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OutlineIntroduction
Continuum Mechanics
Continuum Equations: comoving and Eulerian, derivation of the continuity 
equation in Eulerian and Lagrangian forms, equilibrium fluid constitutive 
equations, nonequilibrium constitutive equations

Numerical Methods
Finite-elements, molecular dynamics, smooth particles (SPAM)  

Smooth Particle Method
History, characteristics of smooth particles, weight functions, spatial 
averaging, gradient interpolation, smooth particle conservation equations, 
smoothing algorithms for molecular dynamics, boundary conditions, initial 
conditions, lattice stabilization, smooth particle and molecular dynamics 
analogs, surface tension, tensile instability, artificial viscoscity and 
Monaghan’s velocity correction

Smooth Particle Averages of Molecular Dynamics Data
   
SPAM Results
Free expansion, collapsing water column, Rayleigh-Bénard flow, ball-plate 
fragmentation

Parallel Computing
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1.  Introduction
Microscopic versus Macroscopic Material Descriptions

Atomistic Length & time scales
  L ~
~ ps - ms
Atomistic motion satisfies ordinary 
differential equationst

o
A

Continuum  equations

Solve : 
Specify :  Constitutive relations 
for the materials    
	

Laboratory Length & time scales
   L ~ cm or meters
   t ~ ms or seconds
Fluids and solids satisfy partial 
differential flow equations

Pvρ ⋅−∇=!
Particle equations

Solve:
Specify force laws for atoms 

Φ⋅−∇=vm!

		 For a pdf files, go to		
www.williamhoover.info

A particle method for 
solving the equations of 
continuum mechanics

Comoving Lagrangian Equations

!! = ! !"
!" + ! ∙ !" = −! ∙ ! − !! ∶ !	

! = −!" ∙ !   ;	 ! = −! ∙ !/! ≡ ! ∙ !/!	

Laboratory-Frame Eulerian Equations

!! = ! !"
!" + ! ∙ !" = −! ∙ ! − !! ∶ !	

Continuum Equations Conserve Mass, Momentum, & Energy

Particles are material points and the evolution of particle points is 
expressed in the comoving Lagrangian coordinate frame .

2.  Continuum Mechanics

Constitutive Equations

! = !(!, !,!!)	
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Continuity Equation - Conservation Law for Mass
Comoving Lagrangian Coordinates

X(0)left X(0)right
X(dt)rightX(dt)left

V(0)left V(0)right
V(dt)left V(dt)right

dx(0) dx(dt)

Student Problem
Using a similar analysis, develop the momentum conservation equation in 
Lagrangian coordinates.

The coordinate at the center of the interval is x0 and it moves at the flow velocity.

− !"#$
!" = !"

!"													
!"#$
!" = −! ∙ !	

!!"#$% !" = !!"#$% ! +  ! !! +
!"
! !"	

!!"#$ !"   = !!"#$ !    +  ! !! −
!"
! !"	

!" !" = !"(!) !+ !"
!" !

!" 	
!" !" − !"(!)

!"!#(!) = !"#(!")
!"   	

;

Continuity Equation - Conservation Law for Mass
Laboratory Eulerian Coordinates

dX

X0

In the time interval dt the net change of mass within the interval dx is the 
difference in the mass flow into the interval at the end points.

Notice that for a fixed interval the time derivative of the mass is

!"
!" = −!!!!!"    ;    !"!" = −! ∙ !" 	
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Equilibrium Fluid Constitutive Equations

Mechanical equation of state (adiabatic and isothermal):

Thermal equation of state and Mechanical equation of state:

Heat capacity and compressibility:

Van der Waals’ equation:
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Nonequilibrium Constitutive Relations
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•  Newton’s formulation of shear stress à 
     symmetrized stress tensor :

.TQ ∇κ−=

•  Use von Mises shear stress condition for plasticity :

(sxx
2 - syy

2 )+ 4sxy
2 ≤ Y2 in 2d .

•  Nonequilibrium dissipation:  viscosity, conductivity, plasticity, …

•  Fourier’s law:	
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3. Numerical Solution Methods
Finite Elements DYNA3D 

•  Calculate pressure, energy, stress by integrating over elements 
    For example,  nodal strain/strain rates, element integration à stresses.

•  Use space-filling volumes to approximate the continuum:
    8-Node brick has isoparametric velocity interpolation for strain rates: 

1	 2	

7	8	

6	3	4	

•  4-Node shell elements are two-dimensional.  
    They have a thickness δ and various underlying through-the-thickness
    integration schemes.

