Kharagpur Lectures

Classical Molecular Dynamics and Computational Statistical Mechanics

Carol G. Hoover \& William G. Hoover Ruby Valley Nevada

December 2016

Outline

1. Formulations of Mechanics

Newton's $\mathbf{2}^{\text {nd }}$ Law, Lagrange's formulation of mechanics, Hamilton's
formulation of mechanics, Hamilton's least action principal
2. Numerical Integration

Example problems for students, programming algorithms, software
3. Equations of State

Temperature, phase diagrams, Virial Theorem, Heat Theorem
4. Monte-Carlo Methods

Random number generators, Maxwell-Boltzmann distribution, Equilibrium
Monte-Carlo averages, Mayer Cluster integrals, pair distributions, collision rates
5. Molecular Dynamics

Potential models, initial conditions, boundary conditions, one-dimensional chains, time reversibility

1. Formulation of Mechanics

Newton's Second Law of Motion

$$
F=m a
$$

1643-1747
Particle in a gravitational field

$$
F=m \ddot{y}=-m g \rightarrow y=-\frac{1}{2} m g t^{2}+v_{0} t+x_{0}
$$

Harmonic Oscillator

$$
m \ddot{x}=-\kappa x \rightarrow \ddot{x}=-x \rightarrow\{\dot{x}=-\sin (t) ; x=\cos (t)\}
$$

Force on a particle in a one dimensional chain

$$
\left\{m \ddot{x}_{I}=-\kappa\left(x_{I+1}-2 x_{I}+x_{I-1}\right)\right\}
$$

Lagrange's Formulation of Mechanics Least-Action Principle

An energy formulation useful when there are symmetry conditions in polar or spherical coordinates or other non-cartesian coordinates:

$$
\begin{gathered}
\mathcal{L}(y, \dot{y})=K-\phi \\
\delta \int_{t_{1}}^{t_{2}} \mathcal{L} d t=0 \rightarrow \frac{d}{d t}(\partial \mathcal{L} / \partial \dot{y})=(\partial \mathcal{L} / \partial y) \\
\mathcal{L}(y, \dot{y})=m\left(\dot{y}^{2} / 2\right)-m g y
\end{gathered}
$$

$$
(d / d t) m \dot{y}=m \ddot{y}=-m g \rightarrow \ddot{y}=-g \quad \longrightarrow
$$

Galileo's experiment?

Hamiltonian Formulation of Mechanics

An energy formulation that must be used in quantum mechanics!

$$
\dot{q}=+(\partial \mathcal{H} / \partial p) ; \dot{p}=-(\partial \mathcal{H} / \partial q)
$$

Particle in a gravitational field

$$
\begin{aligned}
& \mathcal{H}\left(y, p_{y}\right)=K+\Phi=p_{y}^{2} / 2 \boldsymbol{m}+\boldsymbol{m} g y \\
& \dot{y}=+(\partial \mathcal{H} / \partial p)=+\boldsymbol{p} / \boldsymbol{m} \\
& \dot{p}_{y}=-(\partial \mathcal{H} / \partial y)=-\boldsymbol{m} \boldsymbol{g} \\
& \left\{\dot{y}=\boldsymbol{p} / \boldsymbol{m} ; \dot{p}_{y}=-\boldsymbol{m} \boldsymbol{g}\right\} \rightarrow \ddot{y}=-\boldsymbol{g}
\end{aligned}
$$

William Rowan Hamilton 1805-1865

One dimensional chain with $\mathbf{m}=\kappa=1$
$\left\{\mathcal{H}\left(x, p_{x}\right)=\frac{1}{2}\left(x_{I}-x_{I-1}\right)^{2}+\frac{1}{2}\left(x_{I}-x_{I+1}\right)^{2}+\frac{1}{2} p_{x}^{2}+\cdots\right\}$
(Similar terms for other particles in the chain)

$$
\left\{\dot{x}_{I}=p_{I} ; \quad \dot{p}_{I}=\left(q_{I+1}-q_{I}+q_{I-1}\right)\right\}
$$

Hamilton's Least Action Principle

Consider discrete paths in Hamilton's Least Action Principle :

$$
\begin{gathered}
\delta \int \mathcal{L} d t=0 \text { for } \mathcal{L}=K-\phi \\
\int_{-d t}^{+d t} \delta\left[\frac{1}{2} m\left(\frac{x_{0}-x_{-1}}{d t}\right)^{2}+\frac{1}{2} m\left(\frac{x_{0}-x_{+1}}{d t}\right)^{2}-\phi\right] d t^{\prime}=0
\end{gathered}
$$

Exchange the variation and the integration and evaluate the variation of the integrand :

$$
\delta=\delta x_{0} \frac{\partial}{\partial x_{0}} \rightarrow \delta x_{0}\left[m\left(\frac{x_{0}-x_{-1}}{d t}\right)+m\left(\frac{x_{0}-x_{+1}}{d t}\right)-\frac{\partial \phi}{\partial x_{0}}\right]
$$

Since δx_{0} is arbitrary, its coefficient must vanish in the interval ($-\mathrm{dt},+\mathrm{dt}$) :

$$
x_{+1}-2 x_{0}+x_{-1}=\frac{F_{0}}{m} d t^{2}
$$

This is the Störmer integration algorithm derived from the Least Action Principle!

2. Numerical Integration

Numerically Integrating the Equations of Motionfor the Harmonic Oscillator

- The Harmonic Oscillator as a Standard Test Problem The harmonic oscillator equation(s) are a good standard test case for comparing numerical integration methods. The solution is known and can be used for calculating the error in the numerical solution. Amplitude, phase, and energy errors can be calculated. The known oscillator solution can be used to fill in points needed in algorithms that are not self starting.
- Programming Assignments

We recommend that students program the harmonic oscillator problem (using the Runge-Kutta fourth-order algorithm) and other problems as time permits. By doing this class members will have sufficient experience to program problems described in the next several lectures.

- Compiler and Graphics Software

The gfortran Fortran compiler and gnuplot graphics software is available and we will provide advice for using it between this lecture and the next lecture. Students need to write their own programs rather than using packaged software such as Mathematica or MatLab. Students who program in C rather than Fortran can use the standard C compiler.

gfortran : Free Fortran Compiler gnuplot : Free Computer Graphics Software

gfortran is a Fortran standard compiler. Downloads for the binaries are available for most systems.

Well documented and conforms to standards up to the year 2000.
Trivial to install on Mac systems and Linux. Harder to install on Windows systems. Use Google search for gfortran downloads .
ginuplot is free graphics software used quite often for scientific research.
Well documented with a large collection of demonstration problems .
Google search gnuplot will take you to the Home page.
Our uses: Publications and books, research projects
Graphics capability :
Line plots, point plots, contour plots, color labeling, multiple plots per page. Many advanced capabilities include3d hidden surfaces, transparency, and coloring of surfaces.

Gnuplot Examples

Example script file

```
set title "Plot the data in the files fort.10 and fort.11"
```

set xrange [0,1]
set yrange [0,10]
plot "fort.10" u 1:2 with lines lt 2 lw 2
replot "fort. 11 " u 1:2 with points pt 6 ps 2
set terminal postscript landscape color
set out "line-Pointplot.ps"
replot
set term x11
set out

Gnuplot Demo Plots in Three dimensions

4D data (3D Heat Map)
Independent value color-mapped onto 3D sufface
4 data columns $\times / y / z /$ color

Fourth-Order Runge-Kutta Algorithm

Compute r, v by averaging 4 values of derivatives $\mathrm{t}=\{0, \mathrm{dt} / 2, \mathrm{dt}\}$:

$$
\begin{aligned}
& r(d t)=r(0)+\frac{d t}{6}\left(v_{1}+2 v_{2}+2 v_{3}+v_{4}\right) \\
& v(d t)=v(0)+\frac{d t}{6}\left(a_{1}+2 a_{2}+2 a_{3}+a_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& r_{1}=r(0) ; \dot{r}_{1}=v_{1}=v(0) ; \dot{v}_{1}=a_{1}\left(r_{1}\right) ; \\
& r_{2}\left(\frac{d t}{2}\right)=r_{1}+\frac{d t}{2} v_{1} ; v_{2}\left(\frac{d t}{2}\right)=v_{1}+\frac{d t}{2} a_{1} ; a_{2}=\dot{v}_{2} ; \\
& r_{3}\left(\frac{d t}{2}\right)=r_{1}+\frac{d t}{2} v_{2} ; v_{3}\left(\frac{d t}{2}\right)=v_{1}+\frac{d t}{2} a_{2} ; a_{3}=\dot{v}_{3} ; \\
& r_{4}(d t)=r_{1}+v_{3} d t ; v_{4}(d t)=v_{1}+\frac{d t}{2} a_{3} .
\end{aligned}
$$

