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0. Quotes from a NATO conference at
Alghero, Sardinia, 15 - 17 July 1991

Resolving Loschmidt’s ( 1821 - 1895 ) paradoxical question [ slightly paraphrased ] :
“How can time-reversible equations of motion have irreversible solutions ?” Note that
“The nonequilibrium simulations all show that a phase-space collapse to a fractal
strange attractor occurs with a collapse rate given by the summed spectrum of 
Lyapunov exponents .” [ WGH, page 61 ]

Round Table Discussion on Irreversibility and Lyapunov Spectra  :
“Now, in the steady state it should  be obvious that the [ phase ] volume, if it is changing, can
only get smaller .” [ WGH, page 334 ] “One of the characteristics of the attractors is that Gibbs’
entropy always diverges in the nonequilibrium case, always minus infinity.” [ WGH, page 336 ]
E. G. D. Cohen : “I do not think so .” [ also page 336 ]
Joel Lebowitz : “Boundary conditions  [ are ] only effective at the boundary”
Today :

“If most of the space is contracting the volume eventually vanishes !”
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0. Quotes from a NATO conference at
Alghero, Sardinia, 15 - 17 July 1991

“I know that most men , including those at ease with problems of
the greatest complexity , can seldom accept even the simplest and
most obvious truth if it be such as would oblige them to admit the
falsity of conclusions which they have delighted in explaining to
Colleagues , which they have proudly taught to others , and which
they have woven , thread by thread , into the fabric of their lives .”

― Leo Tolstoy

1. Evolution of the Galton Board Fractal *

Cross section of the phase-space distribution
after 0, 1, 2, 3, 5, 10 collisions with field = 3 . In
The Beginning a uniform grid of 10,000 points
was the set of initial conditions .  Here the field
Is perpendicular to a row of scatterers .

Exactly the same ( Dx, Dy ) equations apply for
a Hamiltonian particle in an exponential field
with H =	K – Ele(	x/l )	.  This observation has a
remarkable consequence :  the moving particle
arrives at infinity at a finite time !

* Hoover, Moran, Hoover, Evans, Physics Letters A 133, 114 - 120 ( 1988 ) .

{ -1 < sin( b ) <  +1 as	a	function	of	0 < cos( a ) < p }
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1. Finite-Precision Galton Board à Periodic Orbits ! *

* Dellago and Hoover, Physical Review E 62, 6275-6281 ( 2000 ) .

The field is parallel to a row of scatterers at 4/5 the
close-packed density . The Box-Counting, Information,

and Correlation dimensions are 2.00, 1.54, and 1.43 .

1. Finite-Precision Galton Board *

* Dellago and Hoover, Physical Review E 62, 6275-6281 ( 2000 ) .

We carried out simulations with from 22 to 246 =
8,388,6082 cells, mapping to the n2 cell centers .
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1. Finite-Precision Galton Board with n2 Cells *

* Dellago and Hoover, Physical Review E 62, 6275-6281 ( 2000 ) .

Now there is a deterministic mapping with a transient
part ( circles ) and a period ( squares ) which agree with

a stochastic model predicting slopes of one half the 
Correlation dimension, 2.000/2 and 1.430/2.0 for 0 and 4 .
Notice that the circles and squares lie on the same lines .

n

There are n2 cells .

1. Finite-Precision Galton Board with n2 Cells
The Birthday Problem shows that a group of 23 people is
likely to have a pair with the same Birthday .  If we have
N = n2 cells in phase space the number of pairs à N2 . If
we imagine a sequence of M cells with each of them
different to all the predecessors the joint probability is