1	 2	

3	4	
δ

•  Isoparametric elements are not rotationally invariant
     Hourglass control is needed to prevent instability 

Time = 32 Time = 48 Time = 64

Two Example Finite-Element Calculations
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30,000,000 atomistic particles + 
parallel computer 

From Kai Kadau’s Los Alamos Webpage 2007

Particle Methods: Molecular Dynamics and SPAM

5000-65,000 smooth particles 
        + workstation

SPAM versus Finite-Element Methods

SPAM is MUCH simpler than finite-element algorithms:
     no element lists, no element integration

SPAM solves ordinary differential equations; not partial
      differential equations; rezoning is easy with SPAM

SPAM avoids mesh tangling and shear instabilities;
        no unstable butterfly or hourglass modes
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SPAM versus Molecular Dynamics

•  SPAM and Molecular Dynamics are both particle methods.

•  SPAM particles are mass points with a finite extent.
    Molecular dynamics particles are point masses.

•  The SPAM method approximates the partial differential equations of 
continuum mechanics with particles that satisfy ordinary differential 
equations for conservation of mass, momentum and energy.  Input 
to these equations are equations of state (constitutive equations).

•  There are two interesting cases of trajectory isomorphism for 
SPAM and molecular dynamics.  Trajectory isomorphism means 
identical trajectories. 

•  Molecular dynamics follows motion of point particles on an atomic 
length and time scale with ordinary differential equations.  Input to 
the calculations is fundamental, the potential energy function.  

Particle in two 
dimensions

•  Smooth particles 
      Smooth particles have a finite extent h.  The density at a point is
      the sum of smooth particles within a distance h of the point. 
      Molecular dynamics uses point masses.

4. Smooth Particle Method – History and Motivation 

Smooth particles were applied to solids and fluids in
     1990’s (Wingate, Hoover, Cloutman)
Today the method is applied in many fields: heat  
     conduction, electricity and  magnetism, fluids,
     fluid-structure interaction, and fragmentation.
	

•  Motivation à “Simplify, Simplify, Simplify” Thoreau
       Partial differential equations are converted to ordinary 
           differential equations 

Fluids and solids satisfy the same motion equations
No element integration
No mesh tangling for flow problems
Material failure is simple with Lagrangian particles

•  History
Smooth particles are used for astrophysics problems :
     (Gingold, Lucy, and Monaghan)  - 1977
Smooth particles were first used in the 1980’s 
     (Monaghan, Swegle) and early 1990’s for fluids – SPH

Particle in one 
dimension
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A Random Number Problem!
These are plots of points generated randomly in [0,1] 
and then selected if the random number is less than 
the value of the Lucy weight function in two-
dimensions.

Clearly, with the diagonal stripes that are quite visible at the edges, there 
is a problem with the random number generators. Possibly these are 
serial correlations? 

Student Problem
Do some research on random number generators and identify problems 
or find a better random number generator.

Characteristics of Smooth Particles
Very Smooth approximation: The functional form for a 
particle is chosen so that the density at a point is a 
smooth interpolant for continuum field variables.  A 
smooth interpolant has at least continuous first and 
second derivatives.  Polynomials of at least third degree or 
spline fits are good choices.

Finite extent: The range of a particle, h,  overlaps 
with other particles.  The density at a particle 
point is the sum of density contributions from all 
particles within the range h including the particle 
itself.

h	

Interpolation satisfies physical laws:  The smooth particle interpolation 
substituted into a continuum equation converts a partial differential 
equation into an ordinary differential equation.  Such an interpolation is 
selected to satisfy conservation of mass, momentum or energy.  One 
exception to this is the conservation of angular momentum.

! ! = !(!! − !!)
!

	Define:
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!! ∝ !+ ! !! !− !
!

!
	

! ! < ! = !! !+ ! !! !− !
!

!
	

Lucy’s Weight Function

Lucy’ function is a quartic polynomial satisfying 
5 conditions
Conditions on the function and derivatives
A smooth function with two continuous 
derivatives everywhere :

Normalization

Student Problem
Write a program to calculate Lucy’s weight function in one and two dimensions.  
Verify your program is correct by integrating the weight function from 0 to h. 

r
1D

2D

w( r )
h = 3

!! ! = ! ;  ! ! = ! ;  !! ! = ! ;  !!! ! = ! 	

