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1. To Yokohama from Livermore
2.  15 years in Livermore & 10 years in Ruby Valley Nevada : 

Molecular Dynamics and Continuum Mechanics



1. Life in Japan at Keio University in Yokohama
Molecular Dynamics : 1989 – 1990 and beyond

Evenings/Weekends

$30,000 SPRINT versus 
$30,000,000 

Cray Computers
1,036,800 particles !!

Tony De Groot
at LLNL

Parallel Algorithms
Toshio Kawai

at Keio University

Taisuke Boku
also at Keio 

Sigeo Ihara
at Hitachi

Lyapunov Spectrum
Strings of Springs

Harald Posch
at University of Vienna



Two & Three-Dimensional Parallel Simulations of Indentation

Nonequilibrium indentation for 720 x 1440 
particles in two dimensions .  Lennard-Jones 
with an embedded-atom potential models a 
granular solid representing metals such as 
copper or nickel .  Molecular dynamics on 
Tony De Groot’s SPRINT computer with 
message-passing processors .

Work of indentation à
Surface + elastic energy
Plastic yield strength.

Tetrahedral indentation : 
72 x 72 x 72 silicon atoms 
with Stillinger-Weber f



2.	Past	is	Prologue	:	Research	at	LLNL	(	1990-2005	)

Howard Hanley’s 1982 Boulder Conference : “Nonlinear Fluid Behavior”
Nosé’s two 1984 papers à Bill’s 1985 Nosé-Hoover paper

Ciccotti & Hoover’s 1985 Fermi School on Molecular Dynamics
How does reversible microscopic mechanics 
produce irreversible behavior ? 
! ! = −⨂ ⨂ =!!"#/! = − Σk λ k

Irreversible Thermodynamics &
Computational Fluid Dynamics

Nonequilibrium steady states :
At least one thermostat is needed 
for diffusion, shear, or heat flow.

Negative Lyapunov sum à Dissipation

R = gh3 / nDT

R

l

Oscillator with T(q) = 1 + etanh(q)



Smooth Particle Applied Mechanics ( SPAM )
Lucy & Monaghan 1977

! ! = ! !− !!   ;  ! ! ! ! = ! !− !! !! 	

“Particle density” from neighbors 
within a smoothing length, h

Continuum field variables are computed 
as weighted sums over all particles 
within the smoothing length h

h

The continuity equation is automatically satisfied !   

Some applications of SPAM :
Free expansion of a gas, Rayleigh Bénard, fragmentation,  
Smooth-particle averages of atomistic properties ! williamhoover.info

!"/!" ≡ −! ∙ !"  
Chapter 3 ;
Draft book online

i i

We use fourth-order Runge-Kutta integration throughout .



Free Expansion of SPAM Gas : Harald Posch

r

r

K

t/2t/8 tt/4 2t

Difficult for finite-element algorithms because of severe shear deformation
Equilibration is fast , and occurs in one or two sound traversal times , t
Internal Kinetic energy must be measured relative to the local velocity

Four-fold expansion, Periodic boundaries , 128 x 128 grid for r and K    

!! = !!" 
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Convergence of the Free Expansion Entropy Nk ln(4)

Fluctuations in motion are kinetic energy .   The equilibration is rapid ~ L / c rather 
than L2 / D as would be expected for viscous or heat-conductive dissipation .

!!"#!"#$!"% = !  !" #$%& + ($%&) /) /+$%&  

!!"#$!!"#$! = !  ΣL !" #$%& + ($%& − ( */* /,$%&  

ΣL

Lower Curve - correct

!!!""# = !" !" !/!  → !"#$%&#%	
Upper curve – wrong !

