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TEAbstract

We explore and compare numerical methods for the determination of multifractal dimensions for a dou-

bly-thermostatted harmonic oscillator. The equations of motion are continuous and time-reversible. At

equilibrium the distribution is a four-dimensional Gaussian, so that all the dimension calculations can
be carried out analytically. Away from equilibrium the distribution is a surprisingly isotropic multifractal

strange attractor, with the various fractal dimensionalities in the range 1 < D < 4. The attractor is relatively

homogeneous, with projected two-dimensional information and correlation dimensions which are nearly

independent of direction. Our data indicate that the Kaplan–Yorke conjecture (for the information dimen-

sion) fails in the full four-dimensional phase space. We also find no plausible extension of this conjecture to

the projected fractal dimensions of the oscillator. The projected growth rate associated with the largest

Lyapunov exponent is negative in the one-dimensional coordinate space.
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1. Introduction

In 1983, Shuichi Nosé discovered a deterministic and time-reversible thermostatted dynamics
capable of imposing a time-averaged kinetic temperature hTi on selected degrees of freedom
[1,2]. His dynamics was both time-reversible and deterministic, but could nevertheless be used
to model irreversible behavior. The most useful form of his dynamics has been called ‘‘Nosé–Hoo-
ver dynamics’’, after the studies of a thermostatted harmonic oscillator inspired by Nosé�s work
[3,4].

In 1987 related studies of the Galton Board [5] and Galton Staircase [6] models showed that
nonequilibrium stationary states generated with time-reversible motion equations generate multi-
fractal phase-space distributions [5–8]. A typical sample, from the Galton Board studies, is shown
in Fig. 1. A dynamical analysis, through the Lyapunov spectrum, shows how symmetry breaking,
through dynamical instability, results in trajectories obeying the Second Law of Thermodynamics.
The motion forward in time is more stable (smaller Lyapunov exponents) than is the reversed mo-
tion backward in time. The resulting fractal distributions thus provide a simple resolution of the
Loschmidt paradox, which contrasts the one-way Second Law of Thermodynamics with the
either-way nature of time-reversible microscopic dynamics [6,9].

Here we investigate a prototypical nonequilibrium problem which generates a multifractal
strange attractor in its (four-dimensional) phase space. The adjective ‘‘Multifractal’’ signifies that
the apparent dimensionality of the attractor (the number of attractor points lying within a dis-
tance r is proportional to rD) varies from point to point, making it possible to define whole fam-
ilies of fractal dimensions. Measures proportional to different powers of the phase-space
probability density emphasize different regions of the attractor, giving rise to different character-
istic overall dimensionalities. The dimensionalities of the nonequilibrium fractal distributions are
U
N

C
O

R
R

E
C

Fig. 1. Phase plane for the Galton Board problem. The 106 points shown here represent successive collisions of a point

particle in an infinite periodic array of hard-disk scatterers. For details see Ref. [5].
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all less than those of the corresponding equilibrium distribution, typically by an amount propor-
tional to the rate of entropy production [9–13].

Much more recently, numerical studies of the many-body thermal conductivity for the /4 po-
tential model—a crystal with harmonic interactions and quartic tethers of particles to sites—re-
vealed that the nonequilibrium dimensionality loss can be quite large. The calculated
dimensionality losses for the /4 model systems agreed nicely with predictions based on simple
ideas from chaotic dynamics and irreversible thermodynamics [14–17]. Posch and Hoover esti-
mated the dimensionality reduction in the subspace of the purely Hamiltonian degrees of freedom
in /4 systems with a few hundred degrees of freedom. This work, based on a large-system exten-
sion of the Kaplan–Yorke conjecture, quantified the dimensionality reduction that can occur in
Hamiltonian phase spaces far from equilibrium. We were motivated to test these same ideas
for the small system studied here.

The realization that multifractal distribution functions are commonplace in nonequilibrium
systems has led to the creation and exploration of many simple models. Among these, the dou-
bly-thermostatted harmonic oscillator has unique properties. Unlike maps and hard-particle mod-
els, the oscillator trajectory is smooth everywhere, free of any singularities. Near equilibrium the
distribution is ergodic and analytic, tracing out a four-dimensional Gaussian probability density
in the full phase space. Away from equilibrium the oscillator control equations can be designed to
obey either of the thermodynamic identities,
hTdSext=dti � h�dQ=dti
 E

or
 ThdSext=dti � h�ð1=T ÞdQ=dti;
E
Cwhere Q is the heat transferred to the oscillator at the temperature T and Sext is the external en-

tropy. Both T and Sext vary with time. The angular brackets indicate long-time averages. These
heat-transfer relations follow directly from the chosen thermostatted equations of motion, as
we see in detail in Section 3. The second of them leads directly to Clausius� form of the Second
Law of Thermodynamics [18]:
 R

hdSext=dti � h�ð1=T ÞdQ=dti > 0;
U
N

C
O

Rwhere the time average has to be taken over many successive realizations of a cyclic irreversible
process.