From a family à ;  n = 3

Lucy’s Weight function and derivative

c This is Lucy’s function and its derivative in two dimensions
      function w(r)
      implicit double precision( a-h,o-z )
      common h

      pi = 3.141592653589793d00

      if(r.gt.h) stop
      z = r/h
      w = (5/(pi*h*h))*(1 - 6*z*z + 8*z*z*z - 3*z*z*z*z)
      return
      end

      function wp(r)
      implicit double precision( a-h,o-z )
      common h

      pi = 3.141592653589793d00
      z = r/h
      if(r.gt.h) stop
      wp = (5/(pi*h*h*h))*(-12*z+24*z*z-12*z*z*z)
      return
      end
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Monaghan’s Weight Function

Student Problem
Write a program that calculates Monaghan’s weight function in one and two 
dimensions.  Check your results by integrating from 0 to h.

Monaghan developed a weight function that  is cubic rather than quartic by 
smoothly connecting two cubic splines and imposing 6 conditions 
conditions on the function and its derivatives and two additional conditions 
as shown below.  

Two cubic splines smoothly connected at r = 1/2 and satisfying 8 conditions
Normalization constants

Smoothly connects the two spline matching at r = 1/2

Maximum particle density in the center 

Spatial Interpolation
Density interpolation converges with ~ 20 neighbors  

. h |rr|  ; )|rr(|w ρ jiji
j

i ≤−−=∑

Good estimate for particle smoothing length comes from the  summed up 
densities at regular lattice sites .

2D square and triangular lattices with 

lead to errors less than 1% in the density for 
both weight functions  

Lucy

Monaghan

! ≥ !	

Continuum field variables & derivatives (at any point in space) are particle sums .

Student Problem
Calculate the density in a square lattice with the Monaghan weight function.
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c This is the summed-up density calculation
      subroutine getrho(x,y,rho)
      implicit double precision(a-h,o-z)
      parameter(N=400,iwide=20)
      dimension x(N),y(N),rho(N)
      common h

      do i = 1,N
      rho(i) = w(0.0d00)
      enddo

      do i = 1,99
      do j = i+1,100
      xij = x(i) - x(j)
      yij = y(i) - y(j)
      if(xij.gt.+iwide/2) xij = xij - iwide
      if(xij.lt.-iwide/2) xij = xij + iwide
      if(yij.gt.+iwide/2) yij = yij - iwide
      if(yij.lt.-iwide/2) yij = yij + iwide
      rij = dsqrt(xij*xij + yij*yij)
      if(rij.lt.h) then
        rho(i) = rho(i) + w(rij)
        rho(j) = rho(j) + w(rij)
      endif
      enddo
      enddo

      sumrho = 0.0d00
      do i = 1,N
      sumrho = sumrho + rho(i)
      enddo

      return
      end

Density Calculation in Two Dimensions

! ! = !(!! − !!)
!

	

	

SPAM Interpolants Are Averages Formed by Particle Sums

Smooth particle interpolation uses particle averages
   Averages are very easy to implement for an irregular set of points compared 
to the usual method of fitting functions to the points.  Averages are not unique.

Smooth particle weight functions
   Although the Lucy and Monaghan weight functions are most often used 
other choices may work equally well.  The requirement that the weight 
function have continuous first and second derivatives must be met in order 
to apply the averages to the continuum equations.  The order of the 
derivatives determine the choice of the smoothness of the weight function.

Smooth particle averages are based on defining the density in terms of the 
weight function

! ! = !(!! − !!)
!

	Define:

Applying the averages to partial differential equations converts them to 
ordinary differential equations which can be integrated with Runge-Kutta



11/29/16	

12	

Alternative Averages for Irregular sets of material points
The average value of a field variable at a point r is defined in terms of the sum 
of particle points within a distance h of the field points.  The particle points are 
mass points whose motion is governed by ordinary differential equations.  The 
ordinary differential equations for particle mass, momentum, and energy 
evolution are designed to approximate the partial differential equations of 
continuum mechanics.   There are three averages ( f0 , f1 , and f2 ) useful in 
defining the continuum field variables. 

! ! !! ! = !" ! ≡ !!!!!!"  ;   !!"
!

≡ ! !− !!   ;	

!! ! ≡ !/! !!!!!" 
!

 ;   !/! ! ≡ !!/!!  ;	

where   fi = the value of a physical variable at a particle point (such as x, v, T, e, ..)
             fr = the average value of a field variable at a point r (sum over particles)
             wij = the weight function at particle i including all particles j in the range h
             wri = the weight function used in the sum over particles to create the
             average value at field point r.  

Smooth Particle Approximation to the Continuity Equation

Consider the Lagrangian continuity equation

!"#$ !!" = !! − !! =  !! − !!	

