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Carol G. Hoover & William G. Hoover
 Ruby Valley Nevada

Kharagpur Lectures

Classical Molecular Dynamics and 
Computational Statistical Mechanics

December 2016

1.  Formulations of Mechanics
Newton’s 2nd Law, Lagrange’s formulation of mechanics, Hamilton’s 
formulation of mechanics, Hamilton’s least action principal 

2.  Numerical Integration
Example problems for students, programming algorithms, software

3.  Equations of State
Temperature, phase diagrams, Virial Theorem, Heat Theorem

4. Monte-Carlo Methods
Random number generators, Maxwell-Boltzmann distribution, Equilibrium 
Monte-Carlo averages, Mayer Cluster integrals, pair distributions, collision 
rates

5.  Molecular Dynamics
Potential models, initial conditions, boundary conditions, one-dimensional 
chains, time reversibility

Outline
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! =!"	
Newton’s Second Law of Motion

!! =  −!" →  ! =  −! →   ! =  −!"# !  ;! = !"# !   . 	
Harmonic Oscillator

! =!! =  −!" → ! =  −!!!"!
! +  !!!+  !!  .	

Particle in a gravitational field

Force on a particle in a one dimensional chain

  !!! = −!  !!!! − !!! + !!!!   		

1.  Formulation of Mechanics

1643-1747

Lagrange’s Formulation of Mechanics
Least-Action Principle

! !"#
!!

!!
= ! →  !!" !"/!! = !"/!" 	

! !,! =  ! !!/! −!"#	

!/!" !! =!! =  −!" ⟶  ! =  −!	

Galileo’s 
experiment? 

! !,! = !−  !	

An energy formulation useful when there are symmetry
conditions in polar or spherical coordinates or other 
non-cartesian coordinates:

1736-1813
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! =  + !"/!"  ;  ! =  − !"/!" 			

Hamiltonian Formulation of Mechanics

!! =  − !"/!"  =  −!"	

! !,!! = !+  ! =  !!!/!"+!"#	

  ! =  !/!  ;    !! =  −!"   →   !  =  −!	

! =  + !"/!" =  +!/! 			

Particle in a gravitational field

{ ! !,!! = !
! !! − !!!!

! +  !! !! − !!!!
! + !

! !!! +⋯  }	

One dimensional chain with m = κ = 1

  !! = !! ;    !! = !!!! − !! + !!!!    	

( Similar terms for other particles in the chain )

An energy formulation that must be used in quantum 
mechanics! 

William	Rowan	Hamilton	
1805-1865	

! !"# = !  !"# ! = !−! 	

Hamilton’s Least Action Principle

x-1

 x0 x+1
Consider discrete paths in Hamilton’s Least Action Principle :

	
! !
!!

!! − !!!
!"

!
+ !!!

!! − !!!
!"

!
−! !"! = ! 

!!"

!!"
	

! = !!!
!
!!!

 →   !!! ! !! − !!!
!" +! !! − !!!

!" − !"
!!!

	

!!! − !!! + !!! =
!!
! !"!	

This is the Störmer integration algorithm derived from the Least Action Principle!

R.E.	Gillilan	and	K.R.	Wilson,	J.	Chem.	Phys.	97	(1992).	

Exchange the variation and the integration and evaluate the variation of the 
integrand : 

Since δx0 is arbitrary, its coefficient must vanish in the	 interval ( �dt, +dt ) :
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Numerically Integrating the Equations of Motionfor the Harmonic Oscillator
•  The Harmonic Oscillator as a Standard Test Problem

The harmonic oscillator equation(s) are a good standard test case for 
comparing numerical integration methods.  The solution is known and 
can be used for calculating the error in the numerical solution.  
Amplitude, phase, and energy errors can be calculated.   The known 
oscillator solution can be used to fill in points needed in algorithms that 
are not self starting.

•  Programming Assignments
We recommend that students program the harmonic oscillator problem 
(using the Runge-Kutta fourth-order algorithm) and other problems as 
time permits.   By doing this class members will have sufficient 
experience to program problems described in the next several lectures.

•  Compiler and Graphics Software
The gfortran Fortran compiler and gnuplot graphics software is available 
and we will provide advice for using it between this lecture and the next 
lecture. Students need to write their own programs rather than using 
packaged software such as Mathematica or MatLab.  Students who 
program in C rather than Fortran can use the standard C compiler. 

2.  Numerical Integration

gfortran : Free Fortran Compiler
gnuplot : Free Computer Graphics Software

gnuplot is free graphics software used quite often for scientific research .
			 	
   Well documented with a  large collection of demonstration problems .
   Google search gnuplot will take you to the Home page.

   Our uses : Publications and books, research projects

   Graphics capability :
   Line plots, point plots, contour plots, color labeling, multiple plots per page.
   Many advanced capabilities include3d hidden surfaces, transparency, and
   coloring of surfaces. 
 

gfortran	is	a	Fortran	standard	compiler.		Downloads	for	the	binaries	are	
available	for	most	systems.			
	
			Well	documented	and	conforms	to	standards	up	to	the	year	2000.	
			Trivial	to	install	on	Mac	systems	and	Linux.		Harder	to	install	on	Windows	
			systems.		Use	Google	search	for	gfortran	downloads	.	
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Gnuplot Examples

set title “Plot the data in the files fort.10 and fort.11”
set xrange [0,1]
set yrange [0,10]
plot “fort.10” u 1:2 with lines lt 2 lw 2
replot “fort.11” u 1:2 with points pt 6 ps 2
set terminal postscript landscape color
set out “line-Pointplot.ps”
replot
set term x11
set out 

Example script file

Gnuplot Demo Plots in Three dimensions
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!! = ! !  ;  !! = !! = ! !  ;  !! = !! !! ;		

Fourth-Order Runge-Kutta Algorithm

Compute r,v by averaging 4 values of derivatives t = {0, dt/2, dt} :