It is difficult to conceive of a simpler set of deterministic time-reversible flow equations which
still exhibits all the qualitative features of more complicated many-body stationary states. We dis-
cuss and apply algorithms for determining the multifractal dimensions of the nonequilibrium
oscillator�s strange attractor, both in the full four-dimensional phase-space and in its various sub-
spaces. The various multifractal dimensions characterizing nonequilibrium attractors vary
smoothly from the full phase-space dimension down to unity as the departure from equilibrium
is increased.

The remainder of this paper is organized as follows: in Section 2 the equilibrium isothermal
oscillator is considered. Its dynamics generates a four-dimensional Gaussian distribution in phase
space. This special case makes it possible to test our numerical algorithms against known analytic
results. A nonequilibrium version of this oscillator is described in Section 3, with the connection to
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irreversible thermodynamics discussed in Section 4. Detailed numerical results for this nonequilib-
rium case are given in Section 5. The extension of the equilibrium case considered there uses a
simple hyperbolic tangent relation linking the thermodynamic temperature to the oscillator coor-
dinate. Section 6 explores the applicability of Kaplan and Yorke�s ideas to multifractal dimen-
sions in both the full phase space and its subspaces. Section 7 is devoted to the conclusions
gleaned from this work.
 F
O
O2. Gaussian phase-space distributions

At equilibrium a simple model for the phase-space distribution is a many-dimensional Gauss-
ian, with the probability density for a typical phase-space variable x given by the normalized
Gaussian function
 Rffiffiffiffiffiffi

2p
p

gðxÞ � e�x2=2:
 PThe four-dimensional version of this distribution, with phase-space variables (q,p,f,n), is
f ðq; p; f; nÞ � gðqÞgðpÞgðfÞgðnÞ:
DIt can be generated by the long-time-average trajectory from the set of four ordinary differential
equations describing a doubly-thermostatted oscillator. For simplicity we write the equations here
in the most basic possible form, with each of the several arbitrary parameters set equal to unity:
E
T_q ¼ p; _p ¼ �q� fp � np3;

_f ¼ p2 � 1; _n ¼ p4 � 3p2:
R
E
C

Nonequilibrium generalizations are discussed in the following Sections. For additional exam-
ples, see Ref. [10]. Here, the oscillator coordinate is q. The momentum is p. The two control vari-
ables, or ‘‘friction coefficients’’, are f and n. They control, respectively, the second and fourth
moments of the momentum distribution, hp2i and hp4i. These four ordinary differential equations
generate the full four-dimensional Gaussian distribution in (q,p,f,n) space:
Rð2pÞ2f ðq; p; f; nÞ ¼ exp � 1

2
ðq2 þ p2 þ f2 þ n2Þ

� �
:

OThe normalization constant (2p)2 follows from the four-dimensional definite integral:
CZ þ1

�1

Z þ1

�1

Z þ1

�1

Z þ1

�1
f ðq; p; f; nÞdqdpdfdn � 1:
U
NFig. 2 indicates how the smooth four-dimensional Gaussian distribution develops from the pat-

ently one-dimensional trajectory. It is a projection of the motion into the two-dimensional (q,p)
subspace. Each view of the projection consists of 200,000 separate points, with successive points
separated in time by 0.1, 1.0, 10.0, and 100.0. (The correlation time for the system is of the order
of the unconstrained oscillator period, 2p, as is indicated by the Lyapunov spectrum discussed in
Section 5 below). In the following Section we detail the modifications necessary to treat nonequi-
librium systems with a variable temperature, T = T(q).
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Fig. 2. Development of the {q,p} distribution function at equilibrium, where the final distribution is a Gaussian,

/ exp½�1
2
ðq2 þ p2Þ�. Each of the four plots shows 200,000 points. The separations between successive points are 0.1, 1.0,

10.0, 100.0. The lack of any significant difference between the last two sets of points suggests (in agreement with the