The Program Structure for the Harmonic Oscillator Dynamics

$$
\begin{aligned}
& \dot{q}=+\boldsymbol{p} \\
& \dot{p}=-q
\end{aligned} \longrightarrow \begin{array}{ll}
\mathrm{yy}(1)=q \\
\mathrm{yy}(2)=p
\end{array} \quad \begin{aligned}
& \mathrm{yyp}(1)=p \\
& \mathrm{yyp}(2)=-q
\end{aligned}
$$

c Main program for the oscillator
parameter (neq = 2)
implicit double precision(a-h,o-z)
dimension yy(neq),yyp(neq)
real*8 ke
$d t=2.0 d 00 * 3.141592653589793 d 00 / 30.0 \mathrm{~d} 00$
time $=0.0 \mathrm{~d} 00$
itmax $=30$
c initial condition
$q=1.0 \mathrm{~d} 00$
$p=0.0 \mathrm{~d} 00$
c Runge-Kutta storage
$y y(1)=q$
yy(2) $=$ p
do $i=1$,itmax
call rk4(yy,yyp,dt)
time $=1 * d t$
$q=Y Y(1)$
p = Yy(2)
write $(64,64)$ time, q, p
64 format(2f15.8," q,p")
pot $=.5 \mathrm{~d} 00 * \mathrm{q} * \mathrm{q}$
$\mathrm{ke}=.5 \mathrm{~d} 00 * \mathrm{p} * \mathrm{p}$
etot $=k e+\operatorname{pot}$
write(74,*)time,ke, pot,etot,i
end do
stop
end
ени
subroutine rk4(yy,yyp,dt)
parameter (neq = 2)
implicit double precision(a-h,o-z)
dimension yy(neq), yyp(neq)
dimension yak1(neq),yak2(neq),yak3(neq),
\& yak4(neq),ynew(neq)
return
end
subroutine fcn(yy,yyp)
parameter (neq = 2)
implicit double precision(a-h,o-z)
dimension yy(neq),yyp(neq)

$$
q=y y(1)
$$

$$
\begin{aligned}
& p=y y(2) \\
& f=-\alpha
\end{aligned}
$$

$$
f=-q
$$

$\operatorname{yyp}(1)=p$
yyp(2) $=-q$
retur
end

```
Two Fourth Order Runge-Kutta Integrators for the Harmonic Oscillator
                    4 force evaluations
    Compute solution vector and derivatives at time steps \(0, \mathrm{dt} / 2, \mathrm{dt} / 2, \mathrm{dt}\)
    Compute yy in subroutine rk4; Compute yyp in fen
We use 2 subroutines to evaluate derivatives and the righthand sides
\(\dot{q}=p\)
\(\dot{p}=-q\)\(\longrightarrow \begin{aligned} & \mathrm{yy}(1)=\mathrm{q} \\ & \mathrm{yy}(2)=\mathrm{p}\end{aligned} \quad \begin{aligned} & \mathrm{yyp}(1)=\mathrm{p} \\ & \mathrm{yyp}(2)=-\mathrm{q}\end{aligned}\)
```

```
call fcn(yy,yyp)! Right handside evaluation
```

call fcn(yy,yyp)! Right handside evaluation
yak1 = yyp
yak1 = yyp
ynew = YY + (dt/2)*yak1 ! Solution update
ynew = YY + (dt/2)*yak1 ! Solution update
call fcn(ynew,yyp)
call fcn(ynew,yyp)
yak2 = yyp
yak2 = yyp
ynew = yy + (dt/2)*yak2
ynew = yy + (dt/2)*yak2
call fcn(ynew,yyp)
call fcn(ynew,yyp)
yak3 = yyp
yak3 = yyp
ynew = yy + dt*yak
ynew = yy + dt*yak
call fcn(ynew,yyp)
call fcn(ynew,yyp)
yak4 = yyp
yak4 = yyp
! Average of 4 approximate solutions
! Average of 4 approximate solutions
yyp = (yak1 + 2*yak2 + 2*yak3 + yak4)/6
yyp = (yak1 + 2*yak2 + 2*yak3 + yak4)/6
yy = yy + dt*yyp
yy = yy + dt*yyp
call fen(yy,yyp)
call fen(yy,yyp)
call fen(yy,yyp)
yak1 = yyp
yak1 = yyp
yak1 = yyp
ynew = YY + (dt/3)*yak1
ynew = YY + (dt/3)*yak1
ynew = YY + (dt/3)*yak1
call fcn(ynew,yYp)
call fcn(ynew,yYp)
call fcn(ynew,yYp)
yak2 = yyp
yak2 = yyp
yak2 = yyp
ynew = yy - (dt/3)*yak1 + dt*yak2
ynew = yy - (dt/3)*yak1 + dt*yak2
ynew = yy - (dt/3)*yak1 + dt*yak2
call fon(ynew,yyp)
call fon(ynew,yyp)
call fon(ynew,yyp)
yak3 = yyp
yak3 = yyp
yak3 = yyp
ynew = yy + dt*(yak1 - yak2 + yak3)
ynew = yy + dt*(yak1 - yak2 + yak3)
ynew = yy + dt*(yak1 - yak2 + yak3)
call fon(ynew,yyp)
call fon(ynew,yyp)
call fon(ynew,yyp)
yak4 = yyp
yak4 = yyp
yak4 = yyp
yyp = (yak1 + 3*yak2 + 3*yak3 + yak4)/8
yyp = (yak1 + 3*yak2 + 3*yak3 + yak4)/8
yyp = (yak1 + 3*yak2 + 3*yak3 + yak4)/8
yy = yy + dt*yyp

```
yy = yy + dt*yyp
```

yy = yy + dt*yyp

```

Fifth Order Runge-Kutta Integrator
6 force evaluations
```