The Program Structure for the Harmonic Oscillator Dynamics

	c Main program for the oscillator                                                                                
      parameter (neq = 2)
      implicit double precision(a-h,o-z)
      dimension yy(neq),yyp(neq)
      real*8 ke

      dt = 2.0d00*3.141592653589793d00/30.0d00
      time = 0.0d00
      itmax = 30
c initial condition                                                                                              

      q = 1.0d00
      p = 0.0d00
c Runge-Kutta storage                                                                                            
      yy(1) = q
      yy(2) = p

      do i = 1,itmax
      call rk4(yy,yyp,dt)
      time = i*dt
      q = yy(1)
      p = yy(2)
      write (64,64)time,q,p
64    format(2f15.8," q,p”)                                                                                                         
      pot = .5d00*q*q
      ke  = .5d00*p*p
      etot = ke + pot
      write(74,*)time,ke,pot,etot,i
      end do
      stop
      end

! = +! 	
! = −!	

yy(1) = q
yy(2) = p

yyp(1) =  p
yyp(2) = -q 

      subroutine rk4(yy,yyp,dt)
      parameter (neq = 2)
      implicit double precision(a-h,o-z)
      dimension yy(neq),yyp(neq)
      dimension yak1(neq),yak2(neq),yak3(neq),
     & yak4(neq),ynew(neq)
         .
         .
         .
      return

      end

      subroutine fcn(yy,yyp)
      parameter (neq = 2)
      implicit double precision(a-h,o-z)
      dimension yy(neq),yyp(neq)

      q = yy(1)
      p = yy(2)
      f = -q

      yyp(1) =  p
      yyp(2) = -q
      return
                 end
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! = ! 	
! = −!	
call fcn(yy,yyp)! Right handside evaluation 
yak1 = yyp
ynew = yy + (dt/2)*yak1 ! Solution update

call fcn(ynew,yyp)

yak2 = yyp
ynew = yy + (dt/2)*yak2

call fcn(ynew,yyp)
yak3 = yyp
ynew = yy + dt*yak3

call fcn(ynew,yyp)
yak4 = yyp
       ! Average of 4 approximate solutions
yyp = (yak1 + 2*yak2 + 2*yak3 + yak4)/6

yy = yy + dt*yyp

call fcn(yy,yyp)
yak1 = yyp
ynew = yy + (dt/3)*yak1

call fcn(ynew,yyp)

yak2 = yyp
ynew = yy - (dt/3)*yak1 + dt*yak2

call fcn(ynew,yyp)
yak3 = yyp
ynew = yy + dt*(yak1 - yak2 + yak3)

call fcn(ynew,yyp)
yak4 = yyp

yyp = (yak1 + 3*yak2 + 3*yak3 + yak4)/8

yy = yy + dt*yyp

Two Fourth Order Runge-Kutta Integrators for the Harmonic Oscillator

We use 2 subroutines to evaluate derivatives and the righthand sides  
yy(1) = q
yy(2) = p

yyp(1) =  p
yyp(2) = -q 

Compute solution vector and derivatives at time steps 0, dt/2, dt/2, dt  
Compute yy in subroutine rk4 ;  Compute yyp in fcn

4 force evaluations

Fifth Order Runge-Kutta Integrator

call fcn(yy,yyp)
yak1 = yyp
ynew = yy + (dt/2)*yak1

call fcn(ynew,yyp)
yak2 = yyp
ynew = yy + (3*yak1 + yak2)*dt/16

call fcn(ynew,yyp)
yak3 = yyp(i)
ynew = yy + yak3*dt/2

call fcn(ynew,yyp)
yak4 = yyp
ynew = yy + (-3*yak2 + 6*yak3 + 9*yak4)*dt/16

call fcn(ynew,yyp)
yak5 = yyp
ynew = yy + (yak1 + 4*yak2 + 6*yak3 - 12*yak4 + 8*yak5)*dt/7

call fcn(ynew,yyp)
yak6 = yyp

yyp = (7*yak1 + 32*yak3 + 12*yak4 + 32*yak5 + 7*yak6)*dt/90
yy = yy + dt*yyp(i)

6 force evaluations 
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Two Fourth Order and One Fifth Order Runge-Kutta Integrator
One Harmonic Oscillator Period

Runge-Kutta 4, 4a

Runge-Kutta	5	

dt = 2π/5

q

p

Three Integrators Compared
Milne’s method for the second order differential equation for the oscillator

Leap frog : Add two Taylor’s series together à ! !! + !" +  ! !! − !" 	
!! = !!! − !! + !!!

!  !!	

!! = !!! − !! + !!!
!  !!	

!!! = !"! −  !!!  +  !"!
!"  !!!!! + !"!!!! + !!!!! 	

t

f(t) f0
f+f+

f0

!! = !! + !"
! !! + !! 		

!! = !! + !"
! !! + !! 		

 ! = ! ,   !!! = −! 	
To approximate the second order equation for q , substitute

Similarly for p .

Rahman’s method (trapezoidal rule) : Fast convergence for periodic functions
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Three Integrators: Milne, Rahman, Leap Frog
  One Harmonic Oscillator Period

q

Milne

Rahman

Leap Frog

p

dt = 2π / 5

Student Problem
Simpson’s method is  better than Rahman’s method.  Test it with the oscillator.

The Connection Between Atomistic Dynamics and Thermodynamics

•  A thermodynamic state with energy E can be specified with three    
variables, temperature, pressure, and volume .  The functional 
relationship between the three variables is the equation of state .  
Any of the three can be expressed as a function of the other two .

•  The ideal gas law , PV = NkT , is measured experimentally and the 
ideal gas thermometer is the accepted standard for measuring 
temperature .

•  The Virial Theorem links the atomistic coordinates, velocities, and 
forces to pressure and volume .

•  A temperature gradient causes heat to flow from hot to cold . The 
Heat Theorem links the time-averaged convective flux of heat to the 
interparticle forces which contribute to both heat flow and work .