0          <            time          <            t / 2

0   <   S/Nk <   ln 4   for  N  =  { 28 , 210 , 212 , 214 , 216 }



Rayleigh-Bénard Flow (Gravity & T gradient)
Finite-Difference (left) & Smooth Particles (right) 
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5000 smooth particles & field quantities computed on a grid  



K/N

R = 160,000 80x80 zones

Vic	CastilloRayleigh-Bénard Flows 
produce many types of 

Solutions

R = 40,000R = 6,400

K/N

R = 160,000 80x80 zones

R = 200,000

Temperature contours

( 1996 )



Shockwaves Revisited : Tensor Temperature, Time Delay, 
Work & Heat Division ( 2012 )

Matching molecular dynamics & continuum mechanics à thesis research

Paco Uribe

Stability analysis 
for shockwaves 
with time delays

Division of heat and work into 
longitudinal and transverse 
components 

Time-delayed heat flux response
to a thermal gradient ( Cattaneo )

Time-delayed stress response
to strain rate ( Maxwell )

σ + τ&σ̇ = ηϵ̇	 Q + τ-Q̇ = −κ∇T

Steady-State Molecular Dynamics Continuum Mechanics

Time delayed responses in continuum mechanics :



Shockwave Stability with Twofold Compression

Initial cold material is a triangular lattice . 
Hot material is an unstable square lattice 
at twice the cold material’s density .  The
top = bottom boundaries are periodic .

[ Notice the tensile waves that appear in 
the third, fourth, and fifth snapshots ]

Lagrangian flow with shock fixed in location

Most recent results 
are in Chapter 6



f4 Model for Chaotic Fourier Heat Conduction : Aoki & Kusnezov
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24 particle chain ; 50 dimensional phase space ;
Cold particle at  0.003 ; Hot particle at 0.027 .

!!
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f4 is a useful model with 
Fourier heat conduction  

102 dimensional phase space ; 
1 cold particle, 1 hot particle 



Measured heat transfer rate 𝐐̇ with seven thermostats using ( 6 x 4 )
(12 x 4 ) and ( 18 x 4 ) f4 models with 4 cold particles and 4 hot particles 
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 !! 	z
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 !! 	z

Instantaneous Gauss’ Principle

p2 control

p4 control

z z z ! =       − !       	z2

! =   !! − !  !! 	 p2 and p4 control HH

! = !−     !  ;  	z =   !! − !	z
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z =	 	#$ − &		

chain control MKT

Integral Feedback
p2 control NH

cubic p4 control

cubic ( z3 ) p2 control

Time-Reversible Deterministic Thermostats ( Dresden 2002 )

& temperatures similar for two of 
the integral feedback thermostats :

NH & HH 

CONCLUSIONS

NH with one control variable is the 
simpler and is also easiest to use .

z



Hamiltonian Thermostats Do Not Promote Heat Flow (2013)

f4 chain with 20 cold particles , 20 Newtonian particles , 20 hot particles

Three Hamiltonian-based thermostats fail the test for heat flow :

Hoover-Leete isokinetic :  𝐊 𝐪̇ constrained by Lagrange multiplier

Nosé : T constrained by an additional degree of freedom,  { s, ps }

Travis-Braga thermostat : !"# = %& / (&) 		likewise constrained	

Nosé-Hoover mechanics for the two reservoir temperatures is
not  Hamiltonian-based and consequently can support heat flow .



A single weak-control variable led to ergodicity in three phase-space dimensions
( q,p,z ) .  The “0532 Model” is a simple example that we discovered .    

Small System Ergodicity : Heat Conducting Oscillator (2015)                                                                                       
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Nosé-Hoover thermostat

e = 0.5

q

p
Weak control with the 0532 thermostat

NOT ERGODIC ! ERGODIC !

𝐪̇ = 𝐩	;	𝐩̇ = 	−	𝐪 − 		𝐩	;			

	 ̇ = 		 𝐩
𝟐

𝐓
− 𝟏z

z



p

q

2016 Ian Snook Prizes : Small System Ergodicity 
Prizes to be awarded for the most interesting paper describing singly-thermostated
canonical systems .  $500 from Bill and Carol Hoover and $500 from the Poznan 
Supercomputing & Networking Center as described in the arXiv and at cmst.eu .  

Ergodic 
0532 quadratic oscillator

Nonergodic
0532 quartic oscillator

𝐪̇ = 𝐩	; 	𝐩̇ = −	𝐪: −			 0.05𝐩 + 0.32
𝐩:

𝐓 	z𝐪̇ = 𝐩	; 	𝐩̇ = −𝐪 −			 𝟎. 𝟎𝟓𝐩+ 𝟎. 𝟑𝟐
𝐩𝟑

𝐓z
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p

q

l > 0 l > 0l < 0 l < 0

Weak control :