call fon(yy,yyp)
yak1 = yyp
ynew = yy + (dt/2)*yak1
call fcn(ynew,yyp)
yak2 = Yyp
ynew = YY + (3*yak1 + yak2)*dt/16
call fcn(ynew,yyp)
yak3 = yyp(i)
ynew = yy + yak3*dt/2
call fcn(ynew,yyp)
yak4 = Yyp
ynew = yy + (-3*yak2 + 6*yak3 + 9*yak4)*dt/16
call fcn(ynew,yyp)
yak5 = yyp
ynew = YY + (yak1 + 4*yak2 + 6*yak3 - 12*yak4 + 8*yak5)*dt/7
call fcn(ynew,yyp)
yak6 = yyp
yyp = (7*yak1 + 32*yak3 + 12*yak4 + 32*yak5 + 7*yak6)*dt/90
yy = yy + dt*yyp(i)

```

\section*{Two Fourth Order and One Fifth Order Runge-Kutta Integrator One Harmonic Oscillator Period}


\section*{Three Integrators Compared}

Milne's method for the second order differential equation for the oscillator
\[
y_{+1}=2 y_{0}-y_{-1}+\frac{\left(d t^{2}\right)}{12}\left(y_{+1}^{\prime \prime}+10 y_{0}^{\prime \prime}+y_{-1}^{\prime \prime}\right)
\]

To approximate the second order equation for \(q\), substitute
\[
y=q, \quad y^{\prime \prime}=-q
\]

Similarly for \(\mathbf{p}\).
Rahman's method (trapezoidal rule) : Fast convergence for periodic functions
\[
\begin{aligned}
& q_{+}=\boldsymbol{q}_{\mathbf{0}}+\frac{d t}{2}\left(\dot{\boldsymbol{q}}_{\mathbf{0}}+\dot{\boldsymbol{q}}_{+}\right) \\
& \boldsymbol{p}_{+}=\boldsymbol{p}_{\mathbf{0}}+\frac{d t}{2}\left(\dot{\boldsymbol{p}}_{\mathbf{0}}+\dot{\boldsymbol{p}}_{+}\right)
\end{aligned}
\]
\(f(t)\)


Leap frog: Add two Taylor's series together \(\rightarrow f\left(t_{0}+d t\right)+f\left(t_{0}-d t\right)\)
\[
\begin{aligned}
& q_{+}=2 q_{0}-q_{-}+\frac{d t^{2}}{2} \ddot{q}_{0} \\
& p_{+}=2 p_{0}-p_{-}+\frac{d t^{2}}{2} \ddot{p}_{0}
\end{aligned}
\]

\section*{Three Integrators: Milne, Rahman, Leap Frog One Harmonic Oscillator Period}


Simpson's method is better than Rahman's method. Test it with the oscillator.

\section*{3. Equations of State}

\section*{The Connection Between Atomistic Dynamics and Thermodynamics}
- A thermodynamic state with energy E can be specified with three variables, temperature, pressure, and volume. The functional relationship between the three variables is the equation of state. Any of the three can be expressed as a function of the other two .
- The ideal gas law , PV = NkT, is measured experimentally and the ideal gas thermometer is the accepted standard for measuring temperature.
- The Virial Theorem links the atomistic coordinates, velocities, and forces to pressure and volume .
- A temperature gradient causes heat to flow from hot to cold. The Heat Theorem links the time-averaged convective flux of heat to the interparticle forces which contribute to both heat flow and work.

\section*{How is temperature defined?}

The ideal gas law, \(P V=N k T\), is an experimentally measured equation of state and is the standard set for thermometers. The energy of an ideal gas which is sufficiently dilute has negligible potential energy. The energy is all kinetic.

We construct a thermometer as a heat reservoir with an infinite number of degrees of freedom described by the motion of ideal gas particles. Placed in contact with an isolated system the thermometer exchanges heat energy with the system to impose the constant temperature of the ideal gas.

Analysis from statistical mechanics and kinetic theory shows that temperature is the comoving kinetic energy :
\[
(\mathrm{kT} / \mathrm{m}) \equiv\left\langle v_{x}^{2}\right\rangle=\left\langle v_{y}^{2}\right\rangle=\left\langle v_{z}^{2}\right\rangle .
\]

\section*{Van Der Waals Equation of State: Surface and Isotherms}
\[
(\boldsymbol{V}-\boldsymbol{b})\left(\boldsymbol{P}+\frac{\boldsymbol{a}}{\boldsymbol{V}}\right)=\boldsymbol{R} \boldsymbol{T} \quad \text { Van der Waals Equation of State }
\]



Equations of state are represented with phase diagrams in two or three dimensions. Equilibrium Phase diagrams can be calculated with Monte-Carlo methods or Molecular dynamics and compared to experimental data.

\section*{Thermodynamics \& Hydrodynamics from Dynamics}

Equilibrium state variables: E, V ;
\[
\{F=m a\} \rightarrow \mathbf{T} \text { and } \mathbf{P} .
\]

Dynamics: Compute \(\mathbf{P}\) and T from :
\[
(x, y, z),\left(v_{x}, v_{y}, v_{z}\right),\left(F_{x}, F_{y}, F_{z}\right)
\]

Define kinetic temperature as the mean squared values of the velocity components :
\[
(k T / m) \equiv\left\langle v_{x}^{2}\right\rangle=\left\langle v_{y}^{2}\right\rangle=\left\langle v_{z}^{2}\right\rangle .
\]

\section*{Use the Virial Theorem for the Pressure Tensor P}

\section*{Away from equilibrium :}

Use the Heat Theorem for the Heat-Flux vector \(Q\)

\section*{The Virial Theorem for the Pressure Tensor \(\mathbf{P}\)}
\[
\underbrace{\mathrm{y}} \begin{aligned}
& \boldsymbol{r}_{i}=\phi_{j}=\frac{1}{2} \phi \\
& f_{i}=-f_{j}
\end{aligned}
\]

Multiply x-component the pairwise force components by the coordinate :


Rudolf Clausius 1822-1888

Notice also : \(\boldsymbol{m}(d / d t)\left\langle x_{i} \dot{x}_{i}\right\rangle=\boldsymbol{m}\left\langle\dot{x}_{i}^{2}\right\rangle+\boldsymbol{m}\left\langle x_{i} \ddot{x}_{i}\right\rangle\)
Consider the x-component and time average over all particles and add wall forces.
\[
\sum_{i} m\left\langle x_{i} \ddot{x}_{l}\right\rangle=\sum_{i j}\left\langle x \cdot F_{i j}\right\rangle-P_{x x} V=\sum_{i} m(d / d t)\left\langle x_{i} \dot{x}_{l}\right\rangle-\sum_{i} m\left\langle\dot{x}_{i}^{2}\right\rangle
\]
where \(x_{i} \dot{x}_{l}\) is a bounded quantity and \(N k T_{x x}=\sum_{i} m\left\langle\dot{x}_{i}^{2}\right\rangle\) in two dimensions.
The long-time derivative of a bounded quantity is zero, giving the Virial Theorem .
\[
P_{x x} V=\sum_{i j}\left(f x^{2} / r\right)_{i j}+N k T_{x x}
\]

\section*{The Heat Theorem for the Heat-Flux Vector Q}
In a temperature gradient heat flows from hot to cold.
\[
Q=-\kappa \nabla T
\]
The convective part of the heat flux is associated with the velocity and the energy in the volume.
1768-1830
\(\sum \dot{E}_{i}=\frac{1}{m} \sum \boldsymbol{p}_{i} \cdot \boldsymbol{F}_{i j}+\frac{1}{2 m} \sum\left(-\boldsymbol{F}_{i j} \cdot \dot{\boldsymbol{r}}_{\boldsymbol{i}}-\boldsymbol{F}_{\mathrm{ji}} \cdot \dot{\boldsymbol{r}}_{j}\right)=\frac{1}{2 m} \sum \boldsymbol{F}_{i j} \cdot\left(\dot{\boldsymbol{p}}_{i}+\boldsymbol{p}_{j}\right)\)
Notice that : \(\quad \frac{d}{d t} \sum\left\langle r_{i} \dot{E}_{i}\right\rangle=\frac{d}{d t} \sum\left\langle r_{i} E_{i}\right\rangle-\frac{d}{d t} \sum\left\langle\dot{r}_{i} E\right\rangle\)
\(\sum\left\langle r_{i} \dot{E}_{i}\right\rangle=\frac{1}{2 m} \sum\left\langle r_{i} F_{i j} \cdot\left(p_{i}+p_{j}\right)\right\rangle+\frac{1}{m} \sum\left\langle p_{i} E\right\rangle=\sum\left\langle r_{i} \dot{E}_{i}^{\text {wall }}\right\rangle\)
\[
Q_{i} \delta V=\sum_{i}(v E)_{i}+\sum_{i j} x_{i j}\left[F_{i j} \cdot\left(v_{i}+v_{j}\right)\right] / 2
\]

\section*{4. Monte-Carlo Methods}
- Two random number generators
- Monte-Carlo generation of the Maxwell Boltzmann distribution and moments
- Equilibrium Monte-Carlo Averages, Mayer cluster integrals, pair distribution and collision rate

\section*{Time Reversible Two-Seed Random Number Generator Frederico Ricci-Tersenghi}
```

