
Commun Nonlinear Sci Numer Simulat xxx (2011) xxx–xxx
Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
Local Gram–Schmidt and covariant Lyapunov vectors and exponents
for three harmonic oscillator problems

Wm. G. Hoover ⇑, Carol G. Hoover
Ruby Valley Research Institute, Ruby Valley, NV 89833, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 June 2011
Accepted 23 June 2011
Available online xxxx

Keywords:
Lyapunov instability
Covariant Lyapunov spectrum
Gram–Schmidt orthonormalization
1007-5704/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.cnsns.2011.06.025

⇑ Corresponding author.
E-mail address: hooverwilliam@yahoo.com (Wm

Please cite this article in press as: Hoover Wm
harmonic oscillator problems. Commun Nonli
We compare the Gram–Schmidt and covariant phase-space-basis-vector descriptions for
three time-reversible harmonic oscillator problems, in two, three, and four phase-space
dimensions respectively. The two-dimensional problem can be solved analytically. The
three-dimensional and four-dimensional problems studied here are simultaneously cha-
otic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for
use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos.
Comments are very welcome.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

It is Lyapunov instability which makes statistical mechanics possible [1]. For stationary boundary conditions, either equi-
librium or nonequilibrium, the exponential growth, / ekt, of small phase-space perturbations {dq,dp} or {dq,dp,df}, ‘‘sensitive
dependence on initial conditions’’, provides longtime averages independent of initial conditions. In addition to the coordi-
nates and momenta {q,p}, time-reversible ‘‘thermostat variables’’ {f} can be used to impose nonequilibrium boundary condi-
tions [2], such as velocity or temperature gradients. A prototypical nonequilibrium problem simulates heat flow between
two thermal reservoirs maintained at temperatures TH and TC. The resulting heat flow through an internal Newtonian region,
bounded by the two reservoirs, can then be studied and characterized [3,4].

To describe the Lyapunov instability for any of such systems, equilibrium or nonequilibrium, imagine the deformation of a
small phase-space hypersphere �, comoving with, and centered on, a deterministic ‘‘reference trajectory’’ {q(t),p(t),f(t)}. As
the motion progresses the hypersphere will deform, at first becoming a rotating hyperellipsoid with the long-time-averaged
exponential growth and decay rates of the principal axes defining the Lyapunov spectrum {k}. Much later the highly-dis-
torted volume element, through the repeated nonlinear bending and folding caricatured by Smale’s ‘‘Horseshoe’’ mapping,
combined with an overall dissipative shrinking, comes to occupy a multifractal strange attractor. Though the apparent
dimensionality of this steady-state attractor varies from point to point, it can be characterized by an overall averaged ‘‘infor-
mation dimension’’ which is necessarily smaller, for stability of the phase-space flow (with h(d/dt) ln �i < 0) than is the
phase-space dimension itself [1,5].

The time-averaged exponential growth and decay of phase volume have long been described by a set of orthonormal
Lyapunov vectors {d}, one for each Lyapunov exponent k. Lyapunov spectra, sets of time-averaged local exponents, {k = hk(t)i},
for a variety of both small and large systems have been determined based on work pioneered by Stoddard and Ford [6],
Shimada and Nagashima [7], and Benettin’s group [8]. The summed-up Lyapunov spectrum can have thermodynamic signif-
icance, corresponding to the loss rate of Gibbs’ entropy (the negative of the entropy gain of the thermal reservoir regions) in
. All rights reserved.
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Fig. 1. Two views of a harmonic oscillator orbit with comoving ellipses centered on the orbit. The scaled equations of motion are _q ¼ þps�2; _p ¼ �qsþ2. The
changing aspect ratio of the ellipse shown at the left provides nonzero Gram–Schmidt Lyapunov exponents for the oscillator. The scaled plot at the right, of
exactly the same data, shows that the exponents are a consequence of the scale factor s = 2 discussed in the text.
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nonequilibrium systems interacting with Nosé–Hoover thermostats,
P

k ¼ _S=k. The relative sizes of the phase-space compo-
nents of the vector d1 associated with the largest instantaneous Lyapunov exponent, k1(t), allows instability sources (‘‘hot
spots’’, or better, ‘‘regions’’) to be located spatially. This localization of instability was long studied by Lorenz in his efforts
to understand the predictability of weather.

Recently ideas which had been expressed much earlier by Lorenz [9–11] and Eckmann and Ruelle [12] have been devel-
oped into several algorithms describing the phase-space deformation with an alternative set of ‘‘covariant vectors’’, vectors
which ‘‘follow the motion’’ in a precisely time-reversible but somewhat arbitrary way [13–19]. The literature describing this
development is becoming widespread while remaining, for the most part, overly mathematical (lots of linear matrix algebra)
and accordingly hard to read. In order better to understand this work, we apply both the older Gram–Schmidt and the newer
covariant time-reversibility ideas to three simple harmonic-oscillator problems.

To begin, we describe the three example problems in Section 2, along with the usual Gram–Schmidt method for finding
local Lyapunov exponents and corresponding vectors. Some of the newer covariant approaches are outlined in Section 3.
Numerical results for the three problems, followed by our conclusions, make up the last two Sections 4 and 5.

