
November 3, 2009 13:31 World Scientific Review Volume - 9in x 6in hoover

Chapter 1

Shockwaves and Local Hydrodynamics; Failure of the
Navier-Stokes Equations

Wm. G. Hoover and Carol G. Hoover

Ruby Valley Research Institute
Highway Contract 60, Box 598

Ruby Valley, Nevada 89833

Shockwaves provide a useful and rewarding route to the nonequilibrium
properties of simple fluids far from equilibrium. For simplicity, we study
a strong shockwave in a dense two-dimensional fluid. Here, our study
of nonlinear transport properties makes plain the connection between
the observed local hydrodynamic variables (like the various gradients
and fluxes) and the chosen recipes for defining (or “measuring”) those
variables. The range over which nonlocal hydrodynamic averages are
computed turns out to be much more significant than are the other
details of the averaging algorithms. The results show clearly the incom-
patibility of microscopic time-reversible cause-and-effect dynamics with
macroscopic instantaneously-irreversible models like the Navier-Stokes
equations.

1.1. Introduction

Leopoldo Garćıa-Coĺın has studied nonequilibrium fluids throughout his
research career. In celebrating his Eightieth Birthday we conform here to
his chosen field of study. Though Leo’s approach is typically quite general,
looking for improvements on linear transport theory, he has studied par-
ticular problems too. A specially interesting and thought-provoking study,
with Mel Green, of the nonuniqueness of bulk viscosity [1], emphasised the
general problem of finding appropriate definitions for state variables far
from equilibrium. The magnitude of the bulk viscosity gives the additional
viscous pressure due to the compression rate. The pressure difference evi-
dently depends upon the underlying definition of the equilibrium reference
pressure. The reference pressure itself in turn depends upon the choice be-
tween temperature and energy in defining the reference state. In the end,
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the same physics results, as it always must; the valuable lesson is that many
different languages can be used to describe the underlying physics. There
is the tantalizing possibility that some one approach is better than others.

In fact, temperature itself can have many definitions away from equi-
librium [2]. Away from equilibrium the thermodynamic temperature would
depend upon defining a nonequilibrium entropy – and there is good evi-
dence that there is no such entropy. This is because nonequilibrium distri-
bution functions are typically fractal, rather than smooth [3]. The kinetic
temperature, a measure of the velocity fluctuation, becomes a tensor away
from equilibrium [2,4]. At low density this temperature is the same as
the pressure tensor, P = ρT . For dense fluids the potential energy intro-
duces nonlocality, complicating the definition of constitutive averages. The
simplest of the many configurational temperatures [5–7] depends on force
fluctuations, and so likewise has tensor properties. Because configurational
temperature can be negative [8] and because thermodynamic temperature
is undefined away from equilibrium, we focus our attention on kinetic tem-
perature here.

-5.0

0.0

5.0
Shockfront Structure with 10 Rows

      114      <      x      <      128

Fig. 1.1. Closeup of a strong shockwave. The cold stress-free solid on the left moves to
the right at twice the speed of the hot fluid, which exits to the right. The boundaries
in the vertical y direction are periodic. The pair potential is φ(r < 1) = (10/π)(1− r)3.
The overall density change is

p
4/3 → 2

p
4/3 and us = 2up = 1.93. The system height

is 10
p

3/4 ' 8.66.

Shockwaves are irreversible transition regions linking a “cold” and a
“hot” state [8–11]. Such a shock region contains nonequilibrium gradients
in density, velocity, and energy. The irreversible change from cold to hot
takes place in just a few free paths in a time of just a few collision times
[11]. The localized nature of shockwaves makes them ideal for computer
simulation. Their gross one-dimensional nature, illustrated in Figure 1,
makes it possible to compute local averages in a region of width h. Because
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h is necessarily small it is evident that the average values depend on it.
Thus the average temperature depends upon both the underlying definition
of temperature and additionally on the details of the local averaging.

In this work we begin by describing molecular dynamics simulations,
for a strong, nominally stationary and one-dimensional shockwave, in a
two-dimensional fluid. Next, we discuss the Navier-Stokes description of
such a wave and then set out to compare the two approaches, focusing
on the definition of local hydrodynamic variables. A close look at the
momentum and heat fluxes shows clear evidence for the incompatibility of
the microscopic and macroscopic constitutive relations.