function rund(intx,inty)
i = 1029*intx + 1731
j = i + 1029*inty + 507*intx - 1731
intx = mod(i,2048)
j = j + (i - intx)/2048
inty = mod(j,2048)
rund = (intx + 2048*inty)/4194304.0
return
end

```

Use the program "federico" in arxiv:1305.0961v2 ending the loops with 7 and write the seeds for 7 random numbers. Write another program to read the file of seeds and write out both forward and reverse numbers. Notice that the random number seeds are reversed when rund is called with the seeds Intx = 1862 and inty = 1347. The random numbers generated are :
\begin{tabular}{llll}
1 & 0.67508363723754883 & 0.74579644203186035 \\
2 & 0.16147541999816895 & 0.65815877914428711 \\
3 & 0.90861988067626953 & 0.97026991844177246 \\
4 & 0.97026991844177246 & 0.90861988067626953 \\
5 & 0.65815877914428711 & 0.16147541999816895 \\
6 & 0.74579644203186035 & 0.67508363723754883
\end{tabular}

How do you decide if this is a good random number generator?

\section*{Moments of the Maxwell-Boltzmann Velocity Distribution using the Monte-Carlo Method}

Sample 1, 000, 000 velocity values from the Maxwell-Boltzmann distribution


Pick: \(-\frac{1}{2} \leq \mathcal{R}_{1} \leq \frac{1}{2}\)
Set : \(v_{0}=10 \mathcal{R}_{1}\)
Calculate : \(M B=e^{-v_{0}^{2} / 2}\)
Pick : \(0 \leq \mathcal{R}_{2} \leq \mathbf{1}\)
If \(M B \leq \mathcal{R}_{\mathbf{2}}\) then accept
Otherwise, try again .

\section*{Moment Calculations Using Maxwell-Boltzmann Monte-Carlo Results}

Construct a Maxwell-Boltzmann density function Set up a grid of velocity values and count the velocities in each bin. Plot the probability for each bin :
\[
\mathrm{p}=(\# \text { in bin }) /(\text { total } \#)
\]

Plot the analytical curve.

- Use Monte-Carlo to calculate the moments of the Maxwell-Boltzmann distribution. With 4 batches of 100,000 trials the first, second, and \(4^{\text {th }}\) moments were converging. The \(6^{\text {th }}\) moment was too high. The random number generator, rund, was incapable of producing the \(6^{\text {th }}\) moment correctly! The Box-Muller algorithm is one good way in which to solve this problem.
Using the Fortran intrinsic random number generator, rand, with the same procedure and averaging the results of the four batches, the results are :
\[
\langle v\rangle=0.0005 ;\left\langle v^{2}\right\rangle=.9996 ;\left\langle v^{4}\right\rangle=2.9985 ;\left\langle v^{6}\right\rangle=15.0195
\]

\section*{Student problems :}
- Calculate the moments analytically. Make sure you normalize your results.
- Calculate the moments using Monte-Carlo and determine the number of trials needed for convergence within .01 .
- Notice the odd moments vanish. Why?

\section*{Equation of State Averages from Statistical Mechanics Hard-Disk Monte Carlo}

The virial expansion is a representation of the pressure in powers of the density :
\[
\begin{aligned}
& (P V / N k T)-1=B_{1}\left(\frac{A_{0}}{A}\right)+B_{2}\left(\frac{A_{0}}{A}\right)^{2}+B_{3}\left(\frac{A_{0}}{A}\right)^{3}+\cdots \text { Hard disks } \\
& B_{2}=\pi / 3^{1 / 2} ; B_{3}=4 \pi^{2} A_{3,3} / 9 ; B_{4}=\pi^{3}\left(6 A_{4,5}-3 A_{4,4}-A_{4,6}\right) / 3^{3 / 2}
\end{aligned}
\]

The \(A_{i, j}\) are cluster integrals and represent the volume in configuration space in which \(i\) particles form \(j\) bonds. The Mayer functions describing the clusters are integrated over the volume and are proportional to the constants in the density expansion \({ }^{1}\). In Reference [2] below a Modified Monte Carlo technique is described which uses interacting hard spheres to numerically compare with the expansion using cluster integrals developed by the Mayers.
1. J. E. Mayer M. G. Mayer, Statistical Mechanics, (John Wiley and Sons, Inc., New York, 1940) pp. 277-2911.
2. Nicholas Metropolis, Ariana W. Rosenbluth, Marshall N. Rosenbluth, Augusta Teller, and Edward Teller, "Equation of State Calculations by Fast Computing Machines,

\section*{Mayer Cluster integrals}

The virial coefficients are proportional to the "star" cluster integrals developed by the Mayers. The Mayer derivation involves expanding the partition function in terms of the product of single particle distributions to form two, three, ... , n-particle distributions. These doubly-connected products represent clusters formed by bonds between the n-particles. Below are examples of the star clusters formed for 3,4 , and 5 particles. The subscripts ( \(i, j\) ) denote the number of particles and the number of Mayer f-bonds in the configuration. Each figure denotes a unique configuration.



\(A_{5,6}{ }^{1}\)



\(A_{5,7}\)


\(\mathrm{A}_{5,6 "}\)


\section*{Mayer Cluster integral for three particles}
\[
\begin{aligned}
& f_{i, j}=e^{\left(-\emptyset\left(r_{i}-r_{j}\right) / k T\right)}-1 \\
& f_{i, j}=-1 \text { for overlapping hard spheres } \\
& f_{i, j}=0 \text { for nonoverlapping hard spheres }
\end{aligned}
\]

Calculate the Multidimensional cluster Integral for hard spheres :
\[
\begin{aligned}
& I=\int \ldots \int d x_{12} d x_{13} d y_{12} d y_{13}\left(f_{12} f_{23} f_{31}\right) \\
& \quad f_{i j}=-1 \text { if } r_{i j}<\sigma ; f_{i j}=0 \text { if } r_{i j}>\sigma
\end{aligned}
\]
\[
\begin{aligned}
B_{3}=-(1 / 3) I & =0.625\left(B_{2}\right)^{2} \text { in 3D } & & B_{2}=2 / 3\left(\pi \sigma^{3}\right) \text { in } 3 \text { dimensions } \\
& =0.782\left(B_{2}\right)^{2} \text { in 2D } & & B_{2}=1 / 2\left(\pi \sigma^{2}\right) \text { in } 2 \text { dimensions } \\
& =1.000\left(B_{2}\right)^{2} \text { in 1D } & & B_{2}=\sigma \quad \text { in one dimension }
\end{aligned}
\]

\section*{Student Problem}

Calculate the third virial coefficient in one, two, and three-dimensions for \(\sigma=1\) using Monte-Carlo integration.

\section*{Calculation of \(\mathrm{B}_{3}\) in Three Dimensions}
```