(1)(1 – 1/M)(1 – 2/M) . . . ≈ exp[ – M2/2 ]  . 
The probability that a new cell will be different from all
the previous cells should be of order N1/2 and in fact 
turns out to be t = ( pN/2 )1/2 for large N .
At	equilibrium	the	fraction	of	states	actually	visited	is	W[	- ½	] .	The	number diverges
while	the	fraction goes	to	zero	.		Both	the	transient	and	the	period	vary	as	W[	- ½	] .	
Nonequilibrium steady	states,	with	a	correlation	dimension	less	than	that	of	the
space	have	a	“basin	of	attraction”	which	is	most	of	the	space	and	relatively	small
transients	and	periods	.		Out	of	226 states	the	Galton	Board	attractor	was	made	up
Of	1836	points	in	all	.		Out	of	1032 states	we	would	expect	to	see	only	1022.9 for	E	=	4	.
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Consider	a	particle	at	the	origin	with	momentum	(-1,+1)	with	a	gravitational	field	ex :
(dx/dt)	=	px ;	(dy/dt)	=	py ;	(dpx /dt)	=		ex ;	(dpy /dt)	=	0	with	{	x,y,px,py }	=	{	0,0,-1,+1	}
Evidently	the	motion	in	the	y	direction	is	uniform	with	y	=	t	and	py =	1	.		The	motion	in
the	x	direction	involves	solving	(d/dt)2x	=	ex .		To	solve	it	write	the	energy	equation
for	the	motion	in	the	x	direction	only	:	(dx /dt)	=	[	2ex	 – 1	]1/2 with	the	solution	from
Pierce’s	Tables	#	412	shown	in	the	left	panel	below	.	Though	the	exponential	field
solution	reaches	infinity	at	time	4.7124	the	constrained	kinetic	energy	generates	the
same	trajectory	in	an	infinite	time.		Only	a	time	of	6.9590	is	shown	in	the	right	panel	.

t = y < 3p/2 = 4.7124 > 4.642

x

t	=	(3p/2)	– 2sin-1[	(2ex) -1/2	]	

t	<	6.9590

(dpx/dt) = 1 – zpx ;
(dpy/dt) = – zpy ;

z = px /(px2 + py2) .

This same isomorphism
holds for any field strength .
It is another case in which
scaling the time relates two
different-seeming problems .
The exponential field has a
fractal spatial distribution
but Å is perfectly conserved !

* W G Hoover, B Moran,  C G Hoover, and W J Evans, Physics Letters A 133, 114 - 120 ( 1988 ) .

2. An Interesting Isomorphism for the Galton Board *

2. Interesting Model Variations for Transport*
Another way to generate nonequilibrium steady states is to extract heat
by using a constant viscosity .  Although this type of dynamics does not 
seem to be “reversible” it does fit our definition.  Evidently changing the 
sign of the viscosity and running the trajectory backward would 
generate a mirror-image repellor while satisfying the same motion 
equations .  Thus the constant-viscosity model shares many of its 
properties with the isokinetic Galton Board.  The constant-viscosity 
phase space is more complicated, with four phase-space dimensions, 
with the momentum p variable at collisions characterized by a and b .

* W G Hoover, “Multifractals from Hamiltonian Many-Body Molecular Dynamics”, Physics Letters A 235, 357 - 362 ( 1997 ) .
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ß Here is a projection of the viscous
phase-space distribution onto the
[ a,sin( b ) ] plane .  Here there is a
wide range of kinetic energies so that
the fractal structure is smeared a bit
by the projection operation .

E = 10
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2. Interesting Model Variations for Transport*
Another way to generate nonequilibrium steady states is to extract heat
through a constant viscosity z .  Although such a dynamics does not 
seem to be “reversible” it does fit our definition .  Evidently changing 
the sign of the viscosity and running the trajectory backward would 
generate a mirror-image repellor while satisfying the same motion 
equations .  Thus the constant-viscosity model shares many of its 
properties with the isokinetic Galton Board .  The constant-viscosity 
phase space is more complicated, with four phase-space dimensions , 
with the momentum p variable at collisions characterized by a and b .