Lyapunov spectrum) that correlations are lost after a time of order 10–100. The abscissa and ordinate ranges are

both ± 4.
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O
R

R3. Nonequilibrium equations of motion

Now let us include explicitly all of the arbitrary parameters, still for a single harmonic oscillator
with coordinate q and momentum p. Then the nonequilibrium equations of motion we study here
have the form:
N
C_q ¼ p=m; _p ¼ �jq� fp � npðp2=mkT 0Þ;

_f ¼ ½ðp2=mkT 0Þ � ðT=T 0Þ�=s2;

_n ¼ ½ðp2=mkT 0Þ2 � 3ðp2=mkT 0ÞðT=T 0Þ�=s2:
UHere the coordinate-dependent temperature T = T(q) is distinguished from the constant value
T0. We choose a particular form for the coordinate dependence of T so that the reduced temper-
ature T/T0 varies from 1 � � (as q/h ! �1) to 1 + � (as q/h ! +1):
T=T 0 ¼ T ðqÞ=T 0 ¼ 1 þ � tanhðq=hÞ:
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The mass and force constant of the oscillator are m and j; k is Boltzmann�s constant, and s is a
relaxation time. In the event that � is nonzero, the oscillator is exposed to a temperature gradient.
For a long-time-averaged simulation (several oscillator vibrations) heat will flow against the direc-
tion of the temperature gradient. The resulting dissipation generates a steady stationary state of
the system: a strange attractor in the four-dimensional phase space. Several special cases of such
multifractal attractors are discussed in Ref. [10]. In the remainder of the paper we consider the
following special case:
O
F

m ¼ 1; j ¼ 1; k ¼ 1;

T 0 ¼ 1; s ¼ 1; � ¼ 1; h ¼ 1:
O

D
P
R4. Thermodynamic relations from phase-space time averages

The energy of the thermostatted oscillator changes in time, due to the nonHamiltonian force
�fp � np3. As is usual in thermodynamics, we use dQ/dt to indicate the heat transferred to the
oscillator from the thermodynamic thermostats. We would expect to find that the time-averaged
value h(1/T)dQ/dti is negative, reflecting the dissipation induced in the external reservoirs through
the coordinate-dependent temperature. At the same time, in any stationary state with no work
done the total time-averaged heat transfer must vanish:
TEhdQ=dti ¼ h�fp2 � np4i ¼ 0;

hð1=T ÞdQ=dti ¼ hð�fp2 � np4Þ=T i < 0:
CFor this oscillator there is no equivalence between the time-averaged rate of external entropy
production, hdSext/dti, and the loss of phase volume, hdln�/dti:
EhdSext=dti ¼ h�ð1=T ÞdQ=dti ’ 0:093;

hd ln�=dti ¼ �hd ln f =dti ’ 0:440:
R

It is easy to calculate the difference between the two:
Rð1=T ÞdQ=dt ¼ �d ln f =dt � ð1=2T Þd=dtðf2 þ n2Þ:
N
C

OEven so, we have chosen to study the present model in detail, rather than some of the many
alternatives considered in Ref. [10] and the alternative discussed just below, because the present
model has a particularly interesting fractal structure in its phase space and provides also a strin-
gent test of the Kaplan–Yorke conjecture discussed later.

A direct link with thermodynamics can be forged by solving the alternative set of motion
equations:
U_q ¼ p; _p ¼ �q� fp � nðp3=T Þ;
_f ¼ ½ðp2=T Þ � 1�=s2; _n ¼ ½ðp4=T 2Þ � 3ðp2=T Þ�=s2;

T ¼ T ðqÞ ¼ 1 þ � tanhðq=hÞ:
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In this case the heat transfer to the oscillator, divided by kT, has a time-averaged value exactly
matching the dissipation rate, as seen through the loss of phase volume:
hð1=kT ÞdQ=dti ¼ h�fðp2=T Þ � nðp4=T 2Þi ¼ h�f � 3nðp2=T Þi ¼ hd ln�=dti ¼ �hd ln f =dti:
F

Beyond checking that this model too has a stationary dissipative state for � = s = h = 1, similar
to the one studied in detail here, but less far from equilibrium (higher fractal dimensions) and
therefore geometrically less interesting, we have carried out only limited investigations of this
model. At equilibrium, for any of these models, the phase-space probability density for a fixed
constant T and s is:
 O