implicit double precision (a-h,o-z)
top = 0
bot = 0
intx = 0
inty = 0
itmax = 10 000 000
iout = itmax/10
do it = 1,itmax
x3 = rund(intx,inty)*2 - 1
y3 = rund(intx,inty)*2 - 1
z3 = rund(intx,inty)*2 - 1
x2 = rund(intx,inty)*2 - 1
y2 = rund(intx,inty)*2 - 1
z2 = rund(intx,inty)*2 - 1
r12 = dsqurt(x2*x2 + y2*y2 + z2*z2)
r13 = dsqrt(x3*x3 + y3*y3 + z3*z3)
r23 = dsqrt((x2-x3)**2 + (y2-y3)**2 + (z2-z3)**2)
if((r12.lt.1).and.(r13.lt.1).and.(r23.lt.1)) top = top + 1
if((r12.lt.1).and.(r13.lt.1)) bot = bot + 1
if(iout*(it/iout).eq.it) write(6,*) top,bot,top/bot,15/32.0d00
enddo
stop
end

```

\section*{Equilibrium Monte-Carlo Method for Canonical Averages}

It follows from statistical mechanics that phase-space averages calculated by weighting microstates with the Boltzmann factor will converge to the canonical-ensemble averages for a physical variable \(X(q, p)\) :
\[
\langle X\rangle=\Sigma X_{i} e^{-E_{i} / k T} / \Sigma e^{-E_{i} / k T}
\]

For more than a few degrees of freedom random sampling of phase space will generate very few, if any at all, accepted microstates. This follows because the ratio of the occupied and the unoccupied part of phase space is close to zero. The Modified Monte Carlo Method of Metropolis, the Rosenbluths', and Tellers' corrects this deficiency for hard disks by examining microstates with relatively small energy changes, \(\Delta \phi=k T\), in configuration space only. Then the microstate weights are not needed! The microstates are weighted evenly.
\[
\langle X\rangle=\Sigma X_{i} / \Sigma 1
\]

The detailed steps in the algorithm are listed on the next vugraph.

\section*{The Modified Equilibrium Monte Carlo Method}
1. Generate a microstate with \(\mathbf{N}\) particles.
2. Select a particle randomly: \(i=(N-1) R N+1\); Make a trial move less than a maximum step size.
3. Compute the energy. If it goes down, accept the move and update averages.
4. If the energy increased, select another random number. If this latter random number is less than the Boltzmann factor, accept the move.
5. Update the averages using the "new" configuration if the move was accepted.
6. Update the averages using the "old" configuration if the move was rejected.
7. If the number of steps is less than the total desired number of steps go to 2.
8. Stop when the total number of steps is reached.

Accuracy: A useful idea is to divide all the data into two, five, ten, or seventeen batches so that you can relate the standard deviation to the uncertainty of the average value.

\section*{Results for the Monte-Carlo Equation of State by Metropolis, Rosenbluths, Tellers}

Table I. Results of this calculation for \((P A / N k T)-1=X_{1}\) compared to the free volume theory \(\left(X_{2}\right)\) and the four-term virial expansion ( \(X_{3}\) ). Also ( \(P A_{0} / N k T\) ) from our calculations.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\nu\) & ( \(A / A_{0}\) ) & \(X_{1}\) & \(X_{2}\) & \(X:\) & ( \(P A_{0} /{ }^{\prime} k T\) ) & \\
\hline 2 & 1.04269 & 49.17 & 47.35 & 9.77 & 48.11 & \\
\hline 4 & .1.14957. & .13.95 & -13.85 & 7.55 & 13.01 & Solid phase \\
\hline 5 & 1.31966 & 6.43 & 6.72 & 5.35 & 5.63 & \\
\hline 5.5 & 1.4909 & 4.41 & 4.53 & 4.02 & 3.63 & \\
\hline 6 & 1.7962 & 2.929 & 2.939 & 2.680 & 2.187 & \\
\hline 6.25 & 2.04616 & 2.186 & 2.323 & 2.065 & 1.557 & \\
\hline 6.5 & 2.41751 & 1.486 & 1.802 & 1.514 & 1.028 & \\
\hline 7 & 4.04145 & 0.6766 & 0.990 & 0.667 & 0.4149 & - \\
\hline
\end{tabular}
\(X_{1}\) is the Monte-Carlo calculation.
\(X_{2}\) is the free volume estimate.
\(X_{3}\) is the four term virial series. Ten virial terms are known now.

The virial expansion only describes the fluid state.
Today these numbers are accurate to five figures.

\section*{Generate Configurations Using the Unit Cells and Periodic Boundary Conditions}


Bill Hoover


Berni Alder

Consider the effects of the calculated collision rate along on the Monte-Carlo averages.


Unit cells for 4, 12, 72 particles
William G. Hoover, and Berni Alder, "Studies in Molecular Dynamics. IV. The Pressure, Collision Rate, and their Number Dependence for Hard disks", Journal of Chemical Physics, 46 No. 2, pp. 686-691 (1966).

\section*{Pair Distribution Function}

The pair distribution function was used in the early days of molecular dynamics to compare potential models with neutron and xray diffraction results.

Consider the ratio of pairs of particles with separation distance in a range dr . The pair distribution is constructed with bins of length dr containing the ratio of the number of pairs for a potential \(\phi\) to the number of pairs for an ideal gas. We consider two potentials, an 8-4 potential and a repulsive potential.
\(\phi_{84}=\left(2-r^{2}\right)^{8}-2\left(2-r^{2}\right)^{4} ; r_{\text {cutoff }}=\sqrt{2}\)
\(\phi_{\text {repulsive }}=100\left(1-\mathbf{r}^{2}\right)^{4} ; r_{\text {cutoff }}=1.0\)
\(N_{k}^{\phi}=\# \operatorname{pairs}\left(r_{k} \leq r_{c}<r_{k+1}\right)\)
\(N_{k}^{\text {ideal gas }}=2 \pi r_{c} \operatorname{dr} N(N-1) / 2 V=\pi r_{c} d r(N-1) \rho\)

\(N_{k}=\frac{N_{k}^{\phi}}{N_{k}^{\text {ideal gas }}} \longrightarrow g\left(r_{k}\right)=\frac{\sum N_{k}}{\text { itmax }}\)

We use 400 bins of size 0.01 and \(\max \left(r_{c}\right)=4\) to construct \(g(r)\) shown next .


\section*{A Calculation of Equilibrium Averages with the Center of Mass set to Zero}

The center of mass motion should always be set to zero when periodic boundary conditions are used. The effect of this is to increase the collision rate and therefore the pressure. The Virial Theorem for hard disks (rearranged terms) is
\[
\frac{P A}{N k T}-1=\left\langle\sum_{i=1}^{N} r_{i} \cdot F_{i}\right\rangle / m \sum_{i=1}^{N} v_{i}^{2}=\left(N u^{2} \tau\right)^{-1} \sum_{\text {collisions }}^{i n \tau} r_{c} \cdot \boldsymbol{v}_{c}
\]
where the last term on the right is a collision term coming from the average over the internal pair forces and \(u^{2}\) and \(\tau\) are the mean squared velocity and the last sum measures the number of collisions occurring in a time \(\tau\).

Taking the ratio of the above equation with its low density form gives
\[
g(\sigma)=\frac{P A / N K T-1}{B_{2}(N / A)}=\frac{\Gamma}{\Gamma_{0}}
\]

Here \(B_{2}\) is the second Virial coefficient and the righthand side is the ratio of the high density to the low density collision rate. Both \(B_{2}\) and \(\Gamma_{0}\) are increased by the center of mass correction. The collision rates are calculated from molecular dynamics and agree with the calculation from the virial theorem as shown on the next vugraph.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Monte-Carlo Corrected Results for \(\mathrm{N}=12\)} \\
\hline 1/A。 & PA/NkTa & \[
\begin{gathered}
1090 \\
\text { collisions }
\end{gathered}
\] & Monte Carlo & Adjusted Monte Carlo & A/AO & Correct factor \\
\hline 1.100 & 21.9 & 2 & \(20.62 \pm 0.09\) & 22.40 & 1.100 & 1.090 \\
\hline 1.250 & 9.99 & 2 & \(9.18 \pm 0.06\) & 9.93 & 1.250 & 1.091 \\
\hline 1.350 & 8.10 & 20 & \(7.42 \pm 0.08\) & 8.01 & 1.350 & 1.091 \\
\hline 1.400 & 7.42 & 10 & \(6.86 \pm 0.08\) & 7.39 & 1.400 & 1.090 \\
\hline 1.450
1.475 & 6.93
6.61 & 10
20 & \(6.27 \pm 0.09\)
\(6.21 \pm 0.08\) & 6.75
6.69 & 1.450 & 1.091 \\
\hline 1.500 & 6.33 & 20 & \(5.91 \pm 0.05\) & 6.36 & 1.475 & 1.092 \\
\hline 1.525 & 6.17 & 20 & \(5.79 \pm 0.06\) & 6.22 & 1.500 & 1.091 \\
\hline 1.550 & 5.94 & 10 & \(5.52 \pm 0.06\) & 5.94 & 1.525 & 1.089 \\
\hline 1.600 & 5.56 & 10 & \(5.23 \pm 0.07\) & 5.61
.. & 1.525 & 1.089 \\
\hline 1.650
1.700 & 5.20
4.80 & 10
7 & \(\stackrel{.}{4.66 \pm 0.07}\) & 4.99 & 1.550
1.600 & 1.092 \\
\hline 1.800 & 4.26 & 4 & \(4.07 \pm 0.06\) & 4.34 & 1.600 & 1.090 \\
\hline 1.900 & 3.93 & 4 & . & - & 1.700 & 1.090 \\
\hline 2.000 & 3.54 & 4 & \(3.37 \pm 0.06\) & 3.59 & 1.800 & 1.087 \\
\hline 2.100
3.000 & 3.30
2.10 & 2 & & & 2.000 & 1.092 \\
\hline 3.000 & 2.10 & 2 & \(2.03 \pm 0.03\) & 2.12 & 3.000 & 1.087 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
* These data are accurate within about \(1 \%\). \\
\(A / A_{0}\) is the ratio of the area to the close-packed area. \\
Kinetic theory predicts The adjusted Monte-Carlo results show very good a correction of 1.091; agreement over the full range of densities! 12 particles give a correction 12/11.
\end{tabular}}} \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{5. Molecular Dynamics}
- Potential Models

Atomistic potential models, pair potentials, cutoff radius, three-body potential Reduced Units and the Principle of Corresponding States
- Initial Conditions

Positions, velocities, energy
- Boundary Conditions

Fixed and Periodic Boundary Conditions for the One-Dimensional Chain Mirror Boundary Conditions, Moving Boundaries, Shear Boundaries
- Normal Mode Solutions for the One Dimensional Chain

6-particle periodic chain
5-particle fixed boundary chain
- Time Reversibility

Levesque-Verlet Bit-Reversible Algorithm
- Calculational Efficiency

Neighbor Lists and Cell Model

\section*{The Development of Potential Models for Molecular Dynamics}

The interactions which determine bulk properties are primarily electrostatic in nature. A quantum mechanical treatment is the most fundamental treatment of these interactions. Fortunately there are several approximations which provide very good potential models for classical dynamics.
