than 20 values of dt ( a factor
of a million ) for the Nosé oscillator. All these time steps are adaptive .

Probability Distribution for the Time-Scaling Variable

.25 20 5 0 5 0 5
In( s)

PNH XS ; Pnos¢ X S

11/27/16
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Histograms for the Probability of dt Show
Differences in the Slow and Fast Rates !

100,000,000 steps
Nosé Nosé-Hoover
0.14 0.5
12| PYOD( IN(dY) ) ‘ prob( In(dt) )
0.4
0.1
0.08 \ 0.3
0.06 ‘ 0.2
0.04 M ‘ “ ‘ w \‘
0.02 f \“ ‘H ’ ‘ ‘ o
’ | \‘\ ‘
o \”‘ ‘\\“\MHHHM“\/H\ HIn(dt) ° In(dt)
-20 0 -8 -7 -6 -5 -4

The time-step histograms show that there were three different time intervals
used for the smooth Nosé-Hoover equations and there are about twenty different
time intervals used for the Nosé oscillator. Keep in mind that in each interval the
timestep is halved and doubled in the adaptive method.

Results and Conclusions:
Adaptive Integration for Nosé and Nosé-Hoover Oscillators

+ Nosé Oscillator can be treated with the Adaptive 4t"-Order Runge-Kutta
Algorithm

+ The trajectories for the Nosé and Nosé-Hoover oscillators are the same but
progress at different rates

» Trajectory intervals measured between two p = 0 sections show that the
sections are identical for the two oscillators

+ The time scaling variable provides the connection between the Lyapunov
exponents for the two oscillators

* The local Lyapunov exponent is an important measure of stiffness

» We find linear correlations on log-log plots of the the momentum and time
scaling versus time.

11/27/16
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The Three Sections of the Nosé & NH Generate
Conservative Tori and Points in the Chaotic Sea

Initial periodic orbits {q,p,{} = ( £1.2144,0,0) incremented

by +0.1. The 12th increment ( 2.4144,0,0 )lies in the chaotic sea .

-1.5 <g< +1.5

Time Scaling in Nosé and Nosé-Hoover Mechanics

Initial condition for a periodic orbit
{a.p.5.3), = (1.2145,0,e77/2,0)

NH2

At time tNHZ =4.018
{q,p,s,{} = {~0.2538,1.5000,0.3066, —0.2237 }

PNH2 = {pNose/S}; Pnose = PNH2S = 0.4599

11/27/16
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The time scaling variable s oscillates twice
during a single period of the oscillator

ST =1.0757x2 Ty =2.8038x 2 |

0.40

0.30

0 < time < 2.81

Lyapunov Exponents for Nosé & Nosé-Hoover Mechanics

< A >pose differs from < A >yy by a factor of < s >yy .

0.049 . . . .

\ M <A>=.0475 Nosé
0.047 | \MW\ /

Nt

0.045 - - . ,
80000 < time < 180000
0.0145 : , :
<A>=.01414 NH1
)\' il
0.0140} L i
LV <A>=.01392 NH2 -
l/.“"M”’ ‘.,A:‘Vﬁ/\\ h//.va \VM\M/’”N
o \ ,,w,f\‘w”»
0.0135 i

350000 < time < 750000
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“Springy Pendulum” with a Regular Orbit

{X,y,px,py}o={1,0,0,0} {rse!pr!pe}0={1’n/2’0’0}
15

1.8
Y r
16
05
14
12
1.5
1.0

/2 -n/4 0 0 +n/4  +m/2

“Springy Pendulum” with a Chaotic Orbit

{X,V,PsPy }o={2"2,272,0,0} {r,0,p,,Pe}o={1,3n/4,0,0}

25 3.0
X r
15 20
0.5 1.0
Y 0
0.5 0.0
1.5 1.0
ok ] 20t ..
0 20 40 60 80 100 120 140 0 2 40 60 80 100 120 140
Time Time
26
0.5 22
Y r
18
05
14
s 1.0
06
25 0.2
20 10 00 0 2 -3nw/4  -3n/8 0  +3w/8 +3w/4
X 0
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Non-Ergodicity of the Springy Pendulum

-2 -nl4 0 +/4 +n/2 20 1.0 P 0.0
9 8

2.0
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