ðT=s2Þð2pÞ2f ðq; p; f; nÞ ¼ exp � 1

2T
ðq2 þ p2Þ

� �
exp � s2

2
ðf2 þ n2Þ

� �
;
 O

The equilibrium thermodynamic identity that results is:
 RhðdQ=dtÞ=T i ¼ hð�f � 3p2nÞ=T i ¼ h�dSext=dti:
E
D

PIn the corresponding nonequilibrium case, where the temperature is a given function of the
coordinate rather than constant, T = T(q), any of these models must necessarily satisfy the Second
Law of Thermodynamics, with f diverging on a multifractal strange attractor and with the time-
averaged entropy production hdSext/dt i strictly positive. Because a stationary state can be viewed
as many repetitions of a cyclic irreversible process the exact relation which results for the second
of the models is
hðdQ=dtÞ=T i ¼ h�dSext=dti < 0:
 T

This time-averaged result is exactly Clausius� form of the Second Law of Thermodynamics [18].
C

E5. Multifractal dimensions via bin counting, pair correlations, and the Kaplan–Yorke conjecture

In the simplest nonequilibrium case, with (m,k,j,T0,s, �,h) all equal to unity, and
R

0 < T ðqÞ ¼ 1 þ tanhðqÞ < 2;
O
Rthe stationary distribution still occupies the same four-dimensional phase space as at equilibrium,

but the information dimension DI, along with the Kaplan–Yorke dimension DKY, (defined by a
vanishing Lyapunov sum detailed later in this section) drops below the equilibrium value,
DKY ’ DI ¼ D1 < Deq ¼ 4:
U
N

C

Nonequilibrium distributions for this example, projected into the six two-dimensional planes,
(q,p), (q,f), (q,n), (p,f), (p,n), and (f,n), make up Fig. 3.

Fig. 4 shows how the fractal distribution develops in the (f,n) plane, as the sampling time be-
tween successive points is increased. The figure shows 200,000 points, projected into the (f,n)
plane, with sampling intervals of 0.001, 0.01, 0.1, 1.0, and 10.0. The appearance of these fractal
distributions is qualitatively different to that of the smooth Gaussian distribution which is the
equilibrium solution. A variety of fractal dimensions have been defined in order to characterize
such nonequilibrium systems.
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E
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The multifractal dimensions D0, D1, D2, D3, . . . can all be computed from the moments (or mea-
sures) associated with phase-space boxes or ‘‘bins’’. For the jth bin, the various measures are {lp}:
RlpðjÞ � Np
j

X
k

Np
k

,
;

U
N

C
O

Rwhere the {Nk} are the number of observed points (proportional to the probability) in the kth bin.
If the bins have a characteristic size D then the multifractal dimensions correspond to the limiting
slopes of the plots of hlnlpi versus ln D. For ergodic systems a sufficiently long trajectory eventu-
ally reaches all bins. In such a case the measure l0 is uniform. For other values of p the measure is
concentrated in a characteristic part of the attractor. Fig. 5 shows the variation of the measures�
above-average-probability ‘‘cores’’ for the nonequilibrium oscillator. Because the measures l0 and
l3 are relatively slow to converge, in our numerical work we concentrate on the information and
correlation dimensions derived from l1 and l2.

Chhabra and Jensen [19] developed an equivalent, but more direct approach to the determina-
tion of the multifractal dimensions. They showed that the various multifractal dimensions {Dq}
were given by the simple set of small-bin-size limits (D ! 0):
Dq ¼
X

lq ln lq

� �.
ln D:
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Fig. 4. Development of the nonequilibrium {f,n} distribution function. Each of the five plots shows 200,000 points.

The separations between successive points are 0.001, 0.01, 0.1, 1.0, and 10.0. The lack of any significant difference

between the last two sets of points suggests (in agreement with the Lyapunov spectrum) that correlations are lost after a

time of order 10–100. The abscissa and ordinate ranges are both ±6 for these plots.
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EIt is also possible to define generalized dimensions by using two different measures, q1 and q2:
RDðq1;q2Þ ¼
X

lq1
ln lq2

� �.
ln D:
O
RThe usual f(a) relation linking fractal dimension f to singularity strength a uses q1 = q2 for

f(q) � D(q, q) and q1 = 1 for a(q) � D(1,q) [19].
With presentday computers it is inconvenient to consider a four-dimensional grid with a sub-

stantially higher resolution than
128 � 128 � 128 � 128 ¼ 228 ¼ 268; 435; 456
C

U

Nphase-space bins. Both storage capacity, as well as the need to generate an average of several
points per bin (with successive points separated by 103 or 104 timesteps to avoid serial correlation)
combine to make this four-dimensional problem a severe computational challenge. We carried out
this stage of refinement by dividing up the grid data among storage files. The three-dimensional
subspaces are simpler to treat. A resolution of 512 bins in each of three directions requires arrays
half the size (227 bins) of the four-dimensional ones considered here.