2. Lyapunov spectrum using Lagrange multipliers

2.1. Model 1: Simple harmonic oscillator

The models studied here are all harmonic oscillators. All of them incorporate variations on the textbook oscillator prob-
lem with coordinate q, momentum p, and motion equations f _q ¼ þp; _p ¼ �qg. The first and simplest model [20] can be ana-
lyzed analytically. A (q,p) phase-space orbit of this oscillator is shown in Fig. 1. Notice that the oscillator orbit shown there
includes an arbitrary scale factor s, here chosen equal to 2. The corresponding Hamiltonian is Hðq; pÞ:
Please
harmo
2H � sþ2q2 þ s�2p2 !s¼2 f _q ¼ þðp=4Þ; _p ¼ �ð4qÞg ! €q ¼ �q:
The ‘‘dynamical matrix’’ D for this oscillator describes the evolution of the set of infinitesimal offset vectors {d} needed to
define the Lyapunov exponents,
fd ¼ ðq;pÞsatellite � ðq;pÞreferenceg; f _d ¼ D � dg:
In this case the matrix is
D ¼
0 ð1=4Þ
�4 0

� �
:

Two local Lyapunov exponents, which reflect the short-term tendency of two orthonormal offset vectors to grow or shrink,
can then be defined by the two vector relations:
_d1 ¼ D � d1 � k11d1;

_d2 ¼ D � d2 � k21d1 � k22d2:
We choose the ‘‘infinitesimal’’ length of the vectors, arbitrary in this linear problem, equal to unity for convenience. Snap-
shots of the two orthogonal Gram–Schmidt vectors are shown at the left in Fig. 2.

These local exponents have time-averaged values of zero, but sizable nonzero time-dependent and s-dependent
fluctuations,
cite this article in press as: Hoover WmG, Hoover CG. Local Gram–Schmidt and covariant Lyapunov vectors and exponents for three
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Fig. 2. Periodic phase-space orbit for the harmonic oscillator with scale factor s = 2. The Gram–Schmidt vector df
1 is in the radial direction, identical to the

first covariant vector dc
1 and necessarily perpendicular to df

2. The covariant vector dc
2 is parallel to the orbit. The Gram–Schmidt vectors are shown here at

equally-spaced times and are, for this special model, identical in the two time directions, {df} = {db}.

Wm. G. Hoover, C.G. Hoover / Commun Nonlinear Sci Numer Simulat xxx (2011) xxx–xxx 3

Please
harmo
hðkii � hkiiiÞ2i ¼ ðsþ1 � s�1Þ2=2:
The (scalar) Lagrange multipliers k11 and k22 constrain the lengths of the offset vectors d1 and d2 while k21 constrains the angle
between the vectors. The length-constraining multipliers define the local Gram–Schmidt Lyapunov exponents. Their time
averages give the global two Lyapunov exponents, k1 and k2:
k1 ¼ hd1 � D � d1i ¼ hk11i; k2 ¼ hd2 � D � d2i ¼ hk22i:
This Lagrange-multiplier approach is the small timestep limit of the finite-difference Gram–Schmidt approach to orthon-
ormalization [21,22]. For a model with an N-dimensional phase space N Lagrange multipliers {kii} constrain the fixed lengths
of the N offset vectors while N(N � 1)/2 additional multipliers {kij} are required to keep the N(N � 1)/2 pairs of vectors
orthogonal. In the following two subsections we describe the analytic formulation of the Lagrange-multiplier problem for
examples with three- and four-dimensional phase spaces. For large N the Gram–Schmidt approach is considerably faster
and simpler than the Lagrange-multiplier one.

2.2. Model 2: Harmonic Nosé–Hoover oscillator with a temperature gradient �

The second model, unlike the first, can exhibit long-term chaotic motion, with three-dimensional phase-space perturba-
tions {dq,dp,df} growing or shrinking exponentially in time, / ekt. Here f is a friction coefficient and controls the instanta-
neous changing kinetic temperature p2, so as to match a specified target temperature T(q) [23,24]. Here we allow the
temperature to depend upon the oscillator coordinate [25–28],
1� � < TðqÞ ¼ 1þ � tanhðqÞ < 1þ �:
The temperature gradient makes overall dissipation possible, characterized by a shrinking phase-space volume, �? 0, and
resulting in a strange attractor, with DI < 3, or even a one-dimensional limit cycle, DI = 1.

The �-dependent temperature gradient opens the irresistible possibility for heat to be absorbed at higher temperatures
than those where it is expelled. The Nosé–Hoover equations of motion for the nonequilibrium oscillator are:
f _q ¼ p; _p ¼ �q� fp; _f ¼ p2 � TðqÞg:
The friction coefficient f allows the long-time-averaged kinetic temperature, proportional to h p2 i, to conform to a nonequi-
librium steady state, characterized by the imposed temperature profile T(q):
hfi constant ! hp2i ¼ hTðqÞi:
Because the motion occurs in a three-dimensional phase space the dynamical matrix D, which governs the motion of
phase-space offset vectors is 3 � 3:
D ¼
ð@ _q=@qÞ ð@ _q=@pÞ ð@ _q=@fÞ
ð@ _p=@qÞ ð@ _p=@pÞ ð@ _p=@fÞ
ð@ _f=@qÞ ð@ _f=@pÞ ð@ _f=@fÞ