1. Born-Oppenheimer approximation : The ion coordinates can be used as the basis for the wave function calculations because of the electron to proton mass ratio, 1/1836. Experiments with \(\mathrm{He}-\mathrm{He}\) interactions confirm this approximation.
2. Forces between molecules are much weaker than intramolecular forces (vibrations) so that some molecules can be treated as rigid molecules with the location specified with the center of mass coordinate of the molecule. This is not the case for polymers.
3. Because of the mass ratio we can use classical dynamics and statistical mechanics and add quantum corrections.
4. Another simplification arises because to a first approximation the intermolecular potential is additive in the number of interacting particles within the range of the potential.
\[
\emptyset=\sum_{\text {pairs }} \emptyset\left(r_{i j}\right)+\sum_{\text {triples }} \emptyset\left(r_{i j}, r_{i k}, r_{j k}\right)+\cdots
\]

\section*{Lennard-Jones Potential Calculated Phase Diagram for Argon}
\(\phi_{L J}=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]\) 1925


Sir John Lennard-Jones


John Edward Jones received his Doctor of Science degree in 1924 at Cambridge and proposed the semiempirical force law. In 1925 he married Kathleen Lennard adding his wife's name to his to become Lennard-Jones. He was knighted in 1946, becoming Sir John Lennard-Jones.

FIG. 1, Phase diagram for the 6-12 fluid, as calculated by Hansen and Verlet (1969) (solid lines), and for argon (dashed line and circles). The comparison assumes \(\epsilon / k=119.8 \mathrm{~K}, \sigma\) \(=3.405 \AA\).

\section*{Lennard-Jones Potential}

Calculated Pair-Distribution function with quantum corrections
The pair distribution compared to experimental diffraction data.



John Barker 1925-1995
\(\phi_{L J}=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]\)
\(\phi_{B F W}\) is a pair potential with three-body angle-dependent and quantum corrections.
\[
\begin{aligned}
\phi_{B F W}=\epsilon & \left(\mathrm { e } ^ { \alpha ( 1 - \overline { r } ) } \left(A_{0}+A_{1}(\bar{r}-1)+A_{2}(\bar{r}-1)^{2}+A_{3}(\bar{r}-1)^{3}+\right.\right. \\
& \left.\left.A_{4}(\bar{r}-1)^{4}+A_{5}(\bar{r}-1)^{5}\right)-\left(\frac{C_{6}}{\delta+\bar{r}^{6}}+\frac{C_{8}}{\delta+\bar{r}^{8}}+\frac{C_{10}}{\delta+\bar{r}^{10}}\right)\right)
\end{aligned}
\]

Barker, J. A. , D. Henderson, and R. O. Watts, 1970, Phys. Lett. 31A, 48.

\section*{Lennard-Jones Potential Parameters for Atoms}
\[
\phi_{L J}=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
\]
\begin{tabular}{llrr}
\hline Atom & Source & \(\varepsilon / k_{\mathrm{B}}(\mathrm{K})\) & \(\sigma(\mathrm{nm})\) \\
\hline H & [Murad and Gubbins 1978] & 8.6 & 0.281 \\
He & [Maitland et al. 1981] & 10.2 & 0.228 \\
C & [Tildesley and Madden 1981] & 51.2 & 0.335 \\
N & [Cheung and Powles 1975] & 37.3 & 0.331 \\
O & [English and Venables 1974] & 61.6 & 0.295 \\
F & [Singer et al. 1977] & 52.8 & 0.283 \\
Ne & [Maitland et al. 1981] & 47.0 & 0.272 \\
S & [Tildesley and Madden, 1981] & 183.0 & 0.352 \\
Cl & [Singer et al. 1977] & 173.5 & 0.335 \\
Ar & [Maitland et al. 1981] & 119.8 & 0.341 \\
Br & [Singer et al. 1977] & 257.2 & 0.354 \\
Kr & [Maitland et al. 1981] & 164.0 & 0.383 \\
\hline
\end{tabular}

\section*{Model Potentials Characterizing Material Behavior}

\section*{Embedded-Atom Potentials for Metals :}

Experimental data provide parameters for potentials for specific materials. Models for material behavior can be approximated from these data.
Electrons in a metal form a charge-neutralizing background for the motion of the ions. The potentials for our two-dimensional copper simulations were a Lennard-Jones 6-12 potential and a density-dependent attractive potential, \(\phi_{\mathrm{EA}} \approx(\rho-1)^{2} / 2\), modeling the electronic distribution.

Long-Range Electrostatic Potentials
The method of Ewald sums is a reliable technique for calculating the long range interactions without resorting to the \(\mathbf{N}^{2}\) computational effort in the sum over all of the particles. The method is based on Fourier series and applies to periodic boundaries only. Ewald sums and related methods are described in detail in Frenkel and Smit's book.

Potentials Fit to Experimental Data
Curve-fitted experimental data has resulted in libraries of equation of state data for large collections of materials used at the National Laboratories in the United States.

Daan Frenkel and Berend Smit, Understanding Molecular Simulation : From Algorithms to Applications, Academic Press, New York (2002).

\section*{Cutoff Radius for Pair Potentials}
- To prevent large numerical errors the attractive part of the potential must vary smoothly from the minimum in the potential to the cutoff radius.
- The radius at the minimum energy in the Lennard-Jones is \(2^{1 / 6}\).

For \(\sigma=1\) and \(\varepsilon=1\) this corresponds to a minimum energy of -1 . The radius, \(1 / r^{6}=0.01\), corresponds to a cutoff radius between 2.0 and 3.0 . Typically for argon the value used is \(\mathrm{r}=2.6\).
\[
\phi_{L J}=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
\]
- Spline fits are a good choice to smoothly extend the potential from the minimum to the cutoff radius.
\[
\begin{aligned}
\phi & =C\left(1-r^{2}\right)^{4} \\
\phi & =C(1-r)^{3} \\
\phi & =C(1-r)^{4} \\
\phi & =C\left(1-6 r^{2}+8 r^{3}-3 r^{4}\right) \\
& \text { Dense fluid potentials }
\end{aligned}
\]

\footnotetext{
Yun Long, et. al., "On the molecular origin of highpressure effects in nanoconfinement: The role of surface chemistry and roughness", J. Chem. Phys. 139, 144701 (2013).
}

\section*{Beyond Two Body Pair Potentials \(\rightarrow\) Three Body Potentials}

Three-body potentials are needed when three atoms are close enough to interact with each other.
Quantum mechanical perturbation theory is used to compute three-body interactions between the electrons of the three atoms which have induced multipole interactions. The Axilrod-Teller potential, \(\mathrm{V}_{\mathrm{ijk}}\), is an example of dipole-dipole interactions.


Edward Teller 1908-2003
\(V_{i j k}=E_{0}\left[\frac{1+3 \cos \left(\gamma_{i}\right) \cos \left(\gamma_{j}\right) \cos \left(\gamma_{k}\right)}{\left(r_{i j} r_{j k} r_{i k}\right)^{3}}\right]\)
1943


Where \(\mathrm{r}_{\mathrm{ij}}\) is the distance between the atoms \(I\) and j , and \(\gamma_{\mathrm{i}}\) is the angle between the two vectors. The coefficient \(\mathrm{E}_{0}\) is positive and of the order \(\mathrm{V}^{3}\) where V is the ionization energy and \(\alpha\) is the mean atomic polarizability. The exact value of \(\mathrm{E}_{0}\) depends on the magnitude of the dipole matrix elements and the energies of the porbitals.

Axilrod, B. M.; Teller, E. (1943). "Interaction of the van der Waals Type Between Three Atoms", Journal of Chemical Physics, 11 (6): 299.

\section*{Atomistic Pair-Potential Models}


a) Hard-sphere potential
\[
\phi_{H S}= \begin{cases}\infty & r<\sigma \\ 0 & r \geq \sigma\end{cases}
\]
b) Square-well potential
\[
\boldsymbol{\phi}_{S W}=\left\{\begin{array}{cl}
\infty & r<\sigma_{1} \\
-\boldsymbol{\varepsilon} & \sigma_{\mathbf{1}} \leq \boldsymbol{r} \leq \sigma_{2} \\
\mathbf{0} & \sigma_{\mathbf{2}} \leq \boldsymbol{r}
\end{array}\right.
\]


c) Coulomb and Gravitational potentials
\[
\begin{array}{ll}
\phi_{\text {Coulomb }} & = \pm\left(q_{1} q_{1} / r\right) \\
\phi_{\text {Gravitational }} & =\left(G M_{1} M_{2} / r\right)
\end{array}
\]
d) Soft-sphere potential
\[
\phi_{S S}=\epsilon(\sigma / r)^{v} \text { for } v=12
\]
M.P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, (New York 1987).

\section*{Reduced Units for Short-Range Pair Potentials in Mechanical Systems with a Single Type of Particle}

For systems with just one type of particle set \(\mathrm{m}=1\) and a pair potential with well depth \(\varepsilon\) and particle diameter \(\sigma\), the other variables can be expressed in terms of reduced units :
\begin{tabular}{|c|c|c|}
\hline Density Energy & \(\rho^{*}=\rho \sigma^{3}\)
\(\mathrm{E}^{*}=\mathrm{E} / \varepsilon\) & \(\phi_{L J}=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]\) \\
\hline Temperature & \(\mathrm{T}^{*}=\mathrm{k}_{\mathrm{B}} \mathrm{T} / \varepsilon\) & \\
\hline Pressure & \(\mathrm{P}^{*}=\mathrm{Po}^{3 / \varepsilon}\) & \\
\hline Time & \(\mathbf{t}^{\star}=\left(\varepsilon / \mathbf{m o}^{3}\right)^{1 / 2} \mathbf{t}\) & \\
\hline Force & \(\mathrm{f}^{*}=\mathrm{f} \sigma / \varepsilon\) & \\
\hline Torque & \(\tau^{*}=\tau / \varepsilon\) & \\
\hline Surface Tension & \(\gamma^{*}=\gamma \sigma^{2} / \varepsilon\) & \\
\hline
\end{tabular}

Boltzmann's constant needs to be included to express the equivalence between the energy units of heat and work. When the parameters such as \(\varepsilon\), \(\sigma\), and \(k_{b} \mathbf{T}\) are set to one, they need not be carried along in the computer program.

Reduced properties are used to define corresponding states.

\section*{Pair Potentials with Periodic Boundaries}
```