 

3. Equations of State
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How is temperature defined ?

The ideal gas law, PV=NkT	,	is an experimentally 
measured equation of state and is the standard 
set for thermometers.  The energy of an ideal gas 
which is sufficiently dilute has negligible 
potential energy. The energy is all kinetic.

We  construct a thermometer as a heat reservoir 
with an infinite number of degrees of freedom 
described by the motion of ideal gas particles.  
Placed in contact with an isolated system the 
thermometer exchanges heat energy with the 
system to impose the constant temperature of the 
ideal gas.  

Analysis from statistical mechanics and kinetic 
theory shows that temperature is the comoving 
kinetic energy :  

(!"/!) ≡   !!! =   !!! =   !!!  . 				

Van Der Waals Equation of State: Surface and Isotherms

Equations of state are represented with phase diagrams in two or three 
dimensions.  Equilibrium Phase diagrams can be calculated with Monte-Carlo 
methods or Molecular dynamics and compared to experimental data.  

!− ! !+ !! = !"	 Van	der	Waals	EquaOon	of	State	
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Thermodynamics & Hydrodynamics from Dynamics

Equilibrium state variables: E, V ; 

Define kinetic temperature as the mean squared values 
of the velocity components :

Away from equilibrium : 

Dynamics: Compute P and T from :

 T and P .

(!"/!) ≡   !!! =   !!! =   !!!  . 				

Use the Virial Theorem for the Pressure Tensor P

Use the Heat Theorem for the Heat-Flux vector Q  
	

r12r1

y

x
r2

The Virial Theorem for the Pressure Tensor P

Multiply x-component the pairwise force components by the 
coordinate : 

Consider the x-component and time average over all particles and add wall forces.   

The long-time derivative of a bounded quantity is zero, giving the Virial Theorem . 

!!!! =  !!!/! !"
!"

+!"!!!	

! !!!!
!

=  ! ∙ !!"
!"

−  !!!! = !  !/!"
!

!!!! −  ! !!!
!

 	

 where		!! !!	is a bounded quantity and	!"#!! =  ! !!!!  !" !"# !"#$%&"'%& . 	

Rudolf Clausius
1822-1888!! ∙ !!" = !!"!!!"/!!"					

Notice also : 
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The Heat Theorem for the Heat-Flux Vector Q

! =  − !"#		
In a temperature gradient heat flows from hot to cold.

The convective part of the heat flux is associated with the 
velocity and the energy in the volume . Jean-Baptiste

 Fourier

!!!" =  !" !! +  !!" !!" ⋅ !! +  !! /!!" 		

1768-1830

!! = !
! !! ∙ !!" + !

!" −!!" ∙ !! − !!" ∙ !! = !
!" !!" ∙ !! + !! 			

!
!" !!!! = !

!" !!!! −
!
!" !!! 	Notice that :

!!!! = !
!"  !!!!" ∙ !! +  !! + !

! !!! = !!!!!"## 	

4.  Monte-Carlo Methods

•  Two random number generators

•  Monte-Carlo generation of the Maxwell Boltzmann distribution and 
moments

•  Equilibrium Monte-Carlo Averages, Mayer cluster integrals, pair 
distribution and collision rate
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Time Reversible Two-Seed Random Number Generator
Frederico Ricci-Tersenghi 

function rund(intx,inty)  
i = 1029*intx + 1731  
j = i + 1029*inty + 507*intx - 1731 
intx = mod(i,2048)  
j = j + (i - intx)/2048  
inty = mod(j,2048)  
rund = (intx + 2048*inty)/4194304.0 
return  
end 

 1  0.67508363723754883 0.74579644203186035     
 2  0.16147541999816895 0.65815877914428711       
 3  0.90861988067626953 0.97026991844177246
 4  0.97026991844177246 0.90861988067626953 
 5  0.65815877914428711 0.16147541999816895
 6  0.74579644203186035 0.67508363723754883

Use the program “federico” in arxiv:1305.0961v2 ending the loops with 7 and 
write the seeds for 7 random numbers.  Write another program to read the file 
of seeds and write out both forward and reverse numbers.  Notice that the 
random number seeds are reversed when rund is called with the seeds
Intx = 1862 and inty = 1347.  The random numbers generated are :

How do you decide if this is a good random number generator?

v0
 0

 0.1

 0.2

 0.3

 0.4

-4 -2  0  2  4
v

Accept

Reject

Moments of the Maxwell-Boltzmann Velocity Distribution
using the Monte-Carlo Method

!"#$ ∶   −!!  ≤ !! ≤
!
!	

!"# ∶  !! =  !"!!	

!"#$%#"&' ∶  !" = !!!!!/!			
!"#$ ∶  ! ≤ !! ≤ !	

!" !" ≤  !! !"#$ !""#$% ,	
!"#$%&'($, !"# !"!#$ .	

Sample 1, 000, 000 velocity values from the Maxwell-Boltzmann distribution
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Moment Calculations Using Maxwell-Boltzmann Monte-Carlo Results

Student problems :  
•  Calculate the moments analytically.  Make sure you normalize your results.  
•  Calculate the moments using Monte-Carlo and determine the number of trials 

needed for convergence within .01.
•  Notice the odd moments vanish.  Why?  

•  Use Monte-Carlo to calculate the moments of the Maxwell-Boltzmann 
distribution.  With 4 batches of 100,000 trials the first, second, and 4th moments 
were converging.  The 6th moment was too high. The random number 
generator, rund, was incapable of producing the 6th moment correctly !  The

•  Box-Muller algorithm is one good way in which to solve this problem.
Using the Fortran intrinsic random number generator, rand,  with the same 
procedure and averaging the results of the four batches, the results are :  

< v > = 0.0005 ; < v2 > = .9996 ; < v4 > = 2.9985 ; < v6 > = 15.0195

•  Construct a Maxwell-Boltzmann density function
    Set up a grid of velocity values and count the     
    velocities in each bin. Plot the probability for 
    each bin :  
          p = ( # in bin ) / ( total # )
    Plot the analytical curve. 