2
64

3
75 ¼

0 1 0
�1 �f �p

�T 0 2p 0

2
64

3
75;
where T0 is the derivative of temperature with respect to q:
�ð@ _f=@qÞ ¼ T 0 ¼ �cosh�2ðqÞ:
For simplicity, we choose these vectors to have unit length. In addition, six Lagrange multipliers are required to maintain the
orthonormality of the three offset vectors {d1,d2,d3}:
cite this article in press as: Hoover WmG, Hoover CG. Local Gram–Schmidt and covariant Lyapunov vectors and exponents for three
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k11 0 0
k21 k22 0
k31 k32 k33

2
64

3
75;

fk1 ¼ hk11ðtÞi; k2 ¼ hk22ðtÞi; k3 ¼ hk33ðtÞig:
This model can exhibit chaos or regular behavior, depending on the initial conditions as well as the maximum temperature
gradient �. Chaotic solutions for this oscillator are necessarily numerical, rather than analytical, and are illustrated in Section
3.

2.3. Model 3: Doubly thermostated oscillator with a temperature gradient �

The Nosé–Hoover oscillator, with a single friction coefficient f (Model 2), is not ergodic. For relatively small temperature
gradients it exhibits an infinity of regular solutions bathed in a chaotic sea. For a glimpse of the details see Ref. [24]. This
geometric three-dimensional complexity can be reduced at the price of introducing a second thermostat variable. The result-
ing four-dimensional model, as well as a similar extension treated in Ref. [18], has two friction coefficients (f,n) rather than
just one. With a constant temperature T the resulting ergodic canonical-ensemble phase-space probability density is
f ðq;p; f; nÞ ¼ ð1=4p2TÞe�q2=2T e�p2=2T e�f2=2e�n2=2:
The nonequilibrium multifractal extension of this model results if (as in Model 2) the temperature depends upon the oscil-
lator coordinate, T(q) = 1 + � tanh(q). In this nonequilibrium case there are four equations of motion:
f _q ¼ p; _p ¼ �q� fp� np3; _f ¼ p2 � TðqÞ; _n ¼ p4 � 3p2TðqÞg:
The corresponding four-variable dynamical matrix D, which controls the linearized (‘‘tangent-space’’) motion, _d ¼ D � d, is
D ¼

0 1 0 0
�1 ½�f� 3np2� �p �p3

�T 0 2p 0 0
�3p2T 0 ½4p3 � 6pT� 0 0

2
6664

3
7775:
A lower-triangular array of constraining Lagrange Multipliers, can then be defined. Just as before, the diagonal multipliers
maintain the lengths of the vectors constant and the off-diagonal multipliers maintain the orthogonality of the vectors. For
this model, with four offset vectors, we have ten Lagrange multipliers in all:
_d1 ¼ D � d1 � k11d1;

_d2 ¼ D � d2 � k21d1 � k22d2;

_d3 ¼ D � d3 � k31d1 � k32d2 � k33d3;

_d4 ¼ D � d4 � k41d1 � k42d2 � k43d3 � k44d4:
The Gram–Schmidt Lyapunov exponents are the long-time-averaged diagonal Lagrange Multipliers [22,23]:
ki ¼ hkiiðtÞi ¼ hdi � D � dii=hdi � dii � hdi � D � dii:
Here, as is usual, we choose the (arbitrary) length of the tangent-space offset vectors equal to unity: {jdj � 1}. The instanta-
neous off-diagonal elements,
fkijðtÞ ¼ di � D � dj þ dj � D � dig;
describe the tendency of the offset vectors to rotate relative to one another. This four-dimensional model is already suffi-
ciently complex to illustrate the distinctions between the Gram–Schmidt and covariant descriptions of phase-space instabil-
ities. We include numerical results for this model too, in Section 4.
3. Covariant Lyapunov vectors and their exponents

Several loosely-related schemes for evaluating covariant (as opposed to Gram–Schmidt) Lyapunov vectors have been de-
scribed and explored. Their proponents are mostly interested in the mathematics of weather modeling predictability or in
better understanding the statistical mechanical sensitivity to phase-space perturbations. Lorenz’ famous 1972 talk title:
‘‘Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas?’’ indicates the broad scope of this
work [11].

Wolfe’s 2006 dissertation [14] and the Kuptsov–Parlitz review [19] are particularly useful guides to this work. Some of the
underlying ideas date back to Lorenz’ early studies, in 1965 [9]. The main idea is not so different to the old Gram–Schmidt
cite this article in press as: Hoover WmG, Hoover CG. Local Gram–Schmidt and covariant Lyapunov vectors and exponents for three
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approach and in fact requires information based on that Gram–Schmidt (or Lagrange multiplier) approach not only forward
(as is usual), but also backward (which can be artificial, violating the Second Law of Thermodynamics) in time.

The main idea is to seek a representative basis set of comoving and corotating infinitesimal phase-space vectors {dc}, (c for
covariant) guided by the linearized (treating {q,p,f,n} as constants in the D matrix) motion equations,
Please
harmo
f _dc ¼ D � dcg:
The covariant basis vectors follow the linearized flow equations, without Lagrange multipliers, and so are generally not
orthogonal. Provided that the ‘‘unstable’’ manifold, made up of the phase-space directions corresponding to longtime expan-
sion, can be usefully distinguished from the ‘‘stable’’ manifold, corresponding to directions associated with longtime contrac-
tion, the covariant basis vectors are locally parallel to these two manifolds.