! ∙ !" ! = !! ∙ !!!!!!" = !!!!
!!

!!!!"	!"#$% !"# !""#$%&'!!!"#  !!!                                              	

! ∙ !! ! = !! ∙ !!!!!!"
!

	

!" ∙ ! ! = !!!!
!

!!!!" − !!!!
!

!!!!"	= − !!!!"!!!!"
!

	

!! ≡ − !" ∙ ! !		exactly	!	

Consider   !" ∙ ! = ! ∙ !"− ! ∙ !!	 !" ∙ ! ! = ! ∙ !" ! − ! ∙ !! !	

We don’t need to solve for the evolution of the density!!  Limitation:  Surfaces 
need special treatment.  Use density sums for bulk calculations.  
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Continuum field variables & gradients include the following in two dimensions:

SPAM approximations for computing gradients 
Evaluate derivatives using the three function approximations defined previously.

! !" ! ≡ !!!!
!

!!!!! ;  ! !/! ! ≡ !/!! !!!!!!!"                         !  	

Use the first one  for evaluating ∇v	and	∇T	.	It is ideal for describing the 
gradients leading to nonequilibrium fluxes of momentum and energy 

Nonequilibrium fluxes

Energy and momentum conservation
Use the third one for evaluating  so as to conserve the overall
system’s momentum and energy.

!!! ≡ !/! !!!!!!!" 
!

;	

Interpolation for Gradients Using Particle Sums

Smooth Particle Motion Equation
Consider the Lagrangian momentum equation : 

Use  

The smooth particle approximation is given by 

!! = − !
!! ∙ !! !

− ! ∙ !! !
	

!
!! ∙ !! !

= !
!! !

∙ !!!!!!"
!

	

Combining terms and multiplying by mi gives the smooth particle motion equation

Use mean value for the mass product : !!" =  !! !! +!!  !" !!!!	
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Smooth Particle Approximation to the Continuum Equations

!!!! = − !! !/!! ! + !/!! ! :
!
!!!"!!!!"

!
 

!! ≡ − !" ∙ ! !		exactly	!	

!!!! = − !!!! !/!! ! + !/!! !
!

∙ !!! !! − !!  

We use 4th order Runge-
Kutta to integrate these 
ordinary differential 
equations. They are 
smooth particle 
approximations to the 
continuum equations.  
The particle equations 
satisfy conservation of 
energy, mass, and 
momentum.  

There are three steps to deriving the energy equation
•  The heat-flux divergence needs to be written in a symmetric pair-sum form, 

just as was the divergence of the pressure tensor.  
•  The antisymmetry of the derivatives ,  

    guarantees that the summed up heat-flux contributions to the total energy
    change vanish.
•  As a consistency check the rate of change of the internal energy must cancel 

the rate of change in the kinetic energy.   

Smooth Particle Derivatives for Temperature and Velocity
for Constitutive Relations

This expression for a pair of particles can be symmetrized using a mean density 
(arithmetic or geometric).  

For equal masses the velocity & temperature gradients have the form 

!! = !! !! − !! !!!!"/!  ;
!

	 !! = !! !! − !! !!!!"/!  
!

	

	

!"#$% ! → !! !"# !"#$%&%&' !"#$% !"#$%	

!"! ! = − !!!!"! !! − !!
!
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Free

Periodic

Rigid

Mirror

Free expansion of a gas, drops

Boundary Conditions
Free, Periodic, Rigid and Mirror Boundaries

Examples

Lattices

Lattice stabilization

Meshes for Lattices and Irregular Shapes  

•  Use Monte-Carlo to fill  an irregularly shaped region
    Use viscous relaxation with molecular dynamics to equilibrate the
    particles.

•  Select surface treatment using surface tension or                 potential .

•  Generate lattice structures
    Test lattice structures for stability 
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Equations of State Without Temperature Dependence
Tests for Lattice Stability

In general energy is a function of both volume and temperature .  Consider 
the special case without any temperature dependence.  Then the pressure 
can be written as  

! = −!"!" = !! !"!!	

This is a complete specification for an equilibrium equation of state.  

We can construct families of equations of state expressing the pressure in 
terms of power laws of the density.

•  Methods for stabilizing smooth-particle lattices 
Add a core potential to prevent particles from overlapping at rij = 0
Add a density dependent surface potential proportional to the square of the 
gradient of the potential
Add a density dependent curvature potential to prevent shear instability for 
solid lattices 

•  Families of equations of state without temperature dependence

Molecular Dynamics Analogs : Trajectory Isomorphisms
•  Two cases of trajectory isomorphism with SPAM and molecular dynamics .