Equation of State Averages from Statistical Mechanics
Hard-Disk Monte Carlo

The virial expansion is a representation of the pressure in powers of the density :

!"/!"# − ! = !!
!!
! + !!

!!
!

!
+ !!

!!
!

!
+⋯!"#$ !"#$#	

	
!! = !/!!/!   ;!! = !!!!!,!/!   ;!! = !! !!!,! − !!!,! − !!,! /!!/!	

1.  J. E. Mayer M. G. Mayer, Statistical Mechanics, (John Wiley and Sons, Inc., New York, 
1940) pp. 277-2911.

2.  Nicholas Metropolis, Ariana W. Rosenbluth, Marshall N. Rosenbluth, Augusta Teller, 
and Edward Teller, “Equation of State Calculations by Fast Computing Machines,

The Ai,j are cluster integrals and represent the volume in configuration space in 
which i  particles form j bonds.  The Mayer f functions describing the clusters 
are integrated over the volume and are proportional to the constants in the  
density expansion1. In Reference [2] below a Modified Monte Carlo technique is 
described which uses interacting hard spheres to numerically compare with 
the expansion using cluster integrals developed by the Mayers .  
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Mayer Cluster integrals
The virial coefficients are proportional to the “star” cluster integrals developed 
by the Mayers.  The Mayer derivation involves expanding the partition function 
in terms of the product of single particle distributions to form two, three, … ,
n-particle distributions.  These doubly-connected products represent clusters 
formed by bonds between the n-particles.  Below are examples of the star 
clusters formed for 3, 4, and 5 particles.  The subscripts ( i, j )  denote the 
number of particles and the number of Mayer f-bonds in the configuration.  
Each figure denotes a unique configuration.

… !"!!!"!!!"!!!"!! !!"!!"!!" 	
	
!!" = −!  !"  !!"  <  !  ;    !!" = !  !"  !!"  >  !   	

I =  

B2 = 2/3( πσ3 ) in 3 dimensions
B2 = 1/2( πσ2 ) in 2 dimensions
B2 = σ        in one dimension

Student Problem
Calculate the third virial coefficient in one, two, and three-dimensions for σ = 1 

using Monte-Carlo integration.

Calculate the Multidimensional cluster Integral for hard spheres :
	

!!,! =  ! !∅ !!!!! /!" − !   ; 	
	

 !!,! =	−1	for	overlapping	hard	spheres		
	!!,! =  ! !"# !"!"#$%&'(()!* !"#$ !"#$%$!	

Mayer Cluster integral for three particles

Β3 = �(1/3)I = 0.625(B2)2 in 3D
                   = 0.782(B2)2 in 2D
                   = 1.000(B2)2 in 1D    
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      implicit double precision (a-h,o-z)
      top = 0
      bot = 0
      intx = 0
      inty = 0
      itmax = 10 000 000
      iout = itmax/10
      do it = 1,itmax
      x3 = rund(intx,inty)*2 - 1
      y3 = rund(intx,inty)*2 - 1
      z3 = rund(intx,inty)*2 - 1
      x2 = rund(intx,inty)*2 - 1
      y2 = rund(intx,inty)*2 - 1
      z2 = rund(intx,inty)*2 - 1
      r12 = dsqrt( x2*x2 + y2*y2 + z2*z2 )
      r13 = dsqrt( x3*x3 + y3*y3 + z3*z3 )
      r23 = dsqrt( (x2-x3)**2 + (y2-y3)**2 + (z2-z3)**2 )
      if((r12.lt.1).and.(r13.lt.1).and.(r23.lt.1)) top = top + 1
      if((r12.lt.1).and.(r13.lt.1)) bot = bot + 1
      if(iout*(it/iout).eq.it) write(6,*) top,bot,top/bot,15/32.0d00
      enddo
      stop
      end

Calculation of B3 in Three Dimensions

Equilibrium Monte-Carlo Method for Canonical Averages

It follows from statistical mechanics that phase-space averages calculated by 
weighting microstates with the Boltzmann factor will converge to the 
canonical-ensemble averages for a physical variable X(q,p) : 

Σ Σ

For more than a few degrees of freedom random sampling of phase space will 
generate very few, if any at all, accepted microstates.  This follows because the 
ratio of the occupied and the unoccupied part of phase space is close to zero.  
The Modified Monte Carlo Method of Metropolis, the Rosenbluths’, and Tellers’ 
corrects this deficiency for hard disks by examining microstates with relatively 
small energy changes, Δφ = kT, in configuration space only. Then the 
microstate weights are not needed!  The microstates are weighted evenly.

! =      !! /     !	Σ Σ

The detailed steps in the algorithm are listed on the next vugraph.
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The Modified Equilibrium Monte Carlo Method

1.   Generate	a	microstate	with	N	parOcles.	

2.   Select	a	parOcle	randomly:		i	=	(	N-1	)RN	+	1	;	Make	a	trial	move	less	than	a		maximum				
step	size.	

3.   Compute	the	energy.		If	it	goes	down,	accept	the	move	and	update	averages.	

4.   If	the	energy	increased,	select	another	random	number.		If	this	la_er	random	number	is	
less	than	the	Boltzmann	factor,	accept	the	move.	

5.			Update	the	averages	using	the	“new”	configuraOon	if	the	move	was	accepted.	

6.   Update	the	averages	using	the	“old”	configuraOon	if	the	move	was	rejected.		

7.   If	the	number	of	steps	is	less	than	the	total	desired	number	of	steps	go	to	2.	
	
8.			Stop	when	the	total	number	of	steps	is	reached.	
	
Accuracy:	A	useful	idea	is	to	divide	all	the	data	into	two,	five,	ten,	or	seventeen	batches	so	
that	you	can	relate	the	standard	deviaOon	to	the	uncertainty	of	the	average	value.	
	
		

Results for the Monte-Carlo Equation of
State by Metropolis, Rosenbluths, Tellers

Solid phase

X1 is the Monte-Carlo calculation.
X2 is the free volume estimate.
X3 is the four term virial series.  Ten virial terms are known now.