A ‘‘covariant’’ set of vectors would seem not to require Gram–Schmidt constraints, or Lagrange multipliers, because
orthogonality is not required. Even so, all the existing computational algorithms which have been developed to find covar-
iant vectors begin by finding the orthonormal Gram–Schmidt vectors. Two sets of Gram–Schmidt vectors are the next
requirement, the usual forward-in-time vectors {df} and the not-so-usual backward-in-time set {db}. This second set of vec-
tors is obtained by post-processing the time-reversed phase-space trajectory.

In time-reversible energy-conserving Hamiltonian mechanics the reversed trajectory can be as ‘‘natural’’ as the forward
trajectory. In dissipative systems, with phase-space shrinkage, the stored and reversed trajectory is typically ‘‘unnatural’’,
and would violate the Second Law of Thermodynamics. Unlike the Gram–Schmidt forward and backward vectors [we will
denote them by {df} and {db}], the covariant vectors {dc} are defined so as to be identical, at least for Hamiltonian mechanics,
in the two time directions, that is, ‘‘covariant’’. The Gram–Schmidt behavior, with the forward and backward vectors gener-
ally different, is a symmetry breaking whose source is not at all apparent in the underlying time-symmetric differential
equations of motion.

The differential equations for the time development of the covariant vectors account for the simultaneous stretching and
rotation of an infinitesimal phase-space hypersphere. Evidently the maximum growth (and maximum shrinkage) rates cor-
respond to the usual largest Lyapunov exponents forward and backward in time, df

1 ¼ dc
1 and db

1 ¼ dc
N in an N-dimensional

phase space. Another covariant offset vector parallels the local direction of the phase-space velocity, ð _q; _p; _fÞ. The remaining
N � 3 covariant vectors require more work. The difference between the Gram–Schmidt and covariant phase-space vectors is
illustrated for the simple harmonic oscillator in Fig. 2.

The relatively readable Wolfe–Samelson approach [16] begins with the Gram–Schmidt sets {df,db}, forward and backward
in time. Then covariant unit vectors are associated with the long-time-averaged individual Lyapunov exponents, beginning
with the second (or, using time symmetry, beginning with the next-to-last and working backwards). The covariant vectors
are then expressed as linear combinations of (some of) the forward and backward Gram–Schmidt vectors.

The problem is overdetermined, in that 2N Gram–Schmidt vectors are used as bases for the N covariant vectors. The sec-
ond covariant vector can be written as a linear combination of the first two Gram–Schmidt vectors:
dc
2 ¼ yf

1d
f
1 þ yf

2d
f
2:
The constants {yf} are then determined by solving a relatively simple eigenvalue problem. Likewise, the next-to-last covar-
iant vector can be written in terms of the first two Gram–Schmidt vectors from the time-reversed trajectory:
dc
N�1 ¼ yb

1d
b
1 þ yb

2d
b
2:
In general the nth covariant vector can be expressed as a sum of n Gram–Schmidt vectors with the constants y determined by
solving a set of linear equations. All of these vectors are unit vectors, with length 1. The many method variations (using the
first few, the last few, or some of both sets of Gram–Schmidt vectors) are discussed in Wolfe’s thesis, which is currently avail-
able online. The Appendix of Romero-Bastida, Pazó, López, and Rodriguez’ work [17], as well as the Kuptsov–Parlitz review
[19] are also useful guides.

The main difficulty in putting all of this work into perspective is a result of the fractal/singular nature of the phase-space
vectors. This structure can be traced to bifurcations in the past history and/or in the future evolution of a particular phase
point. This sensitivity to initial conditions means that slightly different differential-equation algorithms can lead to qualita-
tively different trajectories, making it hard to tell whether or not two computer programs are consistent with one another.
The best approach to code validation is to reproduce properties of the covariant vectors which are insensitive to the integra-
tion algorithm. We will consider some of these properties for our three example oscillator models.
4. Results for the three harmonic oscillator problems

4.1. Ordinary one-dimensional harmonic oscillator with scale factor s = 2

The first of our three illustrative oscillator problems is an equilibrium problem in Hamiltonian mechanics, a harmonic
oscillator with unit frequency and with a scale factor s set equal to 2:
€q ¼ �q 2H � sþ2q2 þ s�2p2 !s¼2f _q ¼ þðp=4Þ; _p ¼ �ð4qÞg ! €q ¼ �q:
cite this article in press as: Hoover WmG, Hoover CG. Local Gram–Schmidt and covariant Lyapunov vectors and exponents for three
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The local Lyapunov exponents for such an oscillator depend upon s and vanish in the usual case where s = 1.
A (q,p) phase-space plot of a typical orbit for s = 2 is shown in Fig. 1. The oscillator orbit we choose to analyze is the ellipse

shown there:
Please
harmo
fq ¼ cosðtÞ; p ¼ �4 sinðtÞg; 16q2 þ p2 ¼ 16 ¼ 2H:
The local Lyapunov exponents describe the instantaneous growth rates of infinitesimal ‘‘offset vectors’’ comoving with the
flow. These are of three kinds, orthonormal vectors moving forward in time {df}, orthonormal vectors moving backward in
time {db}, and special covariant vectors {dc} whose forward and backward orientations in phase space are identical. The initial
direction of each of these vectors is arbitrary because a reversed (antiparallel) vector (+d M � d) satisfies exactly the same
equations and definitions.