These isomorphisms simplify the SPAM programs by using molecular 
dynamics programs with potentials that are functions of the density where 
the density is defined with smooth particles. 

•  Lucy fluid is used for the free expansion problem .

•  Embedded atom model can be used for structural relaxation and the 
collapsing water column .

Lucy fluid

Trajectories are identical if 

Embedded- 
atom fluid 

! =  !
!!

!
−  !

!!
!
	

Trajectories are identical if 

Student problem
Verify that the embedded-atom potential corresponds to the embedded-atom 
fluid.  Hint: use the chain rule for differentiation.  
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Embedded Atom Approach to Structural Relaxation

Boundary particles are doubled up and quadrupled at the corners.  The goal is to 
generate a constant density. The original 48x48 particles were arranged in a 
square lattice (left) and at random (right) and then relaxed with a relaxation time 
of 2.  A pairwise core potential was added to prevent particle overlap.  The final 
embedded-atom potential energy of the relaxed structures was less than 10-6 per 
particle.   

!!" = !
! !! − ! !!  ;  !!" = !+ ! !

! !− !
!

!
  ;! = ! ;  !!"#$ = !" !! − !! ! !"#$ ! =  !.! 	

Initial structure with 
random displacements

Initial square lattice

Lattices with e(ρ) are typically unstable!	

•  Density-gradient potentials provide surface tension for solids and fluids. 

•  An invariant curvature potential provides elastic shear strength, G > 0  
     Prove this with molecular dynamics with the spam density sum.

! = !!
!

 ; 	

! =  !
!!

!
−  !

!!
!

 ; 	

•  SPAM/MD lattices with the following density-dependent internal/potential 
energy are typically NOT stable for any simple two dimensional lattice .

•  These two-dimensional lattices do not have any shear resistance and melt :

Hoover and Hoover, Physical Review E 73, 01672 (2006) .

Consider the embedded-atom fluid

The trajectory in molecular dynamics with the smooth particle density is  

!! =
!!!
!!!

!!
!!

− !
!

  ;   !! = !!"
!

	

! = !!! = !	

  !"#$# !! = !!
!"
!" !!

	

!! = −!!! = −!!!! − !!!!
!

=	−!
!!!
!! !

!!
!!

+ !!
!!

− ! !!!!"
!

	Using the chain rule :
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Density Gradient Potential and 
Invariant Density Curvature Potential

!!! ∝
!
! !! !

!

!
	

The simple density gradient potential enhances shear resistance and minimizes 
the potential at the lattice sites.  For systems with free surfaces it provides a 
surface tension for the embedded-atom Lucy fluid.  The density gradient is 
maximized at the surface so that the square of the potential minimizes the extent 
of the surface. 

Even with the increased shear resistance the shear strength vanishes as shown 
previously with the calculation of the elastic constants.

An invariant curvature potential vanishes for symmetric lattices such as the 
square, triangular, and hexagonal lattices but ceases to vanish under simple 
shear, thus stabilizing the lattices. 

! ! < ! = !! !+ ! !! !− !
!

!
	

The Lucy weight function must be replaced by a weight function with continuous 
first, second, and third derivatives.  The very smooth weight function above 
comes from the Lucy family of weight functions with n = 4.

Invariant Curvature Potential Cures Lattice Instability

Particle trajectories in a two-dimensional hexagonal lattice.  Initial particle 
displacements were chosen randomly with zero sum.  Lattice is unstable 
(left) and is stabilized (right) by adding the invariant curvature potential .
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String Phases Are Cured with Core Potentials

A relaxed periodic structure with an embedded-atom equation
of state, using Lucy’s weight function with h = 3 produces a string 
phase .  The cure for the string formation is to add a core potential 
so that particles cannot get too close .  Using a repulsive core pair 
potential prevents the string phase :   

!!"#$ ! < ! ∝ !! − !! !	

Relaxed structure
Embedded-atom only

Relaxed structure 
Embedded-atom plus core potential

Tensile Instability

Swegle,	Hicks,	A<away,	Journal	of	ComputaHonal	Physics	116,	123-134	(1995)	.	

1.  Add von Neumann-Richtmyer artificial viscosity ;
2.  Introduce a repulsive core potential ;
3.  Modify the relationship between r and v (Monaghan) :
 
   

. )( or 

  ; 
w

)vv(v  rvr

ji2
1

ijjiij

j ij

ij
iji

ρ+ρ=ρρρ=ρ

ρ
−+=→= ∑!!