The virial expansion only describes the fluid state.
Today these numbers are accurate to five figures.
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Unit cells for 4, 12, 72 particles

William G. Hoover, and Berni Alder, “Studies in Molecular Dynamics. IV.  The 
Pressure, Collision Rate, and their Number Dependence for Hard disks”, Journal 
of Chemical Physics, 46 No. 2, pp. 686-691 (1966).

Generate Configurations Using the Unit Cells and Periodic 
Boundary Conditions

Consider the effects of the 
calculated collision rate along 
on the Monte-Carlo averages.

Berni AlderBill Hoover

Pair Distribution Function
The pair distribution function was used in the early days of molecular dynamics  
to compare potential models with neutron and xray diffraction results.	

Consider the ratio of pairs of particles with separation distance in a range dr .  
The pair distribution is constructed with bins of length dr containing the ratio of 
the number of pairs for a potential φ to the number of pairs for an ideal gas.   We 
consider two potentials, an 8-4 potential and a repulsive potential.

rc dr

!!" = (!− !!)! − ! !− !! ! ;  !!"#$%% = !	

!!"#$%&'(" = !""(!− !!)! ;  !!"#$%% = !.!	

!!
! = #!"#$% !! ≤ !! < !!!!   	

! !! = !!
!"#$%	

We use 400 bins of size 0.01 and max( rc ) = 4 to construct g( r ) shown next . 
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-2

 0

 2

 4

 6

 8

 10

 0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

!!" = (!− !!)! − ! !− !! ! ;  !!"#$%% = !	

!!"#$%&'(" = !""(!− !!)! ;  !!"#$%% = !	

 The 8-4 and ( 1 - r2 )4 Pair Potentials :
Pair Distributions

r

Three continuous
 derivativesφ

r

gφ(r) 

A Calculation of Equilibrium Averages with the 
Center of Mass set to Zero

The center of mass motion should always be set to zero when periodic boundary 
conditions are used.  The effect of this is to increase the collision rate and 
therefore the pressure.  The Virial Theorem for hard disks (rearranged terms) is

!"
!"#− ! =  !! ∙ !!

!

!!!
/! !!!

!

!!!
= !!!! !! !! ∙ !!

!" !

!"##$%$"&%
	

where the last term on the right is a collision term coming from the average 
over the internal pair forces and u2 and τ are the mean squared velocity and the 
last sum measures the number of collisions occurring in a time τ .

Taking the ratio of the above equation with its low density form gives

! ! =  !"/!"#− !
!! !/!

= !
!!

 	

Here B2 is the second Virial coefficient and the righthand side is the ratio of 
the high density to the low density collision rate.  Both B2 and Γ0  are 
increased by the center of mass correction.  The collision rates are 
calculated from molecular dynamics and agree with the calculation from the 
virial theorem as shown on the next vugraph.
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Monte-Carlo Corrected Results for N = 12 

A / A0 is the ratio of the area to the close-packed area.
The adjusted Monte-Carlo results show very good 
agreement over the full range of densities!

*	

*	These	data	are	accurate	within	about	1%	.	
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A/A0 Correct
factor

Kinetic theory predicts 
a correction of 1.091;

12 particles give a 
correction 12/11.

5. Molecular Dynamics

•  Potential Models
Atomistic potential models, pair potentials, cutoff radius, three-body potential
Reduced Units and the Principle of Corresponding States

•  Initial Conditions
        Positions, velocities, energy

•  Boundary Conditions
     Fixed and Periodic Boundary Conditions for the One-Dimensional Chain

Mirror Boundary Conditions, Moving Boundaries, Shear Boundaries

•  Normal Mode Solutions for the One Dimensional Chain
        6-particle periodic chain
        5-particle fixed boundary chain
 
•  Time Reversibility
        Levesque-Verlet Bit-Reversible Algorithm
 
•  Calculational Efficiency
        Neighbor Lists and Cell Model
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The Development of Potential Models for Molecular Dynamics

J. A. Barker and . Henderson: “What is “Liquid”?, Rev. Mod. Phys. 48, (October 1976). 

The	interacOons	which	determine	bulk	properOes	are	primarily	electrostaOc	in	nature.		A	
quantum	mechanical	treatment	is	the	most	fundamental	treatment	of	these	interacOons.		
Fortunately	there	are	several	approximaOons	which	provide	very	good	potenOal	models	
for	classical	dynamics.	
1.   Born-Oppenheimer	approximaOon	:		The	ion	coordinates	can	be	used	as	the	basis	for	

the	wave	funcOon	calculaOons	because	of	the	electron	to	proton	mass	raOo,	1/1836.				
Experiments	with	He-He	interacOons	confirm	this	approximaOon.	

2.   Forces	between	molecules	are	much	weaker	than	intramolecular	forces	(vibraOons)	so	
that	some	molecules	can	be	treated	as	rigid	molecules	with	the	locaOon	specified	with	
the	center	of	mass	coordinate	of	the	molecule.		This	is	not	the	case	for	polymers.	

3.   Because	of	the	mass	raOo	we	can	use	classical	dynamics	and	staOsOcal	mechanics	and	
add	quantum	correcOons.		

4.   Another	simplificaOon	arises	because	to	a	first	approximaOon	the	intermolecular	
potenOal	is	addiOve	in	the	number	of	interacOng	parOcles	within	the	range	of	the	
potenOal.			

!!" = !" !
!

!"
− !

!
!
	

Lennard-Jones Potential
Calculated Phase Diagram for Argon

John Edward Jones received his 
Doctor of Science degree in 1924 at 
Cambridge and proposed the semi-
empirical force law.  In 1925 he 
married Kathleen Lennard adding 
his wife’s name to his to become 
Lennard-Jones.  He was knighted 
in 1946, becoming Sir John 
Lennard-Jones. 