* W G Hoover, “Multifractals from Hamiltonian Many-Body Molecular Dynamics”, Physics Letters A 235, 357 - 362 ( 1997 ) .
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2. Interesting Model Variations for Transport*

* W G Hoover, “Multifractals from Hamiltonian Many-Body Molecular Dynamics”, Physics Letters A 235, 357 - 362 ( 1997 ) .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10

ß Temperature

< px >

0 < time < 10

Field = 1

Field = 0.00
or infinity !
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ß Green-Kubo

ßCreepà
k( E ) is plotted here
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2. Interesting Model Variations for Transport
Because the 0532 and zx models provide ergodicity for the oscillator it is
interesting to see how they do for the Galton Board.  This increases the
dimensionality by either one or two but we can still project the solutions
onto the ( a,sinb ) plane.  Here is an 0532 sample for a field of 3 and T = 1 .

In	two	dimensions	the	generalization	of	the	0532	Model	includes
(dp/dt)	=	Force -zp[	0.05	+ 0.032p2 ]	where	p2 includes	x	and	y	.
Likewise	(dz/dt)	=	0.05(	p2 – 2	)	+	0.32(	p4	– 4p2	)	with	circularly
symmetric	<	p2,p4 >	=	(	2,8	)	rather	than	the	one-dimensional	(	1,3	)	.	

0532 Model with E = 3

ZX Model with E = 3

In	two	dimensions	the	generalization	of	the	ZX	Model	includes
(dp/dt)	=	Force	– zp – xpp2 where	p2 includes	x	and	y	.		Likewise
(dz/dt)	=	(	p2 – 2	)	and	(dz/dt)	=	(	p4 – 4p2	)	with	the	circularly	
symmetric	<	p2,p4 >	=	(	2,8	)	,	not	the	one-dimensional	(	1,3	)	.	

3. An up-to-date Time Reversible Baker Map
[ Chaos and Reversibility in Two Dimensions ]

•

•

•

•

There are two “fixed points”
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An Updated  Version of the Baker Map

B à

ß TBT

Equilibrium Chaos and Ergodicity
l1 = ln 2 = 0.69315 with no change
in the comoving phase volume .

There is no qualitative difference
between the Equilibrium and

Nonequilibrium measures of chaos .

Nonequilibrium Chaos and Ergodicity
l1 = (1/3) ln 3 + (2/3) ln (3/2) = 0.63651
with volume changes of (1/2) (2/3) of 
the time and 2 (1/3) of the time .  But
of course the compression wins and

a “strange attractor” is the result .

3. Equilibrium and Nonequilibrium Baker Maps
This dissipative time-reversible map à a nice ergodic fractal object .
It has a correlation dimension of about 1.61 , meaning that in the
vicinity of a point the number of other points varies as r1.61 .
To see this we generate 100,000 points and bin the distances
according to the value of ln( r ) , using a bin width 0.01 .

-10 < ln( r ) < 0

Log ( 1< N < 50,000,000 )
The number of
points in a bin of
width dln r varies as 1.61
or 2.00 power .  There is an
extra r because we plot with bins
using dln( r ) = dr/r .  The correlation
dimension is 2.00 at equilibrium and 1.61 for this
nonequilibrium Baker Map .  Because this map is
designed to be time-reversible we can generate
the repellor by changing the sign of the vertical
coordinate p .
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ln(r)

ln[ N( r ) ]  ln[ N( r ) ]

ln( r )

Here is a comparison of the number of pairs of points in bins of fixed size dr at r .
From the Birthday Problem we expect the periodic orbit length to vary as r1.59/2 .
Grids of 2002, 4002, . . . 10002 gave irregular results with 249 the longest orbit .

3. Correlation Dimension for Equilibrium and Nonequilibrium Baker Maps

Even in this small two-dimensional problem , with a time-reversible
mapping , the measure of trajectories which violate the Second Law
[ here corresponding to expansion rather than compression ] is very
small . We demonstrate this by spanning ( qp ) space with 4 x 1018 cells .

ln(r)

ln[ N( r ) ]  

3. Correlation Dimension for Equilibrium and Nonequilibrium Baker Maps
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Reversibility is Rare ! : 19122-point periodic orbit with 4 x 10^18 qp cells

Even in this small two-dimensional problem , with a time-reversible
mapping , the measure of trajectories which violate the Second Law
[ here corresponding to expansion rather than compression ] is very
small . We demonstrate this by spanning ( q,p ) space with 4 x 1018 cells .
Starting with ( q,p ) = ( 0.6,0.8 ) we find a periodic orbit with 19,122 points .
To make this reproducible let us look briefly at the details of the mapping .
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3. The Reversed Nonequilibrium Baker Map

BEFORE AFTER
ANY TRANSFORMATION THAT IS ERGODIC HAS SOME COMPRESSION AND EXPANSION .
MOST OF THE MAP CORRESPONDS TO COMPRESSION GIVING A STRANGE ATTRACTOR .