Because (according to the Kaplan–Yorke conjecture discussed below) the nonequilibrium infor-
mation dimension is less than three for the special case chosen here: D1 ’ DKY = 2.80 < 3, we
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decreasing size, to the ‘‘bin-counting’’, ‘‘information’’, ‘‘correlation’’, and ‘‘three-point’’ dimensions. The ‘‘cores’’
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k , N 1

k , N
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k for the three cases. One billion data points, separated by 100 timestep intervals,

were used in constructing this figure.
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Cexpect to glean significant information by comparing nonequilibrium and equilibrium studies car-
ried out in the various subspaces:
R
E

fðq; p; fÞ; ðq; p; nÞ; ðq; f; nÞ; ðp; f; nÞg;
fðq; pÞ; ðq; fÞ; ðq; nÞ; ðp; fÞ; ðp; nÞ; ðf; nÞg;
fðqÞ; ðpÞ; ðfÞ; ðnÞg:
N
C

O
R

In the full four-dimensional phase space, the information dimension DI = D1 can be estimated
independently of bin counting. Kaplan and Yorke conjectured that DKY ’ DI can be estimated
from the Lyapunov spectrum. DKY corresponds to the number of Lyapunov exponents (starting
with the largest) for which the sum

P
ki vanishes. Typically the sum has to be linearly

interpolated.
In the equilibrium case � vanishes and the temperature is constant. If we also choose the ther-

mostat relaxation time s to be unity, the Lyapunov spectrum (based on 109 timesteps of length
0.001 each) is:
 Ufhkigeq ¼ fþ0:066;þ0:000;�0:000;�0:066g:
The spectrum shows the time-reversal symmetry associated with equilibrium. Because the sum
of the (time-averaged) exponents vanishes, the various partial sums (corresponding to subspace
growth rates) are never negative:
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X
hkeqi

n o
¼ fþ0:066;þ0:066;þ0:066;þ0:000g:
In the simplest nonequilibrium (far-from-equilibrium) case we choose to study here we set
T = 1 + tanh(q). This combination generates a multifractal with an information dimension be-
tween 2 and 3 in the four-dimensional phase space. The Lyapunov exponents are:
fhkigneq ¼ f0:0726; 0:0000;�0:0912;�0:4110g:
P
R

O
O

FIt is important to emphasize that though the four ordinary differential equations generating the
flow, as well as the sixteen additional equations describing its sensitivity to perturbations, are all
perfectly symmetric in the time, the time-symmetry of the solution is broken by instability, with
the Lyapunov exponents no longer occurring in symmetric pairs.

This symmetry breaking has been analyzed in considerable detail for similar systems [20]. It re-
flects the fact that a flow proceeding forward in time is less unstable (negative Lyapunov sum)
than is the time-reversed flow (positive Lyapunov sum) which would violate the Second Law of
Thermodynamics. The nonequilibrium Lyapunov sum of all four Lyapunov exponents is neces-
sarily negative, for stability. In the particular case considered here, the one-, two-, three- and
four-exponent sums are
DX
hkneqi

n o
¼ f0:073; 0:073;�0:019;�0:430g:
N
C

O
R

R
E
C

TE
Linear interpolation, between the two-exponent sum, 0.0726, and the three-exponent one,

�0.0186, gives the Kaplan–Yorke estimate for the information dimension,
DKY ¼ 2 þ 73

90
’ 2:80. This is a dimensionality reduction of 1.20 below the equilibrium dimension-

ality of 4.00. In the large-system work described in Ref. [17] dimensionality reductions (from the
Lyapunov spectrum, through DKY) as large as 34 were observed (in a 578-dimensional phase
space).

The information dimension, D1 = DI ’ DKY, can also be evaluated, with an uncertainty of or-
der one percent, by simple bin-counting. See Fig. 6. Using 109 points separated in time by 1000dt
gives the considerably lower estimate DI = 2.56. The entropy-binsize plot, spanning the range
from 84 bins to 1284 bins, gives an excellent straight line, S1 / ln(D). The data show that the Kap-
lan–Yorke conjecture is simply wrong for this four-dimensional attractor. Evidently the rapid
rotation rates of the Lyapunov vectors are responsible for the 10% discrepancy, DKY ’ 1.1DI.