1894-1954	

1925
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φBFW

Lennard-Jones Potential
Calculated Pair-Distribution function with quantum corrections

Barker,	J.	A.	,	D.	Henderson,	and	R.	O.	WaSs,	1970,	Phys.	LeS.	31A,	48.	

!!" = !" !
!

!"
− !

!
!
	

φBFW is a pair potential with 
three-body angle-dependent 
and quantum corrections.

The pair distribution compared to 
experimental diffraction data.  

Solid	curve	is	a	neutron	diffracOon	
						experiment.	
							Circles	are	calculated	from	:	

φLJ and φBFW
John	Barker	
1925-1995	

Lennard-Jones Potential Parameters for Atoms 

!!" = !" !
!

!"
− !

!
!
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Model Potentials Characterizing Material Behavior

Embedded-Atom Potentials for Metals :
Experimental data provide parameters for potentials for specific materials.  
Models for material behavior can be approximated from these data.  
Electrons in a metal form a charge-neutralizing background for the motion 
of the ions.  The potentials for our two-dimensional copper simulations 
were a Lennard-Jones 6-12 potential and a density-dependent attractive 
potential,  φΕΑ ≈ ( ρ – 1 )2 / 2, modeling the electronic distribution.

  
Long-Range Electrostatic Potentials
The method of Ewald sums is a reliable technique for calculating the long 
range interactions without resorting to the N2 computational effort in the sum 
over all of the particles. The method is based on Fourier series and applies to 
periodic boundaries only.  Ewald sums and related methods are described in 
detail in Frenkel and Smit’s book.  

Daan	Frenkel	and	Berend	Smit,	Understanding	Molecular	Simula3on	:	From	Algorithms	
to	Applica3ons,	Academic	Press,	New	York	(2002).	

Potentials Fit to Experimental Data
Curve-fitted experimental data has resulted in libraries of equation of state 
data for large collections of materials used at the National Laboratories in 
the United States. 

•  To prevent large numerical errors the attractive part of the potential must 
vary smoothly from the minimum in the potential to the cutoff radius.  

•  The radius at the minimum energy in the Lennard-Jones is 21/6 .  
     For σ = 1 and ε = 1 this corresponds to a minimum energy of -1. The radius,       
     1/r6 = 0.01, corresponds to a cutoff radius between 2.0 and 3.0 . Typically for 
     argon the value used is r = 2.6 .  

Cutoff Radius for Pair Potentials

Yun Long, et. al., “On the molecular origin of high-
pressure effects in nanoconfinement : The role of 
surface chemistry and roughness”, J. Chem. Phys. 
139, 144701 (2013). 

!!" = !" !
!

!"
− !

!
!
	

! = ! !− !! !	

! = !(!− !!! + !!! − !!!)	
Dense fluid potentials

•  Spline fits are a good choice to smoothly extend the potential from the 
minimum to the cutoff radius. 
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Beyond Two Body Pair Potentials à  Three Body Potentials
Three-body potentials are needed when three atoms 
are close enough to interact with each other.  
Quantum mechanical perturbation theory is used to 
compute three-body interactions between the 
electrons of the three atoms which have induced 
multipole interactions.  The Axilrod-Teller potential, 
Vijk , is an example of dipole-dipole interactions.

Axilrod,	B.	M.;	Teller,	E.	(1943).	"Interac^on	of	the	van	der	Waals	Type	Between	
Three	Atoms”,	Journal	of	Chemical	Physics,	11	(6):	299.		

Where rij is the distance between the atoms I and j, and γi is the angle between 
the two vectors.  The coefficient E0 is positive and of the order Vα3 where V is 
the ionization energy and α is the mean atomic polarizability.  The exact value 
of E0 depends on the magnitude of the dipole matrix elements and the 
energies of the p orbitals. 

Edward Teller
1908-2003

!!"# = !!  !+ !"#$ !! !"# !! !"# !!
!!"!!"!!"

!  	

1943

!  	 !  	

!  	!  	
!  	

AtomisOc	Pair-PotenOal	Models	

a) Hard-sphere potential

b) Square-well potential

c)  Coulomb and Gravitational 
potentials

d) Soft-sphere potential 

!!"#$"%&         = ± !!!!/! 	

!!! = ! !/! ! !"# ! = !"	

M.P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 
(New York 1987).

!!"#$%&#&%'(#) = !!!!!/! 	



11/27/16	

25	

Reduced Units for Short-Range Pair Potentials
in Mechanical Systems with a Single Type of Particle

Density ρ�   =   ρσ3  
Energy E*   =   E / ε
Temperature T*   =  kBT / ε
Pressure P*  =  Pσ3 / ε
Time t*   =  ( ε / mσ3 )1/2 t
Force f*   =  fσ / ε
Torque τ*   =  τ  / ε
Surface Tension γ*   =  γσ2  / ε

For systems with just one type of particle set m = 1 and a pair potential with well 
depth ε and particle diameter σ , the other variables can be expressed in terms of 
reduced units :

Boltzmann’s constant needs to be included to express the equivalence between 
the energy units of heat and work .  When the parameters such as ε, σ, and kbT 
are set to one, they need not be carried along in the computer program.  
	

!!" = !" !
!

!"
− !

!
!
	