subroutine rhs(yy,yyp)
mplicit double precision(a-h,o-z)
parameter (N = 1024,neq = 4*N)
dimension yy(neq),yyp(neq)
dimension x(N),y(N),px(N),py(N),fx(N),fy(N)
dimension x(N)
do i=1,N
x(i) = yy(i)
y(i) = yy(i + N)
px(i) = Yy(i +N N N)
py(i) = yy(i + N +N +N)
fx(i) = 0.0d00
fy(i) = 0.0d00
end do
do i = 1, N-1
do j = i+1,N
xij = x(i) - x(j)
yij = y(i) - y(j)
if(xij.gt.+elx/2) xij = xij - elx
if(xij.lt.-elx/2) xij = xij + elx
if(yij.gt.+ely/2) yij = yij - ely
if(yij.lt.-ely/2) yij = yij + ely
rr = xij*xij + yij*yij
if(rr.lt.2.0d00) then
fx(i) = fx(i) + xij*16*((2-rr)**7 - (2-rr)**3)
fy(i) = fy(i) + yij*16*((2-rr)**7 - (2-rr)**3)
fx(j) = fx(j) - xij*16*((2-rr)**7 - (2-rr)**3)
fy(j) = fy(j) - yij*16*((2-rr)**7 - (2-rr)**3)
endif
end do
end do

```

\section*{Reduced Units for Long-Range Pair Potentials in Electrical Systems with a Single Type of Particle}

\section*{Electrostatic Potential}
\(\phi_{i j}=\boldsymbol{q}_{\mathbf{1}} \boldsymbol{q}_{\mathbf{2}} / \mathbf{4} \boldsymbol{\pi} e_{0} r_{i j}\)

Fundamental Constants in Electrical Systems
Permittivity \(\varepsilon_{0}=8.9542 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}-1 \mathrm{~m}^{-2}\)
Charge \(\quad 1 \mathrm{C}=2.9979 \times 10^{9}\) e.s.u.
Dipole \(\quad 1 \mathrm{Cm}=2.9979 \times 10^{11}\) e.s.u. cm Quadrupole \(1 \mathrm{Cm}^{2}=2.9979 \times 10^{11}\) e.s.u. \(\mathrm{cm}^{2}\)
\begin{tabular}{ll} 
Charge & \(\mathrm{q}^{*}=\mathrm{q} /\left(4 \pi \varepsilon_{0} \sigma^{3} \varepsilon\right)^{1 / 2}\) \\
Dipole & \(\mu *=\mu /\left(4 \pi \varepsilon_{0} \sigma^{3} \varepsilon\right)^{1 / 2}\) \\
Quadrupole & \(Q^{*}=Q /\left(4 \pi \varepsilon_{0} \sigma^{5} \varepsilon\right)^{1 / 2}\)
\end{tabular}

\section*{Principle of Corresponding States}

Van Der Waals first stated the Principle of Corresponding States :
"Substance at corresponding states behave alike"
In the case of the Van der Waals equation of state the parameters used to define the reduced quantity are the critical point values of pressure temperature, and volume.
In reduced variables measure the deviation


Van Der Waals
\[
\begin{aligned}
& (\boldsymbol{V}-\boldsymbol{b})\left(P+\frac{a}{\boldsymbol{V}}\right)=\boldsymbol{R T} \quad \text { Van der Waals Equation of State } \\
& \mathbf{R}=8.3144598 \mathrm{JK}^{-1} \mathbf{~ k m o l}^{-1}
\end{aligned}
\]

Here a measures the strength of the attractive forces and \(b\) represents the available free volume.
\[
\begin{aligned}
& P_{R}=\frac{P}{P_{C}}, V_{R}=\frac{V}{V_{C}}, T_{R}=\frac{T}{T_{C}} ; \quad V_{c}=3 b ; P_{c}=\frac{1}{27} \frac{a}{b^{2}} ; T_{c}=\frac{8}{27} \frac{a}{b R} \\
& \left(P_{R}+\frac{3}{V_{R}^{2}}\right)\left(V_{R}-\frac{1}{3}\right)=\frac{8}{3} T_{R} \quad \text { Van der Waals Reduced Equation of State }
\end{aligned}
\]


\section*{Boundary Conditions - One Dimensional Chain}

\section*{Displacements :}
\(\delta_{-}=x_{j}-x_{j-1}\)
\(\delta_{+}=x_{j}-x_{j+1}\)
\(\delta_{j}=\delta_{+}-\delta_{-}=x_{j+1}-2 x_{j}+x_{j-1}\)

Fixed boundary condition


First and last particle forces :


Periodic boundary condition


Apply the boundary conditions to \(\delta\) !
\[
\begin{aligned}
& \delta_{-}=x_{j}-x_{j+1} \\
& \delta_{+}=x_{j}
\end{aligned}
\]

Right boundary

\section*{Boundary Conditions}


Image particles fulfill physical properties for particles in the system at the boundary.



Moving boundaries


Thermostated boundaries


The boundary particles are fixed along with their temperatures and velocities


The moving exterior particles have their temperatures and velocities fixed to correspond to the boundary values.


The moving mirror exterior particles have instantaneous velocities and temperatures designed to provide correct averages when combined with the corresponding interior particles.

Oyeon Kum, William G. Hoover, and Carol G. Hoover, Smooth-particle boundary conditions, Phys. Rev. E 68, 017701 (2003).

\section*{More Complex Boundary Conditions - Shear Flow}


Eight moving particle cell images with the motion in the central cell being driven by the periodic image cells. The fixed speed of the moving images is \(\pm L \dot{\varepsilon}\). (Developed simultaneously by Lees-Edwards and Ashurst)

Boundary-Driven Shear Flows


Four chambers : The moving chambers are thermostatted at a temperature T and lattice sites move at a speed \(\pm L \dot{\varepsilon}\) with particles tethered to their lattice sites with a quartic potentialin their displacement.

William G. Hoover, Carol G. Hoover and Janka Petavic, Simulation of two- and three dimensional dense-fluid flows via nonequilibrium molecular dynamics: Comparison of time-and-space-averaged stresses from homogeneous Doll's and Sllod shear algorithms with those from boundary driven shear, Phys. Rev. E, 78, 046701 (2008).

\[
\begin{gathered}
\text { Calculate Normal Modes and Frequencies } \\
\text { 5-Particle Rigid Boundaries and 6-particle Periodic Boundaries } \\
\text { Hooke's Law } \\
F_{x}=\kappa \delta \rightarrow \ddot{x}_{j}=x_{j+1}-2 x_{j}+x_{j-1} ; m, \kappa=1 . \\