The correlation dimension D2 can also be estimated independently of bin counting, but without
such high accuracy. A logarithmic plot of the number of pairs of points lying within a distance r of
one another increases as D2lnr provided that r is not too large and that the sampling time between
successive points is enough for correlations to decay (for a short sampling time the dimensionality
of the distribution would be one-dimensional, corresponding to a trajectory). The equilibrium
case can be used to test these ideas, for all the dimensions are precisely equal to four. In Fig. 6
we show the variations of all the one- and two-point entropies,
USp � h� lnðlpÞi �

X
�lp ln lp

D E
:

The calculations shown are all based on 109 points, separated by 1000 timesteps of dt = 0.001
each. The dimensionalities from these data all lie within half a percent of the correct values
(1,2,3,4).
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316

319
320

323
324
325

326

Fig. 6. Dependence of the one-, two-, three- and four-dimensional entropies on the number of bins. The equilibrium

(lines) and nonequilibrium (discrete plotting symbols) entropies S1 and S2 are compared by using measures

proportional to N 1
k and N 2

k . One billion points, separated by 1000dt were used to generate these data. The minimum and

maximum limits for each of the four variables were ± 6. In one, two, three, and four dimensions we used up to 211, 222,

227, and 228 bins, respectively. The logarithms of the numbers of bins are logarithms with bases (2,4,8,16) in (1,2,3,4)

dimensions.
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E
CThe dimensionalities in the nonequilibrium case (See again Fig. 6) reveal some interesting dif-

ferences. We noticed that the entropy corresponding to the three-point measure l3 varies in a non-
monotonic way with the bin size D. A simple four-bin example for such a variation can be based on
the following bin occupancy numbers:
 R

f1; 1; 2; 0g ! fl3g ¼ f0:1; 0:1; 0:8; 0:0g:
RThe entropy S associated with this measure is
�
X

l3 ln l3 ¼ 0:2303 þ 0:2303 þ 0:1785 þ 0:000 ¼ 0:639:
C
O

Combining the data into pairs (corresponding to coarsening the grid) leads to a (counterintu-
itive) increase in the entropy:
f2; 2g ! fl3g ¼ f0:5; 0:5g ! S ¼ 0:693:
U
N

Figs. 7 and 8 summarize the correlation-dimension data for both the equilibrium and nonequi-
librium data sets in all 15 of the various subspaces. The equilibrium data (Fig. 7) show that the
number of pairs of points in the full four-dimensional phase space and withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2 þ f2 þ n2

q
< Rqpfn varies as R4. The four sets of three-dimensional data, corresponding to
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Fig. 7. Dependence of the fifteen equilibrium pair correlations on the bin size. 100,000 data points, separated by

intervals of 1000dt, generated the 4,999,950,000 pairs of points contributing to this plot. The slopes of the straight-line

portions of the fifteen curves are accurately 1.00, 2.00, 3.00, and 4.00, corresponding to the dimensionalities of the

corresponding Gaussian functions. The four one-dimensional sets of data are indistinguishable within the width of the

plotting line, as are also the six two-dimensional data sets, and the four three-dimensional data sets.

Fig. 8. Dependence of the fifteen nonequilibrium pair correlations on the bin size. 100,000 data points, separated by

intervals of 1000dt, generated the 4,999,950,000 pairs of points contributing to this plot. The slopes of these plots

correspond (beginning with the one-dimensional data at the top of the figure) to correlation dimensions of 1.00, 1.72,

1.85, and ’ 2 for the 1, 2, 3, and 4-dimensional subspaces, respectively, with no significant difference between the

various subspaces that have the same dimensionality.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2 þ f2

q
< Rqpf;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2 þ n2

q
< Rqpn;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ f2 þ n2

q
< Rqfn;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ f2 þ n2

q
< Rpfn;
R
O

O
F

the six sets of two-dimensional data, and four sets of one-dimensional data are all assembled in
Table 1.