For the simple scaled harmonic oscillator it is possible to solve analytically for the Gram–Schmidt vectors forward and
backward in time as well as the covariant vectors and all the corresponding local exponents,
fdf ðtÞ; dbðtÞ; dcðtÞg ! fkf ðtÞ; kbðtÞ; kcðtÞg;
once the initial conditions are specified. See Fig. 2 for an illustration of the following choice of initial values, at t = 0:
ðq;pÞ ¼ ð1;0Þ; df
1 ¼ db

1 ¼ dc
1 ¼ ð1;0Þ; df

2 ¼ db
2 ¼ dc

2 ¼ ð0;1Þ:
In the course of the motion, with period 2p, the first forward Gram–Schmidt vector df
1, which is generally identical to the first

covariant vector, turns out to be always radial. This vector is necessarily perpendicular to df
2ðtÞ. The vectors df

2 and dc
2 gener-

ally differ. The second covariant vector is a unit vector which remains always parallel or antiparallel (and hence ‘‘covariant’’)
to the orbit,
dc
2 ¼ �ð _q; _pÞ=jð _q; _pÞj:
Generally, all the covariant vectors satisfy the linearized small-d motion equations. Because the oscillator motion equations
are linear, these oscillator results are correct for finite, not just infinitesimal, vectors.

The Gram–Schmidt Lyapunov exponents can be calculated as Lagrange multipliers which maintain the orthonormal rela-
tions between {d1(t),d2(t)} in both the forward and the backward directions. For this simple problem the vectors are un-
changed by time reversal, df

1 � db
1; df

2 � db
2. The first vector is not constrained in orientation, but is restricted to constant

length by the Lagrange multiplier k11:
f _dq1 ¼ ð1=4Þdp1 � k11dq1; _dp1 ¼ �4dq1 � k11dp1g ! k11 ¼ �ð15=4Þdq1dp1:
Using k11 in either the _dq1 or _dp1 equation gives a differential equation for the unit vector d1 = (dq1,dp1), which simplifies with
the definition of a new variable, the angle h:
_dq1 ¼ ð1=4Þdp1 þ ð15=4Þdp1dq2
1; _dp1 ¼ �4dq1 þ ð15=4Þdq1dp2

1

dq1 � cosðhÞ; dp1 ¼ � sinðhÞ� !
_h ¼ ð1=4Þ þ ð15=4Þ cos2ðhÞ ¼ 4� ð15=4Þ sin2ðhÞ ! h ¼ arctanð4 tanðtÞÞ:
Although the probability density for dq [or dp] diverges, whenever _q ¼ 0 [or whenever _p ¼ 0], the probability density for h,
which describes the nonuniform phase-space rotary motion, is well-behaved, as shown in Fig. 3.

The instantaneous Lyapunov vectors, both Gram–Schmidt and covariant, from the orbit shown in Fig. 2, are shown as
functions of time in Fig. 4. The exponents are:
kf ðtÞ ¼ kbðtÞ ¼ �ð�15=4Þ sinðhÞ cosðhÞ; h ¼ arctanð4 tanðtÞÞ;
with the second covariant exponent given by the strain rate parallel to the orbit:
0

prob (θ)

      <      θ       <       2π

Fig. 3. Probability density for the angle h = arctan(4tan(t)) for the scaled harmonic oscillator.
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Fig. 4. Lyapunov exponents for the harmonic oscillator with scale factor 2. The Gram–Schmidt exponents are the two heavy lines, and sum to zero. The
second covariant exponent, kc

22ðtÞ ¼ ðd ln vk=dtÞ along the orbit, is the lighter dashed line.

Fig. 5.
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d ln vk=dt ¼ �15 sinðtÞ cosðtÞ=½sin2ðtÞ þ 16 cos2ðtÞ�:
Fig. 4 shows that this covariant exponent is 90� out of phase with the exponent associated with df
1ðtÞ.

Because the oscillator is not chaotic, these detailed results depend upon the choice of initial conditions. The general fea-
tures illustrated by this problem include (1) the orthogonality of the Gram–Schmidt vectors, (2) the possibility of obtaining a
‘‘reversed’’ trajectory by using a stored forward trajectory, changing only the sign of the timestep +dt ? �dt, (3) the identity
of the first Gram–Schmidt vector with the first covariant vector, and (4) the identity of the trajectory direction with the
covariant vector corresponding to the time-averaged exponent hkki � 0. In the next problem we study the directions of
the forward and backward vectors and show that they typically differ, though the time-averaged exponents (for a sufficiently
long calculation) agree, apart from their signs.