1.2. The Microscopic Model System and a Continuum Ana-
log

We consider structureless particles of unit mass in two space dimensions
interacting with the short-ranged purely-repulsive pair potential,

φ(r < 1) = (10/π)(1− r)3 .

As shown in Figure 1, particles enter into the system from the left, moving
at the shock velocity us. Likewise, particles exit at the right with a lower
mean speed, us−up = us/2, where up is the “Particle” or “piston” velocity.
The velocity ratio of two which we choose throughout is consistent with
twofold compression. We carried out series of simulations, all with a length
of 250 and the shock near the system center, with system widths of from
10 to 160 rows. Figure 1 shows a closeup of the center of such a 10-row
flow for the narrowest system width, 10

√
3/4 ' 8.66.

To analyze the results from molecular dynamics one and two-
dimensional average values of the density, energy, pressure, heat flux and
the like were computed using the one- and two-dimensional forms of Lucy’s
weight function [12,13]:

w1D(r < 1) = (5/4h)(1− r)3(1 + 3r) ; r ≡ |x|/h .

w2D(r < 1) = (5/πh2)(1− r)3(1 + 3r) ; r ≡
√

x2 + y2/h .

The averages are not significantly different to those computed with Hardy’s
more cumbersome approach [14].

A preview of the one-dimensional averages results from molecular dy-
namics’ simplest continuum analog, a solution of the stationary Navier-
Stokes equations. For simplicity, in the Navier-Stokes analog we use the
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Fig. 1.2. The nonzero pressure-tensor components from the Navier-Stokes equations
solution, Pxx and Pyy , as well as their average, P = (ρ2/2) + ρT , are shown as dashed
lines along with the velocity, energy, and density profiles. In this simple example it is
assumed that the bulk viscosity vanishes so that the average of the longitudinal and
transverse components is equal to the equilibrium pressure.
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Fig. 1.3. The energy, (scalar) temperature, and heat flux vector from the Navier-Stokes
equations are shown here. The heat conductivity and shear viscosity coefficients were
assumed equal to unity in the underlying calculation.

constitutive relations for the van-der-Waals-like model with shear viscosity
and heat conductivity of unity:

P = ρe = (ρ2/2) + ρT ; e = (ρ/2) + T

(Pxx − Pyy)/2 = −du/dx ; (Pxx + Pyy)/2 = P ;

Qx = −dT/dx .

This model is similar to our microscopic simulation model, but has a
nonzero initial pressure and energy. A set of self-consistent cold and hot
boundary conditions for the Navier-Stokes velocity, pressure, energy, and
scalar temperature is as follows:

u : [2 → 1] ; ρ : [1 → 2] ; P : [1/2 → 5/2] ; e : [1/2 → 5/4] ; T : [0 → 1/4] .
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These boundary conditions satisfy conservation of mass, momentum, and
energy. The (constant) mass, momentum, and energy fluxes throughout the
shockwave (not just at the boundaries) are:

ρu = 2 ; Pxx + ρu2 = 5/2 ; ρu[e + (Pxx/ρ) + (u2/2)] + Qx = 6 .

The most noteworthy feature of the numerical solution is the slight decrease
of Pyy below the equilibrium value on the cold side of the shock. Figure
2 shows the mechanical variables and Figure 3 the thermal variables near
the center of the shock as computed from the Navier-Stokes equations [11].
A serious shortcoming of the Navier-Stokes equations is their failure to
distinguish the longitudinal and transverse temperatures.

1.3. Averaged Results from Molecular Dynamics
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Fig. 1.4. The longitudinal pressure tensor component Pxx varies linearly with volume,
and follows the Rayleigh line. The cold curve corresponds to the pressure of a perfect
static triangular lattice. The equilibrium Hugoniot, indicated by dots, corresponds to
thermodynamic equilibrium states accessible from the initial cold state by shockwave
compression. For Pyy see Figure 7.

One-dimensional averages reproduce the linear dependence of Pxx on the
volume very well. That linear dependence is the “Rayleigh Line”, shown
in Figure 4. The “cold curve” in that Figure is the calculated pressure for
a cold triangular lattice:

PcoldV = 3NrF (r); r =
√

(V/V0) ; V0 =
√

3/4N ; F (r) = (30/π)(1−r)2 .