Reduced properties are used to define corresponding states.

      subroutine rhs(yy,yyp)
      implicit double precision(a-h,o-z)
      parameter (N = 1024,neq = 4*N)
      dimension yy(neq),yyp(neq)
      dimension x(N),y(N),px(N),py(N),fx(N),fy(N)
      common elx,ely
 																	
																do  i = 1,N
      x(i)  = yy(i)
      y(i)  = yy(i + N)
      px(i) = yy(i + N + N)
      py(i) = yy(i + N + N + N)
      fx(i) = 0.0d00
      fy(i) = 0.0d00
      end do
      
      do i = 1, N-1
      do j = i+1,N
      xij = x(i) - x(j)
      yij = y(i) - y(j)
      if(xij.gt.+elx/2) xij = xij - elx
      if(xij.lt.-elx/2) xij = xij + elx
      if(yij.gt.+ely/2) yij = yij - ely
      if(yij.lt.-ely/2) yij = yij + ely
      rr = xij*xij + yij*yij
      if(rr.lt.2.0d00) then
        fx(i) = fx(i) + xij*16*((2-rr)**7 - (2-rr)**3)
        fy(i) = fy(i) + yij*16*((2-rr)**7 - (2-rr)**3)
        fx(j) = fx(j) - xij*16*((2-rr)**7 - (2-rr)**3)
        fy(j) = fy(j) - yij*16*((2-rr)**7 - (2-rr)**3)
      endif
      end do
      end do

      do i = 1,N
      yyp(i)       = px(i)
      yyp(N+i)     = py(i)
      yyp(N+N+i)   = fx(i)
      yyp(N+N+N+i) = fy(i)
      enddo
      return
      end

Pair Potentials with Periodic Boundaries
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Electrostatic Potential

Reduced Units for Long-Range Pair Potentials
 in Electrical Systems with a Single Type of Particle

Fundamental Constants in Electrical Systems
Permittivity ε0 = 8.9542x10-12  C2 N-1 m-2


Charge 
 
1 C        = 2.9979x109  e.s.u.

Dipole 
 
1 C m   = 2.9979x1011 e.s.u. cm

Quadrupole 
1 C m2 = 2.9979x1011 e.s.u. cm2


Charge q*  =  q / ( 4πε0 σ3 ε )1/2

Dipole µ�  =  µ / ( 4πε0 σ3 ε  )1/2 
Quadrupole Q*  =  Q / ( 4πε0 σ5 ε  )1/2   

Principle of Corresponding States
Van Der Waals first stated the Principle of Corresponding States :

“Substance	at	corresponding	states	behave	alike”	

In the case of the Van der Waals equation of state the 
parameters used to define the reduced quantity are the 
critical point values of pressure temperature, and volume.  
In reduced variables measure the deviation 

Here a measures the strength of the attractive forces and b represents 
the available free volume. 

!! =
!
!!

 ,!! =
!
!!

 ,!! =
!
!!

  ;  	

!− ! !+ !! = !"	 Van	der	Waals	EquaOon	of	State	

Van	der	Waals	Reduced	EquaOon	of	State	

R = 8.3144598 JK-1 kmol-1

Van	Der	Waals	
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Initial Conditions – Many Body Systems

Triangular lattice
dx= 1.0 , dy= (3/4)1/2

Square lattice
dx= dy= 1.0

Hexagon with 
interaction lines

c remove the center of mass motion
      sumvx = 0.0d00 
      sumvy = 0.0d0
      sumxx = 0.0d00
      sumyy = 0.0d00
      do i = 1,N
      sumx = sumx + vx(i)        
      sumy = sumy + vy(i)
      end do
      do i = 1,N
      vx(i) = vx(i) - (sumvx/N)
      vy(i) = vy(i) - (sumvy/N)
      sumxx = sumxx + vx(i)*vx(i)
      sumyy = sumyy + vy(i)*vy(i)
      end do

c scale the initial kinetic energy
c to a value of N
      do I = 1,N
      vx(i)= dsqrt(N/sumxx)*vx(i)
      vy(i)= dsqrt(N/sumyy)*vy(i)
      end do
 

Boundary Conditions  - One Dimensional Chain

!" = 	%& −	%&"( 	
!" = 	%& − %&"(	
!" = 	!% −	!' = 	("%) − 2(" +	("')		

Displacements :
>	 >	 >	>	 >	 >	 >	 >	 >	 >	 >	 >	>	 >	 >	 >	 >	 >	>	 >	 >	 >	 >	 >	 >	 >	 >	>	 >	 >	 >	 >	 >	>	 >	 >	

Fixed boundary condition Periodic boundary condition	

Apply the boundary conditions to δ !			

First and last particle forces :

!" = 	%& − %&"(	

!" = 	%& − %&() 	
!" = 	%& 	

!" = 	%& 	
Left boundary

Right boundary
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Boundary Conditions

Moving boundaries

Thermostated 
boundaries

Symmetry conditions

Image particle

Mirror plane
+L

-L

Inversion symmetry

Image particles fulfill physical
properties for particles in the 
system at the boundary.

Boundary Conditions for Smooth Particles (SPAM)

Oyeon Kum, William G. Hoover, and Carol G. Hoover, Smooth-particle boundary 
conditions, Phys. Rev. E 68, 017701 (2003).  

The boundary particles
are fixed along with 
their temperatures and 
velocities

The moving exterior 
particles have their 
temperatures and 
velocities fixed to 
correspond to the 
boundary values.

The moving mirror exterior 
particles have 
instantaneous velocities 
and temperatures designed 
to provide correct averages 
when combined with the 
corresponding interior 
particles.   
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More Complex Boundary Conditions – Shear Flow

William G. Hoover, Carol G. Hoover and Janka Petavic, Simulation of two- and three dimensional dense-fluid 
flows via nonequilibrium molecular dynamics: Comparison of time-and-space-averaged stresses from 
homogeneous Doll’s and Sllod shear algorithms with those from boundary driven shear, Phys. Rev. E, 78, 
046701 (2008).   

Eight moving particle cell images with 
the motion in the central cell being 
driven by the periodic image cells.  
The fixed speed of the moving images 
is 														(Developed simultaneously 
by Lees-Edwards and  Ashurst)
± !! .	

Boundary-Driven Shear Flows

Four chambers : The moving chambers 
are thermostatted at a temperature T 
and lattice sites move at a speed           
with particles tethered to their lattice 
sites with a quartic potentialin their 
displacement.      

± !! 	

Particle Injection and Removal at a Boundary

ρ

Joule-Thompson Expansion
Particles are input on the left in 
columns of an unstable square lattice.  
A repulsive quartic plug potential 
enforces the density gradient.
Particles are removed on the right. 

William G. Hoover, Carol G. Hoover, and Karl P. Travis, Phys. Rev. Lett. 112, 144504 (2014).  