4.2. Three-dimensional (q,p,f) Nosé–Hoover oscillator

Here we consider the second model oscillator. Its nonequilibrium temperature profile,
TðqÞ ¼ 1þ � tanhðqÞ;
provides both chaotic and regular solutions, depending on the strength of the temperature gradient. Trajectory segments for
two values of � (the maximum value of the temperature gradient) are shown in Fig. 5. For the smaller value � = 0.25, the sec-
ond Lyapunov exponent vanishes, kf

2 ¼ hk
f
22ðtÞi ¼ 0. Its probability density, shown in Fig. 6, is quite different to that of the

second covariant exponent, kc
22ðtÞ, which remains parallel to the trajectory direction at all times. For the larger limit-cycle

value, � = 0.50, the longtime orbit is a limit cycle, with period 8.650. On this limit cycle the largest Lyapunov exponent is
identical to the largest covariant exponent, and necessarily vanishes. The time dependence of this exponent,
kf

11ðtÞ ¼ kc
11ðtÞ, with
hkf
11ðtÞi ¼ hk

c
11ðtÞi ¼ kf

1 ¼ kc
1 ¼ 0;
is shown in Fig. 7.
The three-dimensional system of motion equations,
f _q ¼ p; _p ¼ �q� fp; _f ¼ p2 � TðqÞg;
can be ‘‘reversed’’ in either of two ways: (1) replace +dt by �dt in the fourth-order Runge–Kutta integrator or (2) leaving dt >
0 unchanged, change the signs of the momentum p and the friction coefficient f so that the underlying physical system traces
its coordinate history backward in time, q(+t) ? q(�t). In either case longtime stability with decreasing time requires that
-6 -4 -2  0  2  4  6 -6 -4 -2  0  2  4  6
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 6

0.25
-6 -4 -2  0  2  4  6 -6 -4 -2  0  2  4  6

-6
-4
-2
 0
 2
 4
 6

0.50

Phase-space trajectories for a Nosé–Hoover heat conducting oscillator with the coordinate-dependent temperature, T = 1 + � tanh(q). The strange
r at the left corresponds to a maximum temperature gradient � = 0.25 while the limit cycle at the right corresponds to � = 0.50. Here the coordinate q

es from left to right, the momentum p from front to back, and the friction coefficient f from bottom to top.
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Fig. 6. Logarithms of probability densities, over about six decades, for the orbital strain rate, kc
22ðtÞ ¼ ðd ln v=dtÞ and the corresponding instantaneous

Gram–Schmidt Lyapunov exponent, kf
22 for the chaotic oscillator with � = 0.25.

Fig. 7. Instantaneous value of the orbital strain rate for the limit cycle with � = 0.50. The strain rate is identical to the corresponding instantaneous Gram–
Schmidt Lyapunov exponent, kf

11.
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the dissipative forward trajectory be stored and reused. If the trajectory is not stored then the reversed motion abruptly
leaves the unstable reversed orbit. Fig. 8 shows the jump from the illegal reversed motion, violating the Second Law of Ther-
modynamics, to a stable obedient motion after sixteen circuits of the illegal cycle.

For simplicity of notation and description we have adopted the first reversibility definition throughout the present work.
It is necessary to recognize that the ‘‘motion’’ (forward in time) we analyze is dissipative, though time-reversible, while the
reversed motion (backward in time and contrary to the Second Law of Thermodynamics) is actually so unstable (because
h _�i > 0) as to be unobservable unless the trajectory has been stored in advance.

The instability of the reversed trajectory, leading to symmetry breaking, can be understood by considering the flow of
probability density in phase space. The comoving probability density f(q,p,f, t) obeys the analog of Liouville’s continuity
equation. At any instant of time the changing phase-space probability density responds to the friction coefficient f:
Fig. 8.
shown.
a cycle
period

Please
harmo
½ _f=f � � �½ð@ _q=@qÞ þ ð@ _p=@pÞ þ ð@ _f=@fÞ� ¼ 0þ fþ 0 ¼ � _�=� ¼ �kf
11ðtÞ � kf

22ðtÞ � kf
33ðtÞ:
Time history of a Nosé–Hoover oscillator in a temperature gradient, � = 0.50. The variation of {p,f} in time just after the reversal at time zero is
After 16 ‘‘wrongway’’ limit cycles, during which entropy is absorbed by the oscillator, the thermodynamically unstable trajectory appears to jump to
which obeys the Second Law of Thermodynamics. The jump time of 150 closely corresponds to the estimate appropriate to 48-bit precision, a cycle
of 9, and the known Lyapunov exponent of 0.222: ekt = e0.222t = 248 ? t = 150 ’ 16 � 9.
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Phase-volume expands/contracts when f is negative/positive. The time-averaged value of the friction coefficient f is neces-
sarily positive, and reflects the heat transfer (from larger to smaller values of the oscillator coordinate q) consistent with
the Second Law of Thermodynamics.

Because this Nosé–Hoover problem is chaotic, no analytic solution is available, making it necessary to compute the vec-
tors and exponents numerically. Lyapunov exponents have long been determined numerically. Spotswood Stoddard and Jo-
seph Ford’s pioneering implementation was generalized by Shimada, Nagashima, and by Bennetin’s group. These latter
authors used Gram–Schmidt rescaling of phase-space offset vectors. This continuous limit of this numerical approach was
formalized by introducing Lagrange multipliers {kij} to constrain the offset vectors’ orthonormality [21,22].