The nonequilibrium correlation dimensions are all less than 2. But the full phase-space corre-
lation dimension from pairs of points, 1.8 ± 0.05, does not agree very well with the D2 estimates
from bin-counting. These bin counting results for D2 are relatively unreliable. Unlike the informa-
tion dimension, the correlation dimension is sensitive to the number of bins used in the analysis.
Strong dimensionality reduction persists in all the subspaces through the six two-dimensional
examples. Fig. 9 shows histograms for the one-dimensional spaces, lnNk(q) and lnNk(p). Though
the appearance of these histograms certainly suggests the possibility of a fractal dimension less
than unity, we found no significant deviation from D = 1.00 for either of them.
U
N

C
O

R
R

E
C

TE
D

P
1

ibrium and nonequilibrium correlation dimensions from cumulative number of pairs

Equilibrium D2 Nonequilibrium D2

,n) (4.01) (1.81)

), (q,p,n), (q,f,n), (p,f,n) (2.98,2.99,2.99,3.00) (1.93,1.89,1.86,1.90)

(q,f), (q,n), (p,f), (p,n), (f,n) (1.99,1.99,1.99,1.99,1.99,1.99) (1.73,1.73,1.75,1.75,1.69,1.77)

), (f), (n) (1.00,1.00,1.00,1.00) (0.98,0.92,0.98,0.98)

rst column indicates the space in which the distances between all pairs were determined. The second and third

ns are the equilibrium and nonequilibrium pair dimensions D2. The data are based on 50,000 points with a

ing interval of 10,000 timesteps between successive points.

0

3

6

9

16384 q Bins
0

3

6

9

16384 p Bins

. Logarithms of the probability densities for the nonequilibrium coordinate q and the momentum p. 109 points,

ted by 1000 timesteps, were used. Bin counting, in the two one-dimensional spaces, suggests information and

ation dimensions in these subspaces quite close to unity. See also the corresponding curve in Fig. 8. The 16,384

llustrated here span the range ± 6 for both q and p.
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339

340
341
342
343
344
345
346
347
348
349

Table 2

The equilibrium Lyapunov exponents hki and their time-averaged projections hðd2
q; d

2
p; d

2
f ; d

2
nÞi (top) and the projections

weighted with the instantaneous values of the corresponding Lyapunov exponents (bottom)

hki hd2
qi hd2

pi hd2
fi hd2

ni
+0.068 0.141 0.190 0.298 0.371

+0.002 0.306 0.210 0.228 0.256

�0.002 0.177 0.310 0.266 0.248

�0.068 0.377 0.291 0.208 0.124

hki hkd2
qi hkd2

pi hkd2
fi hkd2

ni
+0.068 �0.002 +0.014 +0.013 +0.043

+0.002 +0.004 �0.011 +0.008 +0.002

�0.002 �0.002 +0.002 �0.004 +0.001

�0.068 �0.040 �0.013 �0.011 �0.004

Note that the row sums are unity at the top, and hki at the bottom. These data apply to the equilibrium oscillator, with

� = 0 and correspond to 109 timesteps of 0.001 each. These data are all time averages.
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6. Kaplan–Yorke Conjecture for Subspaces

Kaplan and Yorke�s conjecture has a strong intuitive basis. It is certainly ‘‘obvious’’ that the
dimension of a strange attractor is the same as the dimensionality of an object which neither
grows nor shrinks over time. We have seen that fluctuations in the Lyapunov vectors� directions
can lead to ten percent errors in the estimate. Nevertheless, it is tempting (if not irresistible) to
apply the Kaplan–Yorke idea in subspaces of the full phase space, in order to estimate the pro-
jected information dimensions there. We set about to do this.

See Tables 2 and 3 for the Lyapunov vector projections. In work with the many-body /4 model
[16] we used the exact relation that the instantaneous subspace growth rate corresponding to the
set of Lyapunov vectors {ki} in the full phase space, is given by the weighted sum,

P
kicos2ðhiÞ,

where cosðhiÞ is the projection of the phase-space vector di into the subspace. We estimated the
U
N

C
O

R
R

Table 3

The nonequilibrium Lyapunov exponents hki and their time-averaged projections hðd2
q; d

2
p; d

2
f ; d

2
nÞi (top) and the

projections weighted with the instantaneous values of the corresponding Lyapunov exponents (bottom)

hki hd2
qi hd2

pi hd2
fi hd2

ni
+0.072 0.098 0.112 0.257 0.533

+0.000 0.227 0.181 0.308 0.284

�0.091 0.293 0.363 0.237 0.107

�0.410 0.382 0.343 0.198 0.077

hki hkd2
qi hkd2

pi hkd2
fi hkd2

ni
+0.072 �0.013 �0.001 +0.028 +0.058

+0.000 +0.005 �0.007 +0.018 �0.015

�0.091 �0.010 �0.047 �0.023 �0.012

�0.410 �0.168 �0.137 �0.088 �0.018

Note that the row sums are unity at the top, and hki at the bottom. All these data apply to the nonequilibrium oscillator,