Shock-wave Compression
Cold fluid in a triangular lattice 
entering from the right experiences 
a 2-fold shockwave compression.  
Particles are removed from the 
right.
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Rigid	Boundaries	–	5	particles	

!! =  !"/ !− ! !/!,!" ,!"/ ! ,!"/ ! ,!"/ !+ ! !/!
	

!!! =  !− ! ,!,!,!,!+ !  ;    !! = ! !"/!" ,! = !,… ,!  .	

Periodic Boundaries – 6 particles

!! =  !" ,!"/ ! ,!"/! ,!"/ ! ,!"  	
!!! =  !,!,!,!,!,!  ;     !! = ! !"/! ,! = !,…   ,! .	

Calculate Normal Modes and Frequencies 
5-Particle Rigid Boundaries and 6-particle Periodic Boundaries

Hooke’s Law 
!! =  !" →   !! =  !!!! − !!! +  !!!!  ;  !,! = ! .	

Dispersion relation for the modes
!"#$%&"'( !" !"# !"#$   ! !, ! =  !! !"!!" 	
!!! = !− ! !"#!!! = !!"#! !!!/! 	

One-Dimensional Chain Displacements and Forces in 
Matrix Form

   −!          !         !         !        ! 
      !     −!         !         !        ! 
      !          !    −!         !        ! 
     !          !         !    −!        !
     !          !         !         !   −!

 

 !!
 !!
 !!
 !!
 !!

=

 !! 
!!
!!
!!
!!

	

5 particle chain with fixed boundary conditions

F1 =        + x2 -2.0d00*x1
F2 = x3 + x1 -2.0d00*x2
F3 = x4 + x2 -2.0d00*x3
F4 = x5 + x3 -2.0d00*x4
F5 =       + x4 -2.0d00*x5	

  −!          !         !         !         !         !  
     !     − !         !         !         !         !  
     !          !    − !         !         !         !  
     !          !         !    − !         !         !  
     !          !         !         !    − !         !  
     !          !         !         !         !    − !  

 

 !!
 !!
 !!
 !!
 !! !!

=

 !! 
!!
!!
!!
!!
!!

	

6 particle chain with periodic boundary conditions

F1  = �2*q1 + q6 + q2
F2		= �2*q2 + q1 + q3
F3		= �2*q3 + q2 + q4
F4		= �2*q4 + q3 + q5
F5		= �2*q5 + q4 + q6
F6  = �2*q6 + q5 + q1
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6 Particle Periodic Chain
Normal Mode Displacements  

																																																																																																			Particle Displacements 
Mode	
#	

	
k	

	
1	

	
2	

	
3	

	
4	

	
5	

	
6	

1	 1π/3 +1/2 −1/2 −1 −1/2 +1/2 +1 
2	 2π/3	 −1/2	 −1/2 +1 −1/2 −1/2 +1 
3	 3π/3	 −1 +1 −1 +1 −1 +1 
4	 4π/3	 −1/2 −1/2 +1 −1/2 −1/2 +1 
5	 5π/3	 +1/2 −1/2 −1 −1/2 +1/2 +1 
6	 6π/3	 +1 +1 +1 +1 +1 +1 

	

!! =  !.!"#!,!.!"#!,!.!"!#,!.!"#!,!.!"#!  	
!"#$%#"&'( !"#$%& !"# !" = !.!!!" !"# !"### !"!#$% 	

  !"#$%& !"#$ !"#$%&' ∶    !! =  !" ,!"/ ! ,!"/! ,!"/ ! ,!" 	
	

5 Particle Chain with fixed boundaries
Normal Mode Displacements  

!! =  !".!"#,!.!"#,!.!",!.!"#!,!.!"  	
!"#$%#"&'( !"#$%& !"# !" = !.!!!" !"# !"### !"!#$% 	

Normal	Mode	Periods	(12.138,	6.2832,	4.442,	3.6276,	3.2524	)		
!! =  !"/ !− ! !/!,!" ,!"/ ! ,!"/ ! ,!"/ !+ ! !/!

	

 
Mode 

# 
 

k 
 
λ  

1 1(2π/12) 12 
2 2(2π/12) 6 
3 3(2π/12) 4 
4 4(2π/12) 3 
5 5(2π/12) 5/12 
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Time Reversibility

Microscopic equations are reversible ; Numerical results are not!

Reversibility is a movie played backwards with the same equations.

Round off error and Lyapunov instability ;
The cumulative growth of single-time step errors .

Time reversible Levesque-Verlet Algorithm is a bit reversible numerical algorithm .

!" − 	2!& 	+	!( = *+,-&// 0123435		
Reversible

Use integer coordinates with 15 digit precision in standard Fortran :

Reversibilty : Are the equations the same for !! =  −!	 ?

integer*16 ix

ix = x*(10**15)	

Integer	=	digits	in	pi	à	print	*,integer	

Levesque-Verlet Bit Reversible Algorithm for the Oscillator

 56 steps Forward
 56 steps Reversed 
 dt = 0.25 

!"! =  !!"! + !"! + !"#$%&	

!"! =  !!"! + !"! + !"!! ;  ! =  −!	

!"#$%& = !"#$%$& !"!! 	
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1.   IntegraOon	Methods	and	Accuracy		
						Accuracy	checks	with	the	harmonic	oscillator	or	a	benchmark	problems	
						SymplecOc	Integrators	for	Hamiltonian	Systems	
						Runge-Ku_a	Integrators	for	NonHamiltonian	Systems	
													
2.   Cell	Model	evaluaOon	of	integraOon	techniques	

3.   Predictor-Corrector	Methods	
						Milne	method	
						Gear	predictor-Corrector	

4.   SOff	DifferenOal	EquaOons	:		
						The	Nosé	Oscillator	
							AdapOve	IntegraOon	
	
5.			The	pendulum		
						Regular	and	ChaoOc	Orbits	

Outline for the next Lecture