This problem raises a computational question: How best to distinguish the usual Gram–Schmidt vectors {df} from the
covariant ones {dc}? Some quantitative criterion is required, at the least for reproducibility if not for clarity. In the case of
the thermostated oscillator we have computed the mean-squared projections into (q,p,f) space for the three Gram–Schmidt
basis vectors, both forward and backward in time. The results are essentially the same for either time direction:
Please
harmo
ð0:22;0:29;0:49Þ; ð0:27;0:38;0:35Þ; ð0:51;0:32;0:17Þ for � ¼ 0:25;

ð0:22;0:25;0:53Þ; ð0:27;0:41;0:32Þ; ð0:51;0:34;0:15Þ for � ¼ 0:50:
Evidently, at least for this problem, there is little geometric dependence of the Gram–Schmidt vectors on the presence or
absence of chaos. On the other hand, the second covariant vector (parallel to the flow) has mean-squared components
(0.21,0.28,0.51) for � = 0.25 and (0.22,0.25,0.53) for � = 0.50, and so is significantly different to the Gram–Schmidt df

2 or
db

2. A shortcoming of work on the covariant vectors so far has been the lack of quantitative information concerning them.
This is an undesirable situation, as it makes checking computations problematic.

We turn next to a four-dimensional problem. Although the first and last Gram–Schmidt vectors and the trajectory direc-
tion give three of the four covariant vectors, the fourth requires new ideas, and illustrates the general case of determining a
complete set of covariant basis vectors.

4.3. Four-dimensional (q,p,f,n) Doubly-thermostated oscillator

Problems with four or more phase-space dimensions require the mathematics, mostly linear algebra, of covariant vectors
for their solution. Here we choose a doubly-thermostated harmonic oscillator (two thermostat variables, f and n), again with
a nonequilibrium temperature profile, T = 1 + tanh(q). The equations of motion (which give the canonical phase-space distri-
bution characteristic of the temperature T when � vanishes) are:
f _q ¼ p; _p ¼ �q� fp� np3; _f ¼ p2 � T; _n ¼ p4 � 3p2Tg:
Again T is the kinetic temperature, the time-averaged value of p2. f and n are time-reversible thermostat variables which con-
trol the second and fourth moments of the velocity distribution. At equilibrium the solution of these motion equations is the
complete canonical phase-space distribution. For T = 1 this stationary distribution has the form:
f ðq;p; f; nÞ / exp½�ðq2 þ p2 þ f2 þ n2Þ=2�:
This oscillator system is ergodic. When the temperature T is made to depend upon the coordinate q, a nonequilibrium strange
attractor results. We can give some detailed results for the well-studied [25–27] special case 0 < T(q) � 1 + tanh(q) < 2. For this
nonequilibrium problem the Lyapunov spectrum forward in time is already known,
fkf g ¼ fþ0:073;0:000;�0:091;�0:411g ! fkbg ¼ fþ0:411;þ0:091;0:000;�0:073g;
as is also the strange attractor’s phase-space information dimension, DI = 2.56, reduced by 1.44 from the equilibrium case
(� = 0), where the spectrum is symmetric:
fkg ¼ fþ0:066;0:000;0:000;�0:066g:
This information dimension result is in definite violation of the Kaplan–Yorke conjecture [27],
DI ¼ 2:56�? DKY ¼ 2þ ð0:073=0:091Þ ¼ 2:80:
The Gram–Schmidt vectors {df,db} for this problem are easily obtained using the Lagrange Multiplier approach, and give three
of the four covariant vectors:
dc
1 ¼ df

1; dc
2 ¼ v=jv j; dc

4 ¼ db
1;
where v is the phase-space trajectory velocity, ð _q; _p; _f; _nÞ.
Wolfe and Samelson show that the only missing covariant vector, dc

3, can be expressed as a linear combination of the first
three forward (or the last two backward) d vectors. Either choice requires solving an eigenvalue problem numerically and
both choices lead to exactly the same covariant vector dc

3, even if the Gram–Schmidt vectors are not perfectly converged.
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A comparison of the various local Lyapunov exponents is detailed in Figs. 9–12. We have ordered the thickness of the plot-
ted lines throughout, in the order 1 > 2 > 3 > 4 so that the thickest line represents the distribution for kf

11ðtÞ (mean value
+0.073) and, in the Backward plot, kb

11ðtÞ (mean value +0.411).
With a single exception, the vanishing Gram–Schmidt exponent derived from df

22ðtÞ, the data suggest a fractal nature for
the probability densities of the various exponents. Fig. 9 compares the probability distributions for kf

22ðtÞ and the covariant
exponent kc

22ðtÞ corresponding to motion along the trajectory. The Gram–Schmidt histogram is much smoother than that of its
covariant cousin. At the moment we have no explanation for this interesting qualitative difference.

Otherwise the local exponent distributions are qualitatively similar—large fluctuations compared to the actual exponent
values. The extra work associated with the local covariant spectrum cannot be justified based on these data. It should be
noted that the Gram–Schmidt exponents forward and backward in time are quite different, reflecting the difference between
the future and the past trajectories.