\text { Dispersion relation for the modes } \\
\text { Solutions of the form } \mathrm{X}(\mathrm{x}, \mathrm{t})=e^{i(\omega t-k x)} \\
\omega_{\mathrm{n}}^{2}=2-2 \cos \mathrm{k}_{\mathrm{n}} \mathrm{~d}=4 \sin ^{2}\left(\mathrm{k}_{\mathrm{n}} \mathrm{~d} / 2\right) \\
\text { Periodic Boundaries }-6 \text { particles } \\
\omega_{n}^{2}=(1,3,4,3,1,0) ; \quad k_{n}=n(2 \pi / 6), n=1, \ldots, 6 . \\
\tau_{n}=(2 \pi, 2 \pi / \sqrt{3}, 2 \pi / 2,2 \pi / \sqrt{3}, 2 \pi) \\
\text { Rigid Boundaries }-5 \text { particles } \\
\omega_{n}^{2}=(2-\sqrt{3}, 1,2,3,2+\sqrt{3}) ; k_{n}=n(2 \pi / 12), n=1, \ldots, 5 . \\
\tau_{n}=\left\{2 \pi /(2-\sqrt{3})^{1 / 2}, 2 \pi, 2 \pi / \sqrt{2}, 2 \pi / \sqrt{3}, 2 \pi /(2+\sqrt{3})^{1 / 2}\right\}
\end{gathered}
\]

\section*{One-Dimensional Chain Displacements and Forces in Matrix Form}

6 particle chain with periodic boundary conditions
\[
\left(\begin{array}{rrrrrr}
-\mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & -\mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & -\mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{1} & -\mathbf{2} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & -\mathbf{2} & \mathbf{1} \\
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & -\mathbf{2}
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{x}_{\mathbf{1}} \\
\boldsymbol{x}_{\mathbf{2}} \\
\boldsymbol{x}_{\mathbf{3}} \\
\boldsymbol{x}_{\mathbf{4}} \\
\boldsymbol{x}_{\mathbf{5}} \\
\boldsymbol{x}_{\mathbf{6}}
\end{array}\right)=\left(\begin{array}{l}
\boldsymbol{F}_{\mathbf{1}} \\
\boldsymbol{F}_{\mathbf{2}} \\
\boldsymbol{F}_{\mathbf{3}} \\
\boldsymbol{F}_{\mathbf{4}} \\
\boldsymbol{F}_{\mathbf{5}} \\
\boldsymbol{F}_{\mathbf{6}}
\end{array}\right) \quad \begin{aligned}
& \mathrm{F} 1=-2 * \mathrm{q} 1+\mathrm{q} 6+\mathrm{q} 2 \\
& \mathrm{~F} 2=-2 * \mathrm{q} 2+\mathrm{q} 1+\mathrm{q} 3 \\
& \mathrm{~F} 3=-2 * \mathrm{q} 3+\mathrm{q} 2+\mathrm{q} 4 \\
& \mathrm{~F} 4=-2 * \mathrm{q} 4+\mathrm{q} 3+\mathrm{q} 5 \\
& \mathrm{~F} 5=-2 * \mathrm{q} 5+\mathrm{q} 4+\mathrm{q} 6 \\
& \mathrm{~F} 6=-2 * \mathrm{q} 6+\mathrm{q} 5+\mathrm{q} 1
\end{aligned}
\]

5 particle chain with fixed boundary conditions

\section*{6 Particle Periodic Chain Normal Mode Displacements}

\section*{Particle Displacements}
\begin{tabular}{cccccccc}
\begin{tabular}{c} 
Mode \\
\(\#\)
\end{tabular} & \(\mathbf{k}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) \\
\(\mathbf{1}\) & \(1 \pi / 3\) & \(+1 / 2\) & \(-1 / 2\) & -1 & \(-1 / 2\) & \(+1 / 2\) & +1 \\
2 & \(2 \pi / 3\) & \(-1 / 2\) & \(-1 / 2\) & +1 & \(-1 / 2\) & \(-1 / 2\) & +1 \\
3 & \(3 \pi / 3\) & -1 & +1 & -1 & +1 & -1 & +1 \\
4 & \(4 \pi / 3\) & \(-1 / 2\) & \(-1 / 2\) & +1 & \(-1 / 2\) & \(-1 / 2\) & +1 \\
5 & \(5 \pi / 3\) & \(+1 / 2\) & \(-1 / 2\) & -1 & \(-1 / 2\) & \(+1 / 2\) & +1 \\
6 & \(6 \pi / 3\) & +1 & +1 & +1 & +1 & +1 & +1
\end{tabular}

Normal mode periods : \(\quad \tau_{n}=(2 \pi, 2 \pi / \sqrt{3}, 2 \pi / 2,2 \pi / \sqrt{3}, 2 \pi)\) Calculated values for dt \(=0.0001\) and 63000 cycles \(\tau_{n}=(6.2832,3.6276,3.1416,3.6276,6.2832)\)

\section*{5 Particle Chain with fixed boundaries Normal Mode Displacements}
\begin{tabular}{ccc} 
Mode & & \\
\(\#\) & \(k\) & \(\lambda\) \\
1 & \(1(2 \pi / 12)\) & 12 \\
2 & \(2(2 \pi / 12)\) & 6 \\
3 & \(3(2 \pi / 12)\) & 4 \\
4 & \(4(2 \pi / 12)\) & 3 \\
5 & \(5(2 \pi / 12)\) & \(5 / 12\)
\end{tabular}

Normal Mode Periods (12.138, 6.2832, 4.442, 3.6276, 3.2524)
\[
\tau_{n}=\left\{2 \pi /(2-\sqrt{3})^{1 / 2}, 2 \pi, 2 \pi / \sqrt{2}, 2 \pi / \sqrt{3}, 2 \pi /\left((2+\sqrt{3})^{1 / 2}\right)\right\}
\]

Calculated values for \(\mathbf{d t}=\mathbf{0 . 0 0 0 1}\) and \(\mathbf{6 3 0 0 0}\) cycles
\[
\tau_{n}=(12.139,6.283,4.45,3.6276,3.26)
\]

\section*{Time Reversibility}

Reversibilty : Are the equations the same for \(\mathbf{t}^{\prime}=-\mathbf{t}\) ?
Reversibility is a movie played backwards with the same equations.
Microscopic equations are reversible ; Numerical results are not!
Round off error and Lyapunov instability ;
The cumulative growth of single-time step errors .

Time reversible Levesque-Verlet Algorithm is a bit reversible numerical algorithm .
\[
x_{+}-2 x_{0}+x_{-}=\left\{d t^{2} F_{0} / m\right\}_{\text {Integer }}
\]

Reversible

Use integer coordinates with 15 digit precision in standard Fortran :
```

integer*16 ix Integer = digits in pi }->\mathrm{ print *,integer
ix = x*(10**15)

```

\section*{Levesque-Verlet Bit Reversible Algorithm for the Oscillator}


\section*{Outline for the next Lecture}
1. Integration Methods and Accuracy

Accuracy checks with the harmonic oscillator or a benchmark problems
Symplectic Integrators for Hamiltonian Systems
Runge-Kutta Integrators for NonHamiltonian Systems
2. Cell Model evaluation of integration techniques
3. Predictor-Corrector Methods

Milne method
Gear predictor-Corrector
4. Stiff Differential Equations:

The Nosé Oscillator
Adaptive Integration
5. The pendulum

Regular and Chaotic Orbits```