Kinetic energy growth in an isotropic solid 
under uniform tension .
      
  The kinetic energy of a single particle   
  moving slowly (~ 10-8 or smaller) will 
  increase exponentially at a time longer 
  than the inverse Einstein frequency .

Three useful cures :
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Smooth Particle Averages of Molecular Dynamics Data
Smooth particle averages generate continuous, twice differentiable field values 
on any kind of grid or at any point ri in space.  SPAM averages are a very 
valuable tool for smoothing molecular dynamics data as shown below.

Rayleigh-Bénard flow velocity from molecular dynamics, using Lucy’s weight 
function with h = 50, where the system width is 300.  The longtime average shows 
a well-formed single roll similar to calculations using finite differences.  The 
snapshot, from the last timestep, is spoied by thermal fluctuations.  The Rayleigh 
number for this 23,700 particle simulation is 45,000. 

g

Thot

Tcold

5. SPAM Examples

Rayleigh-Bénard Flow (Gravity & T gradient)
Finite-Difference (left) & Smooth Particles (right) 

Kum, Hoover, & Posch, PRE 52, 4899-4908 (1995) .

Velocity

Density

Temperature

5.1T =

5.0T =

Gravity

= "#$
%&'

= ()
). (

+
= ,), )))	; 	 ∆'	'	 = ,	; 	% = 	&' R	

5000 smooth particles & field quantities computed on a grid  
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Example SPAM Calculations
Four-Fold Volume Expansion of a γ-Law Gas

•  Consider an isentropic equation of state, the Lucy Fluid : 
! = !! ∝ !!/! → !! ∝ !!!!"		

•  Equilibrate the initial condition

•  Use Monaghan’s velocity averaging to avoid interpenetration 

This choice conserves momentum.

Steps in the SPAM Program for the Free Expansion Problem

!! ,!! , !! 	at a density	!! = !.	
•  Choose the initial conditions

For the ideal-gas example both the viscous pressure and the heat fluxes { Qi }
vanish.

•  Compute Pi and Qi at each particle, using the equation of state. 	

SPAM equations of motion and energy include the pressure tensor and heat 
flux vector.  Include Monaghan’s velocity velocity average if needed.

•  Compute the righthandside of the equations

•  Integrate the equations with fourth-order Runge-Kutta 

These are typically required for computing the particle values of Pi and Qi .
•  Compute the gradients                            for each particle. 

•  Compute ρi at each particle.

Molecular dynamics requires only three of these steps, with the third and 
fourth skipped entirely.  Step 2, the smooth-particle density sum, is equivalent 
to the potential energy sum in molecular dynamics.
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Four-fold Expansion of 16,384 SPAM particles:

Particle motion

Snapshots of particles, density, and kinetic energy.  Light regions for density 
and energy are above the average and dark regions are below the average .

Hoover, Posch, Physical Review E 59, 1770-1776 (1999) .
Hoover, Posch, Castillo, Hoover, Journal of Statistical Physics, 100, Nos. 1/2, (2000) . 

V0 = 1/4Vf , Lucy fluid with h = 6 .

Kinetic energy

Density

Embedded-Atom Gravitational Relaxation and Collapse

Three system sizes :

Consider a rectangular column of fluid L x ( 8/5)L  at a stress-free density of unity.  
Using the embedded atom-equation of state we can calculate the gravitational 
field strength to equilibrate the fluid to a square with a density of two at the 
bottom of the column and the stress-free density of one at the top.  

Relaxation step : Reflecting boundary walls on sides and bottom . 

Use the embedded atom acceleration, a pair core potential and a damping force : 

!! !" = − !! + !! − !
!!"
!!"!

!!"
!   ; 	

Relaxation for about 10 sound traversal times and side constraints were removed.
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Collapsing water column with gravity
N = 640, 2560, 10,240 particles

t10240  =  2t2560  =  4t640

640 2560 10,240

!"#" !!"# ;  !!"#$%&' ∝ !! !
!

!
 ;  !!"#$ .	

t = 0

t = 20

t = 40

Collapsing water column with gravity
Tensile regions – SPAM and Finite Elements

640 particles                   2560 particles                    10,240 particles

WxH = 80x64 elements
dy = 2dx = 1 Relaxation

CollapseCavitation  model :
P > Pc à P = Pc

No failure model needed for SPAM 
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Penetration Mechanics : Failure Mechanisms
Molecular Dynamics and Continuum Mechanics

•  Molecular dynamics 
Plastic behavior begins with dislocation formation.  Plastic flow is the result 
of coalescing of dislocations and motion along crystallographic directions.  
In the triangular lattice the dislocation core is identified by noticing 
adjacent sites, one with only 5 neighbors and the other neighbor with 7 
neighbors.  The Burger’s vector locates the dislocation center with a vector 
from the site with 5 neighbors to the site with 7 neighbors.