To make it possible for the reader to coordinate our results with those of Wolfe and Samelson [16], we write a set of equa-
tions which can be solved in order to find the third covariant vector dc

3 as an expansion in the forward-in-time Gram–Schmidt
vectors:
Fig. 9.
timeste

Please
harmo
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� �
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� �
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� �
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� �
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f
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2
66664

3
77775:
Here the sums include the two values of k = 1, 2. The numbering system, though arbitrary, is crucial. Forward in time the
correspondence of the vectors with the long-time-averaged Lyapunov exponents is
df
1 ! þ0:073; df

2 ! 0:000; df
3 ! �0:091; df

4 ! �0:411:
Backward in time the ordering is the same with the signs changed:
db
1 ! �0:073; db

2 ! 0:000; db
3 ! þ0:091; db

4 ! þ0:411:
Of course the third covariant vector going forward could equally well be viewed as the second going backward using an
expansion in terms of the backward-in-time Gram–Schmidt vectors. This alternative approach results in a smaller matrix
without the sum over k:
Mb � y ¼ 0; Mb ¼
db

1 � d
f
1

� �
df

1 � d
b
1

� �
db

1 � d
f
1

� �
df

1 � d
b
2

� �

db
2 � d

f
1

� �
df

1 � d
b
1

� �
db

2 � d
f
1

� �
df

1 � d
b
2

� �
2
64

3
75:
Here the ordering of the Gram–Schmidt vectors follows this same new ordering of the backward vectors:
db
1 ! þ0:411; db

2 ! þ0:091; db
3 ! 0:000; db

4 ! �0:073:
The vectors forward in time follow the same ordering with the signs changed.
Once the ordering of the vectors is correctly negotiated one can find the eight Gram–Schmidt vectors (four in each time

direction) and the four covariant vectors (the same in either time direction). For comparison we show the probability den-
sities for the vectors in Figs. 10–12. Tenfold longer runs yield visually indistinguishable results.
Probability densities for kf
22ðtÞ and kc

22ðtÞ. The logarithmic ordinate scale covers two decades with data from 2 � 108 fourth-order Runge–Kutta
ps of 0.001 each.
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Fig. 10. Probability density for the four forward-in-time Lyapunov exponents, kf
iiðtÞ

n o
. Notice that the distribution for the largest of the exponents (widest

line) is the same as that for the covariant Lyapunov exponent kc
11ðtÞ. The logarithmic ordinate scale covers two decades with data from 2 � 108 fourth-order

Runge–Kutta timesteps of 0.001 each.

Fig. 11. Probability density for the four backward-in-time Lyapunov exponents, kb
iiðtÞ

n o
. Notice that the probability distribution for the most positive of the

backward exponents, kb
1 ¼ þ0:411 (widest line) matches that for the covariant Lyapunov exponent kc

44ðtÞ shown in Fig. 12. The logarithmic ordinate scale
covers two decades with data from 2 � 108 fourth-order Runge–Kutta timesteps of 0.001 each.

Fig. 12. Probability density for the four covariant Lyapunov exponents, kc
iiðtÞ

� �
. The largest and smallest of these exponents match the largest forward and

the largest backward of the Gram–Schmidt exponents. The covariant vectors are identical forward or backward in time, with their exponents simply
changing sign. The logarithmic ordinate scale covers two decades with data from 2 � 108 fourth-order Runge–Kutta timesteps of 0.001 each.
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5. Perspectives

The covariant phase-space vectors, illustrated here for oscillators, are said to have two advantages: [1] they display the
time-symmetry of the underlying equations of motion and [2] they provide results which are ‘‘norm-independent’’. The
Gram–Schmidt vectors differ, reflecting the past and steadfastly ignorant of the future. Consider a purely-Hamiltonian sit-
uation, the sudden inelastic collision of two rapidly-moving blocks, converting ordered kinetic energy to heat. The Gram–
Schmidt vectors turn out to be more localized in the forward direction of time than in the (completely unphysical) reversed
direction, where the particle trajectories have been stored [29]. The phase-space directions corresponding to maximum
growth and decay (easy to calculate by singular value decomposition of the symmetrized D matrix and relatively smooth
in phase space, rather than multifractal) show the same time symmetry as do the covariant vectors. This time symmetry
seems unhelpful for describing the irreversibility of this purely-Hamiltonian shockwave process. We like the time asymme-
try of the Gram–Schmidt vectors, reflecting as they do the past-based nature of the Second Law of Thermodynamics.

Despite the norm-independence of the Lyapunov vectors it is apparent that ‘‘local’’ (in phase-space or in time) Lyapunov
exponents depend on the chosen coordinate system. Even the simple harmonic oscillator considered here shows coordinate-
dependent local exponents.
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The time symmetry-breaking associated with time-reversible dissipative systems (like the three-dimensional and four-
dimensional oscillator models studied here) prevents backward analyses unless trajectories are stored. Lyapunov instability
helps attract a repellor state (violating the Second Law) to the Law-abiding strange attractor. Like the overall trajectory, the
Gram–Schmidt vectors are themselves unstable to symmetry breaking. A reversed trajectory calculation will not also reverse
the Gram–Schmidt vectors unless those vectors too are stored from a forward trajectory. The covariant vectors are the same
going forward and backward in time. The symmetry breaking which naturally occurs can only be avoided by repeating a tra-
jectory, making it possible to find the covariant solution.

Despite the double-precision accuracy of Runge–Kutta solutions it is difficult to validate computer programs for dissipa-
tive chaotic systems precisely due to their Lyapunov instability. For this reason the squared projections of the offset vectors
and the exponent histograms are good choices for validation. The details of specific program results necessarily vary and re-
flect the fractal nature of the phase-space singularities describing the inevitable past and future bifurcations. The fractal nat-
ure of these singular points frustrates any attempt to gain accuracy through mesh refinement. Both the covariant and the
Gram–Schmidt exponents share this fractal nature, but differently. The Gram–Schmidt vectors are analogous to passengers’
reactions to a curvy highway while the covariant view is that of a stationary pedestrian observer.
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