à

TBT

3. Equilibrium and Nonequilibrium Baker Maps

Repellor Attractor
What do you suppose is the distribution of Attractor points near Repellor points ?
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3. Equilibrium and Nonequilibrium Baker Maps

What do you suppose is the distribution of Attractor points near Repellor points ?

-10  <  ln( r )  <  0

Log ( 1 < N < 50,000,000 )

3. Equilibrium and Nonequilibrium Baker Maps

Repellor Attractor
What do you suppose is the distribution of Attractor points near Repellor points ?
The distribution turns out to vary as r2 !  There is no correlation between them !
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3. The Nonequilibrium Baker Map

BEFORE AFTER
ANY TRANSFORMATION THAT IS ERGODIC HAS SOME COMPRESSION AND EXPANSION .
2/3 OF THE MAP CORRESPONDS TO COMPRESSION GIVING A STRANGE ATTRACTOR .

à

3. Time Reversibility of the Nonequilibrium Baker Map

BEFORE AFTER

ANY TRANSFORMATION THAT IS ERGODIC HAS SOME COMPRESSION AND EXPANSION .
MOST OF THE MAP CORRESPONDS TO COMPRESSION GIVING A STRANGE ATTRACTOR .

à

à

Reversed in Time

à
à
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3. Irreversibility of the Nonequilibrium Baker Map

Repellor Attractor
ANY TRANSFORMATION THAT IS ERGODIC HAS SOME COMPRESSION AND EXPANSION .

MOST OF THIS MAP CORRESPONDS TO COMPRESSION GIVING A STRANGE ATTRACTOR .
THEREFORE THE STRANGE ATTRACTOR IS INEVITABLE AND THE REPELLOR IMPOSSIBLE !

à

3. The Nonequilibrium Baker Map
Compressions versus Expansions

50,000 MAPPINGS300 MAPPINGS

COMPRESSION OCCURS 2/3 OF THE TIME !

The Second Law is Overwhelmingly Obeyed !
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3. Correlation Dimension for Equilibrium and Nonequilibrium Baker Maps
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Reversibility is Rare ! : 19122-point periodic orbit with 4 x 10^18 qp cells
n = 2 000 000 000 is the square root of W .

x = (+q + p)/dsqrt(2.0d00)
y = (-q + p)/dsqrt(2.0d00)                                                                                                                     
ixp = (x+1)*(n/2) + 1
iyp = (y+1)*(n/2) + 1                                                                                                                      
x = (ixp - 0.5d00*(n + 1))*(2.0d00/n)
y = (iyp - 0.5d00*(n + 1))*(2.0d00/n)

q = (x - y)/dsqrt(2.0d00)
p = (x + y)/dsqrt(2.0d00)
if(q.lt.p-dsqrt(2.0d00/9.0d00)) then
qp = 11*q/6.0d00 - 7*p/6.0d00 + dsqrt(49.0d00/18.0d00)
pp = 11*p/6.0d00 - 7*q/6.0d00 - dsqrt(25.0d00/18.0d00)
endif

if(q.gt.p-dsqrt(2.0d00/9.0d00)) then
qp = 11*q/12.0d00 - 7*p/12.0d00 - dsqrt(49.0d00/72.0d00)
pp = 11*p/12.0d00 - 7*q/12.0d00 - dsqrt( 1.0d00/72.0d00)
endif

x = (+qp + pp)/dsqrt(2.0d00)
y = (-qp + pp)/dsqrt(2.0d00)

This solution is time-reversible .  Using a
reversed initial condition ( 0.6,-0.8 ) rather
than ( 0.6,+0.8 ) finds itself on exactly the
same periodic orbit of 19 122 points .  But
this is not what is meant by reversibility .