•  Continuum models must specify failure criteria
We model two failure modes.  For tensile failure when the mean stress reaches 
the tensile failure limit the element strength is reduced to zero.  In DYNA3D we 
use a plastic strain for a failure model which includes hardening.  We model 
plastic failure in SPAM by specifying a plastic strain for failure and an algorithm 
for keeping the stresses on the yield surface until the failure strain is reached. 

3 dislocations 2 dislocations

Anthony J. C. Ladd and William G. Hoover, “Energy and entropy of interacting dislocations”, 
Phys. Rev. B, Vol. 26, Number 10, (15 November 1982).

Dislocations in Crystals are identified 
with Burger’s Vectors
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Penetration Mechanics 
•  A prototypical experiment in penetration mechanics is the Charpy test*. 

•  Failure	models	are	developed	from	energy	
considera4ons	

For	sufficiently	high	veloci4es	the	plate	material	will	
fail	in	one	of	two	ways	:	tensile	failure	or	plas4c	flow.		
New	surfaces	are	created	resul4ng	from	mel4ng,	
vaporiza4on,	plas4c	flow	or	bri@le	failure.	

•  h@p://www.azom.com/ar4cle.aspx?Ar4cleID=2763				
•  h@p://www.twi-global.com/technical-knowledge/job-knowledge/mechanical-tes4ng-

notched-bar-or-impact-tes4ng-071/	

Reproducibility:  At least 3 tests are needed.

Penetration Model
  Finite Elements, Molecular Dynamics and SPAM 

•  In our models we model the penetrator with a rigid ball 
This avoids possible numerical problems in the finite element program with a  
sharp point.  

•  Molecular Dynamics
We use a power-law potential and a triangular lattice.

•  The SPAM model
We use the cold equation of state matching the molecular dynamics potential.  

•  The finite-element model
We use both a tensile failure and a plastic strain failure with hardening. The ball 
and plate have the same density.  The plate bulk  modulus is 2.  The Young’s 
modulus is Y = E/100 = .0025.  Elements in the plate fail when the tensile stress 
reaches 0.1 or when the plastic strain reaches 1.0 or 2.0.

•  For SPAM-like molecular dynamics 
We use the embedded-atom potential, a surface gradient potential, and a 
curvature potential for strength. 
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Ball-Plate Fragmentation
Ball-plate Penetration with Finite Elements

For the lower velocity (left) the ball bounces back, but leaves a permanent 
deformation .  For the higher velocity the ball breaks through the plate .

ep < ef = 1.0, v0 = 1/2

V0=1/4 ; ef = (1.0, 2.0) V0=1/2 ; ef = 1.0

ep < ef = 2.0, v0 = 1/4

ep < ef = 1.0, v0 = 1/4

Tensile failure : tf = 0.1 ; Plastic strain failure : εp= { 1.0, 2.0) 

Ball-Plate Penetration with Molecular Dynamics

!!"#$ ! < ! ≡ !!" !− ! < ! = !"" !− !"
!

! !
 ;	

Ball-plate potential is an extended of the core potential.	

Plate particles interact with a 4-8 potential in a triangular lattice with m = 1.  

!!! ! < !  = !− !! ! − ! !− !! !	

v = 1

v = 2

Ball bounces

!!!
!"!! ≅ −!!"#$%

! 	

!!!
!"!! < −!!"#$%

! 	

Plate cracks

v =1

v = 2 v = 4

v = 3
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Ball-Plate Penetration SPAM-like Molecular Dynamics

! = !!" +!!"#$ +!!"#$ +!!"#$ ;	 !! = !!"##$%  !"# ! = !.!" ;  	

!!" =
!
! !! − !!

! ;
!

	

!!"#$ =
!
!"

!
! !! ! ;

!
	

v= 1/4

v= 1/2

v= 1

v= 2

Invariant Curvature potential provides strength.  