with � = s = h = 1 and correspond to 109 timesteps of 0.001 each. These data are all time averages.
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information dimension of the subspace attractor from the sum
P

cos2ðhiÞ of weights required for
the projected growth rate to vanish. This idea is correct in the event that the orientations of the
vectors are random, with cos2ðhiÞ equal to the inverse number of vectors. In the many-body sys-
tems studied in Ref. [16] it was observed that the projections became increasingly uniform as the
system size increased. A four-dimensional phase space is a demanding test of this idea. The failure
here of the Kaplan–Yorke conjecture in the full phase space was unexpected.

The failure of Kaplan–Yorke in four dimensions led us to try to apply an idea like theirs in low-
er-dimensional subspaces of the full space, where convergence is enhanced. Unfortunately, the
data in Table 2 indicate that this approach fails completely for the thermostatted oscillator.
The projections of the vectors vary considerably about the random value, 0.25, with minimum/
maximum values of 0.12/0.38. The projected growth rates contain a surprise (which we found with
other oscillator models as well as with some few-body subspace projections of the many-body /4

dynamics). The largest most positive Lyapunov exponent can have a negative time-averaged projec-
tion in some subspace directions. Consider, for example, our oscillator problem projected into the
coordinate q subspace. Bin counting results show that the information and correlation dimensions
in q space are not significantly different to 1.00. But the instantaneous value of k1, where the time
average hk1i, includes, at each instant, multiplication by its corresponding unit vector d1 has, on
the average, a negative projection in q space. The data in Tables 2 and 3 show that there is no
consistent way to obtain accurate information dimensions in the various subspaces. We conclude
that at best the Kaplan–Yorke procedure can work well in subspaces only in high-dimensional
systems. Provided that a long trajectory could be replaced by several thousand shorter ones
(and this could be checked numerically) presentday computers might be able to characterize
attractors in a six-dimensional space (with 1012 bins). There is no forseeable chance that these
ideas can be checked in many-dimensional phase spaces for which bin counting is, and always will
be, impossibly difficult.

The present work shows that the Kaplan–Yorke conjecture is flawed in the full phase space.
The information dimension of the full phase-space attractor, as estimated by bin counting, is
2.56. The Kaplan–Yorke prediction is considerably, and significantly, higher, 2.80. Results for
the correlation dimension are inconclusive. The bin-counting value in the full phase space is
1.55, but with an uncertainty of ± 0.2. The dimension estimated from pair enumerations is 1.81.
R
N
C

O7. Conclusion

The deterministic, continuous, dissipative, doubly-thermostatted oscillator problem is a useful
prototype for understanding multifractal distribution functions far from equilibrium. It lies near
the borderline for presentday computational feasibility. A very similar oscillator model leads ex-
actly to Clausius� version of the Second Law of Thermodynamics,
Uh�dSext=dti ¼ hð1=T ÞdQ=dti < 0:
This inequality is an automatic consequence of Nosé–Hoover mechanics, where the specified
reservoir temperatures are constants of the motion. In the case that temperature varies Clausius�
inequality is satisfied with the definition:
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fNH � ½ðp2=mkT Þ � 1�=s2;
but is not automatically satisfied with the alternative:
fNH � ½ðp2 � mkT Þ=mkT 0�=s2:
P
R

O
O

F

The equilibrium case, with its four-dimensional Gaussian distribution, can be used to evaluate
the accuracy of algorithms. Our results indicate that the correlation dimension, which is consid-
erably simpler to evaluate than the bin-counting dimensions, is a good characterizer of fractals,
with the numerical pair-counting and bin-counting versions of D2 not inconsistent with one an-
other. For this model all six of the two-dimensional projections of the attractor had similar Kap-
lan–Yorke dimensions and similar correlation dimensions. This finding suggests a rapid rotation
in phase space, tending to make the attractor relatively isotropic and homogeneous, even for a
few-dimensional phase space. The model has also a particularly interesting feature, a contracting
time-averaged projection of the four-dimensional dynamics into the one-dimensional coordinate
space. This indicates that there is no simple analog of the Kaplan–Yorke conjecture for subspaces,
at least for the present model system. The finding that the Kaplan–Yorke conjecture is inaccurate
in the full phase space was a major surprise to us.
R
E
C

TE
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