That pressure lies a bit below the Hugoniot curve (the locus of all equilib-
rium states which can be reached by shocking the initial state). The Hugo-
niot pressure at each volume was generated by trial-and-error isothermal
(isokinetic) molecular dynamics runs, leading to the temperatures satisfying
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Fig. 1.5. Shockwave profiles at five equally-spaced times. The five line widths corre-
spond to times of 0, 25,000dt, 50,0000dt, 75,000dt, and 100,000dt. The steepest profiles
correspond to h = 2. Results for h = 3 and h = 4 are also shown. The fourth-order
Runge-Kutta timestep, here and throughout, is given by dt = 0.02/us ' 0.01.

the Hugoniot relation:

Ehot − Ecold = +∆V [Phot + Pcold]/2 ; ∆V = Vcold − Vhot .

Figure 5 shows typical one-dimensional snapshots of the shockwave pro-
file, V (x). The averages shown in the Figure were computed at 5 equally-
spaced times, separated by 25,000 timesteps. The fluctuating motion of the
shockwave, of order unity in 100,000 timesteps, corresponds to fluctuations
in the averaged shock velocity of order 0.001.

The apparent shockwidth is sensitive to the range of the weighting func-
tion h. h = 2 is evidently too small, as it leads to discernable wiggles in
the profile. The wider profiles found for h = 3 and h = 4 indicate that the
constitutive relation describing the shockwave must depend explicitly on
h. That is, h must be chosen sufficiently large to avoid unreasonable wig-
gles, but must also be sufficiently small to capture and localize the changes
occurring within the shockwave.

Two-dimensional averages are no more difficult to evaluate. The density
at a two-dimensional gridpoint, for instance, can be evaluated by summing
the contributions of a few dozen nearby particles:

ρr ≡
∑

j

w2D
rj =

∑

j

w2D(|r − rj |) .

Such sums are automatically continuous functions of the gridpoint loca-
tion r. They necessarily have continuous first and second derivatives too,
provided that the weight function has two continuous derivatives, as does
Lucy’s weight function [12,13]. Linear interpolation in a sufficiently-fine
grid can then provide contours of macroscopic variables. Figure 6 is an
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illustration, and shows the contour of average density at 10 equally-spaced
times. The boundary value of us for that Figure was chosen as 1.92 rather
than the shock velocity of 1.93. Thus the shockfront moves slowly to the
left in the Figure, with an apparent picture-frame velocity of −0.01.
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Fig. 1.6. Ten average-density contours (corresponding to the shockfront position) at
equally-spaced times for a 40-row system. The amplitude of the fluctuations, of order
unity, is similar to the range of the weight function h. The total timespan is 225,000
timesteps. Because the entrance velocity, at x = 0, is us = 1.92, rather than 1.93, the
shockfront moves slowly toward the left, with a picture-frame velocity of about -0.01.

Figure 7 shows the nonequilibrium equation of state within the shock-
wave, the variation of the pressure tensor components Pxx and Pyy with
the specific volume, (V/N) ≡ (1/ρ). Pxx is insensitive to the smoothing
length h (as is required by the momentum conservation condition defining
the Rayleigh line) while Pyy shows a slight dependence on h. This lack of
sensitivity of the pressure tensor suggests that nonequilibrium formulations
of the equation of state within the shock can be successful.

0.00

0.50

1.00

1.50

2.00

2.50
Pressures under Twofold Compression

80 rows
h = 2, 3, and 4

P
P

Cold Curve

xx

yy

0.4   <   (V/N)      <   0.9

time = 100Kdt

Fig. 1.7. Typical snapshot of the dependence of Pxx and Pyy on the volume (V/N).
The line width increases with the range h = 2, 3, and 4. The range-dependence of Pxx is
too small to be seen here while it is possible to see a small increase in Pyy with increasing
h.
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The conventional Newton and Fourier constitutive relations require that
gradients be examined too. Gradients can be evaluated directly from sums
including ∇w. Consider the gradient of the velocity at a gridpoint r as an
example (where wrj is the weight function for the distance separating the
gridpoint from Particle j):

(ρ∇ · v + v · ∇ρ)r ≡ ∇ · (ρv) ≡ ∇r ·
∑

j

wrjvj =
∑

j

vj · ∇rwrj .