Ball-Plate Penetration with SPAM

In prototypical yield strength measurements yielding 
first occurs when σxx is 2Y.  A simple plastic flow 
model is to reduce the shear stress to Y after any 
timestep in which Y is exceeded.  A correction factor 
to bring the shear stresses to the yield surface is :
! = !/!!! !"#$ !"#$% !"#$!! !"#$"%&%' !"#$%&' 	

Tensile failure
Set the entire stress tensor 
to 0 on failure.  Return the 
density to the stress-free 
value of (4/3)1/2 .

Plastic Flow Model

Cold lattice mechanical equation of state

!!!! = !" !− !
!!

!
− !− !

!!
!
	

! = ! !"	We find 
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Conclusion – SPAM Is a Transparent, Pedagogical 
Particle Method for Simulating Continuum Dynamics

•  SPAM is useful for modeling continuum mechanics
 Algorithm is transparent to program & easier to debug ;
 Algorithm avoids mesh tangling that stops mesh-based
 calculations ;
 Rezoning is easy .

•  Various deficiencies have been cured
Density-gradient potential for lattice surfaces ;
String phases cured with core potentials ; 
Invariant density-curvature potential for strength .  

•  Challenging research problems remain for developing failure models for 
penetration mechanics

     Fast desktop computers as well as array processors and massively parallel   
     computers provide  opportunities to investigate numerical models for
     failure. 

Life in Japan at Keio University Yokohama
Molecular Dynamics : 1989 – 1990 and beyond

Evenings/Weekends

$30,000 SPRINT versus 
$30,000,000 

Cray Computers
 1,036,800 particles!!

Tony De Groot
at LLNL

Parallel Algorithms
Toshio Kawai

at Keio University

Taisuke Boku
Keio University

Sigeo Ihara
Hitachi
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Two & Three-Dimensional Parallel Simulations of Indentation

Nonequilibrium indentation for 720 x 1440 
particles in two dimensions.  Lennard-Jones 
with an embedded-atom potential models a 
granular solid representing metals such as 
copper or nickel .  Molecular dynamics on 
Tony De Groot’s SPRINT computer with 
message-passing processors.

	
Work of indentation à          
Surface + elastic energy
Plastic yield strength.

Tetrahedral indentation : 
72 x 72 x72 silicon atoms 
with Stillinger-Weber φ 

Parallel Techniques for Fluids and Solids
Eulerian Grid of Particle-Cells à Processors

Two forms of parallel are shared memory and message-passing .
Must use message-passing for large problems .
Message-passing is more efficient, works for large problems, but is  more 
difficult to program . 

Message-passing technique                    	
Four-processor 
parallel computer
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Efficiency, Scalability & Message-Passing
•  In practice, communication time reduces parallel efficiency

•  Scalability 
    Ideally, if the number of processors is doubled, the rate for delivering results 

will be doubled. The term scalability or theoretical scalability refers to this 
linear scaling of the delivery rate with the number of processors. In practice 
scalability breaks down when the communication time becomes significant 
compared to the amount of time processors spend computing results.
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Parallel speedup for a 90-million element problem having no slide surfaces 
(material interfaces) defined.  A small percentage of the nodes are communicating 
between processors.  Note that performance is still increasing at more than 32000 
processors.

Parallel Scalability for two computers 
at the Lawrence Livermore National Laboratory 
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Parallel Scalability with a single large material interface

Speedup for a one-million element problem having one large slide surface.  
Although performance continues to increase, the rate of speedup is 
beginning to decrease at approximately 1024 processors.  For the 1024-
processor case, there are only about 1000 elements per processor.  Such 
small computational work per processor lowers the parallel efficiency.

Create Subdomains from Optimized Cuts of Graphs 
•  Goal:      Domain split into subdomains .  Subdomains à processor . 
•  Method: Convert domain à weighted graph :

•  Optimized cuts of graphs are partitions (subdomains) .

         Method by Karypis and Kumar + free software :

http://glaros.dtc.umn.edu/gkhome/

cells ⇒vertices
cell connectivity ⇒ lines

Graph with 
connected cells                                    

Particles  in cells 
dx ~ h 

Vertex weights     
processor work time
Line weights    
communication time
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Example: Partitioned “Nut-Bolt” Mesh and Interface

• 	Treat the surfaces as a 
separate partition ;
	
•   For many surfaces, 
distribute them among  
several processors .
	
• 		Surface partition is 
computed only once        
for this problem .

The outer cylinder rotates 
around the inner cylinder .

Example: Dynamically Partitioned Free Expansion

Repartition at any time during the calculation when there is a load imbalance .
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Example: Dynamically Partitioning Crushed Sheet 

This complex surface folding leads to arbitrary “self contact” .
This is a hard problem on single processor computers !!