ß Here	is	the	conversion	to	a	grid	

3. Summary from the Standpoint of the Baker Map
Compare the reversibility of the mapping using double and quadruple precision arithmetic .

17 decimal digits in double precision and 38 decimal digits in quadruple precision

50 Double Precision and 100 Double Precision Iterations in Both Time  Directions from (0,0)

Double Precision { p } Quadruple Precision { p }

Time = 50 Time = 100



11/25/16

15

3. Correlation Dimension for Equilibrium and Nonequilibrium Baker Maps
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Reversibility is Rare ! : 19122-point periodic orbit with 4 x 10^18 qp cells

Running the map forward for 100 steps, reversing the
momentum and running backward gives a separation
between the forward and backward points which grows
exponentially until the difference is “random” in size .
About 40 iterations for double precision and 80 for
quadruple precision are enough to eliminate correlation
between the forward and backward trajectories .  The
averaged Lyapunov exponent over the entire map gives
ln(3) one third of the time and ln(3/2) two thirds of the
time but this small sequence gives a somewhat larger
rate of divergence .  No matter where one starts new
information is generated by the stretching algorithm ,
soon overwhelming any remaining knowledge of the past .
The existence of the periodic solutions is a consequence
of the finite phase-space available computationally .  The
strange attractor is gradually approached by making the
mesh finer and finer while the fraction of the mesh that
is covered goes  rapidly to zero as WD/2/W .

ln(error)

time

q

p

3. Summary from the Baker Map Using Double Precision and 50 Steps
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3. Summary from the Baker Map Using Quadruple Precision and 110 Steps

3. Summary from the Standpoint of the Baker Map

A R
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3. Summary from the Standpoint of the Baker Map
The Baker Map is chaotic and ergodic , both at equilibrium and away .

The Lyapunov exponent is of order unity in both these cases .

The inverse of the Baker Map , TBT , can reverse for about 100 steps .

The forward map B converges to the Attractor with DC = 1.59 .

Once roundoff error is amplified by l1 the reversed map is a Repellor .

There is no fractal correlation between Attractor and Repellor points .

The areas of both the Attractor and Repellor are zero.  They are unlikely .

The number of states in the stationary state is of order WDC/2 .

4. The Fluctuation Theorem as seen with the Baker Map
In their seminal 1993 paper “Probability of Second Law Violations in Shearing Steady States” ,
[ Physical Review Letters 71, 2401-2404 ( 1993 ) ] Denis Evans, Eddie Cohen, and Gary Morriss
formulated the relative measures of forward to backward motion in terms of entropy production :

μforward /μbackward = e∆S/k

Here the entropy follows Gibbs’ statistical mechanics and corresponds to the logarithm of the
phase-space volume, S = k ln Ω . We illustrate their idea using our time-reversible but dissipative
Baker Map : 

∆S/k = - (1/3)ln(2)

∆S/k = + (1/3)ln(2)

What about Einstein ?
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4. The Fluctuation Theorem as seen with the Baker Map

Repellor à ß Attractor      

4. The Fluctuation Theorem as seen with the Baker Map
This time-reversible dissipative Baker Map contracts 2/3 of the time and expands 1/3 ,
behaving just like an RL random walk .  To show this consider 27 000 000 iterations of
the Baker Map confirming the sequences’ frequencies to an accuracy of 3 or 4 figures :

R = 18M , L = 9M ;
RR = 12M , RL = LR = 6M , LL = 3M ; 

RRR = 8M , RRL = RLR = LRR = 4M , RLL = LRL = LLR = 2M , LLL = 1M
The Evans + Cohen + Morriss Fluctuation Theorem * relates the relative probabilities of

forward and backward trajectory segments to the entropy production for those segments :
μforward/μbackward = e∆S/k =	∆W 

R/L = 2 corresponds to the twofold changes in area
RR/LL = 4 corresponds to the fourfold changes in area

RRR/LLL = 8 corresponds to the eightfold changes in area
The Fluctuation Theorem describes the change in Gibbs’ entropy due to a time-reversible

dissipative process .  There is a voluminous literature on this subject !