Using the identity,

ρ =
∑

j

wrj ,

gives

(ρ∇ · v)r =
∑

j

(vj − vr) · ∇rwrj .

The tensor temperature gradient can be evaluated in the same way:

(ρ∇ · T )r =
∑

j

(Tj − Tr) · ∇rwrj .

Figure 8 compares the velocity gradients as calculated using three values
of h to the pressure tensor using the same three values. We see that the
velocity gradient is much more sensitive than is the stress to h, suggesting
a sensitive dependence of the Newtonian viscous constitutive relation on
the range of the weight function. The data in the Figure indicate a shear
viscosity of the order of unity. Gass’ Enskog-theory viscosity [15] confirms
this estimate.

Figure 9 shows the temperature gradients. There are two of these for
each h because the longitudinal and transverse temperatures differ. Again
the magnitudes of the gradients are relatively sensitive to h while the max-
imum in the nonequilibrium flux Qx is less so. Again the heat conductivity
from the data is of the order of Gass’ Enskog-theory estimate.

1.4. Conclusion: Failure of Navier-Stokes Equations

Results from earlier shockwave simulations [9,11,16] have uniformly been
described as showing “good” or “fairly good” agreement with continuum
predictions. Examining the more nearly accurate profiles made possible
with improved averaging techniques shows that the agreement is actually
limited, and in a qualitative way. A more detailed look at the data shown
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Fig. 1.8. The velocity gradient, for three values of h, is much more sensitive than is the
shear stress, (Pyy − Pxx)/2, to h. The gradient extrema, at 125.35, 125.18, and 125.01
precede the shear stress extrema at 125.67, 125.61, and 125.57 for h = 2, 3, and 4.
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Fig. 1.9. The temperature gradients (the dashed lines correspond to the transverse
temperature) for three values of h correspond to the heat fluxes found with the same h
values. The pronounced maximum in Txx indicates a violation of Fourier’s Law, as the
heat flux does not show a corresponding change of sign. The maxima in dTxx/dx occur
at distances 124.93, 124.49, and 124.09, significantly leading the flux maxima at 125.44,
125.29, and 125.15 for h = 2, 3, and 4.

in Figures 8 and 9 reveals a consistent “fly in the ointment” pattern: the
largest fluxes are not located at the largest values of the gradients. The
fluxes lag behind the gradients by a (relaxation) time of order unity. This
shows that no simple instantaneous relationship links the fluxes to the gradi-
ents. In molecular dynamics the instantaneous stress cannot be proportional
to the instantaneous strain rate.

The reason for this apparent contradiction of linear transport theory
is plain enough: the underlying molecular dynamics is time-reversible, so
that pressure is necessarily an even function of velocity and time. This
same symmetry must be true also of any spatially-averaged instantaneous
pressure. Because there is no possibility to find an instantaneous irreversible
constitutive relation with time-reversible molecular dynamics, it is apparent
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that any attempt to “explain” local molecular dynamics averages through
irreversible macroscopic constitutive relations is doomed to failure.

There is of course no real difficulty in carrying out the instantaneous
averages, in one or two or three space dimensions, for today’s molecular
dynamics simulations. On the other hand, the gap between the microscopic
and macroscopic pictures becomes an unbridgable chasm when the detailed
spatiotemporal contradictions between the two approaches are considered.

1.5. Prospects

The prospect of understanding shockwaves in gases has stimulated studies
of dilute gases, based on the Boltzmann equation [17–20]. Leo has been
a driving force for this work. Though the analysis is highly complex [19,
20] it has become apparent that the Boltzmann equation is itself nicely
consistent with corresponding solutions using molecular dynamics [17,18],
up to a Mach number M = us/ccold of 134. The applicability of the Burnett
equations, which include all second-order contributions of the gradients to
the fluxes, is still in doubt for strong shockwaves in dilute gases [17,18].

Dense fluids will require a new approach. Local averages must be de-
fined. Longitudinal and transverse temperatures must be treated sepa-
rately. The causal timelag between the forces (velocity and temperature
gradients) and the resulting momentum and heat fluxes must be included
in the modelling. Although these challenges are enormous, today’s fast
computers place the responsibility for successfully meeting them squarely
on physicists’ imaginations. The excuse that the problem is too hard to
tackle is no longer valid. We can look forward to many more contributions
from Leo, his coworkers, and those inspired and stimulated by his work.
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