* “Probability of Second Law Violations in Shearing Steady States” ,
[ D J Evans + E G D Cohen + G Morriss , Physical Review Letters 71, 2401-2404 ( 1993 ) ]

There is much related work on “Crooks’ Fluctuation Theorem” and “Jarzynski’s Equality”
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5. Dimensionality Loss in Time-Reversible Maps*

* W. G. Hoover, O. Kum, and H. A. Posch, Physical Review E 53, 2123 – 2129 ( 1996 ) . TRCSAC . 

XYPYX with six values of Dm :
0.01, 0.05, 1/12, 0.10, 0.15, 0.17

[ m = 0.25 is “equilibrium” Dm = 0 ] 

5. Dimensionality Loss in Color Conductivity and Steady Shear Simulations*
Nonequilibrium Steady States Occupy a Vanishing Phase-Space Volume !

* W. G. Hoover and H. A. Posch, Physical Review E 49 , 1913 - 1920 ( 1994 ) .

N	=	36,	DD	=	2.20 N	=	36,	DD	=	19.0

A wide variety of systems shows phase-space dimensionality losses from the Lyapunov spectrum .
The N = 100 dimensionality losses are 8.38 and 53.1 for the same field and the same strain rate .
In order to see whether or not the loss persists in the large-system limit the dependence on the
number of thermostated particles was studied and found to suggest that the loss is real , and was
minimized when all of the particles were thermostated , as in the results above . f(r) = 100( 1 – r2 )4 .
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6.  0532 Model Spectra at and away from Equilibrium
These are ergodic equations for an oscillator with T = 1 :

( dq /dt ) = p ; ( dp /dt ) = – q – z [ 0.05p + 0.32(p3/T) ] ;
( dz /dt ) = 0.05[ (p2/T) – 1 ] + 0.32[ (p4/T2) – 3(p2/T) ] .

0532 Model is time-reversible as well as deterministic :
Change the signs of dt, p, and z . (dq/dt) changes sign ;

(dp/dt) is unchanged as is also ( dz /dt ) . This also
applies away from equilibrium where T º 1 + e tanh(q) .
The equilibrium distribution is Gaussian in q , p , and z .

The Poincaré Section has no holes .
Section with p = 0 has a “nullcline” à

q

z

6.  0532 Model Spectra at Equilibrium

These are ergodic* equations for an oscillator with T = 1 :
( dq /dt ) = p ; ( dp /dt ) = – q – z [ 0.05p + 0.32(p3/T) ] ;
( dz /dt ) = 0.05[ (p2/T) – 1 ] + 0.32[ (p4/T2) – 3(p2/T) ] .

f(q,p,z) = (2p)–3/2 exp[ – (q2/2) – (p2/2) – (z2/2) ]

* Ergodic, time- reversible, and chaotic
[ 0 ] All ( q,p,z ) can be reached by the time-reversible dynamics .

[ 1 ] At equilibrium the distribution is Gaussian in q , p , and z .
[ 2 ] The Lyapunov exponent l1 = < l1(t) > is independent of ( qpz )0 .
[ 3 ] The Poincaré Section has no holes .
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 e = 0.00                                           e = 0.50
 { 0.144, 0, - 0.144 }                      { 0.1135, 0, - 0.1454 }
 Ergodic Gaussian Distribution     Multifractal Strange Attractor

 Notice that changing the sign of p does not just change the sign of l1( t ) !

p p

q q

( dlnÅ/dt ) = l1(t) + l2(t) + l3(t) = – z [ 0.05 + 0.96p2 ] 

Inversion symmetry à

6. 0532 Model z = 0 Sections At and Away from Equilibrium

6.  0532 Model Thermodynamics Away from Equilibrium
1. CONSIDER THE CHANGE OF GIBBS ENTROPY OF THE SYSTEM DUE TO HEAT LOSS :

( dS/dt ) = + z [ 0.05(p2/T) + 0.32(p4/T2) ]

2. CONSIDER THE CHANGE OF PHASE VOLUME OF THE SYSTEM DUE TO HEAT LOSS :
( dlnÅ/dt ) =  – z [ 0.05 + 0.96(p2/T) ] 

3. NOTICE THAT A TIME AVERAGE RELATES THE EXPRESSIONS 1 AND 2 :
< z( dz /dt ) > = 0 = < z { 0.05[ (p2/T) – 1 ] + 0.32[ (p4/T2) – 3(p2/T) ] } >
so that < z [ 0.05(p2/T) + 0.32(p4/T2) ] > = < z [ 0.05 + 0.96(p2/T) ] > 

< (dS/dt) > HEAT = < ( dlnÅ/dt ) > DYNAMICS

Standard Thermodynamics applies to the 0532 Model
so long as the results are independent of initial conditions !
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6.  0532 Model Spectrum away from Equilibrium
( dq /dt ) = p ; ( dp /dt ) = – q – z [ 0.05p + 0.32(p3/T) ] ;

( dz /dt ) = 0.05[ (p2/T) – 1 ] + 0.32[ (p4/T2) – 3(p2/T) ] with
< ( dln Å /dt ) >  = – z [ 0.05 + 0.96(p2/T)  ] = l1 + l2 + l3 < 0 .

Because l2 must vanish l1 + l3 < 0 .

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 100  1000  10000  100000  1x106  1x107

log	(	100	<	time	<	20,000,000	)

<		l1 >	 l1 = 0.144 Because the motion is ergodic linear-response
theory can be applied to the model .  One way

to obtain nonequilibrium simulations is to set
the temperature equal to T(q) = 1 + e tanh( q ) .
This turns out to generate a hot-to-cold heat
current which can be related to fluctuations
through Green and Kubo’s theory . We expect

a strange attractor or a limit cycle to result .

* Hoover and Aoki, Order and Chaos in the One-Dimensional φ4 Model : N-Dependence
and the Second Law of Thermodynamics = arXiv 1605.07721 submitted to PRE ( 2016 ) .

7. f4 Model for Chaos and Heat Conduction
with Substantial Fractal Dimensionality Loss*

There are 24 particles in the chain,
24 coordinates, 24 momenta, and
two friction coefficients, one cold
and one hot, so that the phase
space has 50 dimensions in all .
Temperatures are 0.003 and 0.027 .



11/25/16

23

7. f4 Model for Chaos and Heat Conduction *

The Model is chaotic over a wide range of energies despite its Hamiltonian character .  The spectrum
of Lyapunov exponents has a relatively simple structure .  Its chaotic nature makes it possible to obey
Fourier’s law of heat conduction, Qx = -k( dT/dx ) over a wide range of energy and dimensionality .

* W G Hoover and K Aoki, “Order and Chaos in the One-Dimensional φ4 Model” = arXiv 1605.07721 . 

7. f4 Model for Chaos and Heat Conduction *
The f4 Model was the first that I know of that produced overwhelming evidence of the
pervasive fractal structures in nonequilibrium steady states.  Other models, where
Newtonian particles were driven by a few boundary particles at the corners, or on the
edges, typically showed fractal dimensions only a bit less than the full dimensionality 
of the phase space .
Kaplan and Yorke suggested that the fractal dimension be determined by interpolating 
between the last positive sum of exponents and the first negative sum .  Although this 
idea works well for some attractors there are others for which it definitely fails . For a 
doubly-thermostated oscillator with two friction coefficients and a temperature which 
varies as 0 < T(q) = 1 + tanh(q) < 2 the Kaplan-Yorke interpolation gives DKY = 2.80 
while the precise bin-counting measurement gave an information dimension DI = 2.56 .

(dq /dt) = p ; (dp/dt) = – q – zp – xp3 ; NOTE THAT (p3/T) IS BETTER !

(dz/dt) = p2 – T ; (dx /dt) = p4 – 3p2T

This projection of the fractal into the ( zx ) plane is taken
from Hoover, Hoover, Posch, and Codelli, Communications
in Nonlinear Science and Numerical Simulation ( 2005 ) .
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7. f4 Model for Chaos and Heat Conduction *
The leftmost four particles are “cold”
While the rightmost four are “hot” ,
using two Nosé-Hoover thermostat
variables.  The remaining 16 particles
are Newtonian .  All nearest-neighbor
pairs interact with Hooke’s-Law springs
and every particle is tethered to its own
lattice site with a quartic potential .

The one-dimensional version of this
Model gave the first  deterministic
and time-reversible simulations in
which a majority of the phase-space
dimensions were missing in the
nonequilibrium strange attactor .

* Hoover, Aoki, Hoover, de Groot, [ Physica D 187, 253 (2004) ] includes a comparison of 7 thermostats .

7. f4 Model for Chaos and Heat Conduction *
The one-dimensional version of the f4 Model provided the first simulations in which most

of the phase-space dimensions were missing in the nonequilibrium strange attractor .

* Simulation and Control of Chaotic Nonequilibrium Systems ( 2015 ) , page 205 .

We consider a 24-particle chain
with two Nosé-Hoover particles
at the ends ( with temperatures
of 0.003 and 0.027 ) with D = 50 .

The ( 48 + 2 ) dimensional phase
space contains a 15-dimensional
strange attractor corresponding
to the loss of 35 dimensions !
ROTATION of the d vectors must
be the cause of this great loss .
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8. Summary
In 1987 it became obvious that time-reversible deterministic steady-state simulations of
mass, momentum, and energy flows always obey the Second Law of Thermodynamics,
forming a phase-space strange attractor and a mirror-image repellor.  The fractal repellor
is unobservable in that it occupies zero phase-space volume and has also an unstable
Lyapunov spectrum with a positive sum : Sl = -#z = -dlnf/dt = dlnÅ/dt = d(S/k)/dt .
1.  The Galton Board exhibits both adiabatic and isokinetic Time-Reversible Fractals .
2.  Finite-Precision stationary states are related to the DC and to √Ω at equilibrium .
3.  Reversible Baker Maps provide a 2D version of ergocity, chaos, and the Second Law .
4.  0532 Model Spectra at and away from Equilibrium provide ergodic 2D sections .
5. At and away from Equilibrium f4 Model spectra provide vivid dimensionality losses .
6. These models suggest many promising research areas .

In retrospect it is ”obvious” that a constant-viscosity homogeneous simulation of mass ,
momentum , or energy flows would lead to about the same dimensionality loss without
any ambiguity .  One merely needs to accept the presence of a heat sink in the equations
of motion, { ( dp/dt ) = F – zp } .  Remember that Hamiltonian systems permit no heat flow .

8. Summary Continued . . .
[ 1 ] It is a useful exercise to show that the two-dimensional generalizations of the 0532 and
zx models are consistent with Gibbs’ canonical distribution by using Liouville’s continuity
equation in the many-dimensional phase space. This is “straightforward but tedious” .
[ 2 ] A somewhat paradoxical feature of mechanics is that observing a section of trajectory
does not reveal whether or not the comoving volume is changing .  On the other hand, by
extending the trajectory, so as to fill the accessible part of the phase space , we can generate
the “natural measure” or distribution and figure out whether the flow is “conservative”, in
the sense of keeping the comoving volume constant,  or “dissipative” , in the sense of
allowing the comoving volume to change , sometimes generating a strange attractor . 
[ 3 ] Evidently the motion equations cannot be determined from the trajectory .  We just saw
that the exponential field and the constant field with an isokinetic constraint provide 
isomorphic trajectories .  The one-dimensional trajectory and the many-dimensional flow are
not the same , although evidently either can be determined by studying the other .

[ 4 ] It is amusing that the local Lyapunov exponents for flows vary in a fractal manner !
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8. Summary Continued . . .
[ 4 , continued ] It is amusing that the local Lyapunov exponents
for flows vary in a fractal manner !  The two examples below are
Taken from our study of the ergodic MKT harmonic oscillator , 

explored with Dennis Isbister and published in January of 2001 .


