"What Is Liquid?", as seen in Thermostated Manybody Simulations : Hamiltonian Statistical Mechanics, Molecular Dynamics, & Irreversibility

> Wm G. Hoover and Carol G. Hoover Ruby Valley Nevada USA

Condensed Matter Symposium Celebrating Doug Henderson's 80<sup>th</sup> Birthday Saturday, 16 August 2014

#### 1. Historical Geography with Doug Henderson

DH : IBM San Jose  $\rightarrow$  BYU

WGH : U Michigan/Duke → Berni Alder at LLNL

CGH : So CA  $\rightarrow$  LLNL /UCD

[Retired, Ruby Valley NV]

J Barker & D Henderson : West Coast Statistical Mechanics Meetings 1973-1989 IBM UCLA UCB UCD LLNL

Vitaly Kuzkin met with Doug and Dean Wheeler in 2013 ; He & Diana have Emilia now



# The Second Law and Irreversibility From Thermostated Simulations

- 1. Historical Geography
- 2. Isothermal Equilibrium Liquids according to Gibbs
- **3.** Barker + Henderson's Liquid Perturbation Theory
- 4. Nosé-Hoover Isothermal Equilibrium Dynamics
- 5. Nonequilibrium from Hamiltonian Mechanics ?
- 6. Puzzle solved *via* Liouville's Theorem !
- 7. Nonequilibrium from Nosé-Hoover Mechanics ?
- 8. Fractal Explanation of the Second-Law Puzzle !
- 9. Time-Reversibility and Lyapunov Instability

10. Summary

#### 2. Equilibrium ← Gibbs' Statistical Mechanics

 $e^{(-A/kT)} = \sum e^{(-E/kT)} = e^{(+S/k)}e^{(-E/kT)}$ (Canonical dA = -PdV - SdT) where  $kT = \langle p^2 / m \rangle$  or  $k(\partial E / \partial S)_v$  or  $-\langle F^2 \rangle / \langle F' \rangle$ van der Waals' : P = P<sub>repulsive</sub> - P<sub>attractive</sub> Virial Series (12 terms known for spheres )



Liquid Perturbation Theory : ( $\Phi$  = Reference + Perturbed)

This idea can replace Monte Carlo Sampling  $e^{(-\Delta \Phi/kT)}$ 



# 3. Equilibrium ← Barker-Henderson

$$A = A_o + \langle \Delta \mathcal{H} \rangle_o [Bob Zwanzig]$$
$$dA = -PdV - SdT$$



A successful theory of liquids. Percus-Yevick g(r) made Monte Carlo sampling unnecessary.

The results of the theory are easy to check with molecular dynamics, especially isothermal molecular dynamics



# 4. Equilibrium ← Nosé-Hoover MD : Hamiltonian Motion Equations for the Canonical Ensemble !



Shuichi Nosé's Good Idea :

$$\mathcal{H}_{N} = \Sigma \left( p^{2}/2ms^{2} \right) + \Phi(q) + NDkT \ln(s) + \left( p_{s}^{2}/2M \right);$$

"Scale the time", multiplying time derivatives by s and replace { (p/s)  $\rightarrow$  p }. Then { (dp/dt) = F –  $\zeta$ p } where (d $\zeta$ /dt) =  $\Sigma$  [ (p<sup>2</sup>/mkT) – 1 ]/ $\tau^2$ .

**Carl Dettmann's Better Idea :**  $\mathcal{H}_{D} \equiv s\mathcal{H}_{N} \equiv 0$ 

*Exactly the same* NH equations of motion result, but without any time-scaling .



## 4. Equilibrium ← Nosé-Hoover MD

**Best Idea** : The continuity equation shows that Gibbs' canonical distribution,  $f \propto e^{(-\mathcal{H}/kT)}$ , is a stationary solution of the equations of motion :

{  $(dp/dt) = F(q) - \zeta p$  }.

provided that the friction coefficient  $\zeta$  is generated by the integral feedback equation :  $d\zeta/dt = [ < (p^2/mkT) > -1 ] / \tau^2$ 

These motion equations are deterministic and time-reversible, *not* Hamiltonian. Nosé's "time-scaling variable" s has *disappeared*.

### 4. Equilibrium ← Nosé-Hoover MD



#### Bauer, Bulgac, and Kusnezov considered a much more general situation, including one, two, or more "friction coefficients" { ζ } , enough to generate Brownian Motion with time-reversible motion equations .





# 5. Nonequilibrium Simulations using Hamiltonian Mechanics ?

The Kinetic Temperature ,  $T \equiv \langle mv^2/k \rangle$ , can be constrained by using a Lagrange Multiplier  $\rightarrow$  an *Isokinetic* Hamiltonian :





 $\mathcal{H} = 2[(K(v)K(p))]^{1/2} - K(v) + \Phi(q)$ Here K(v) is a *fixed* kinetic energy.

An Alternative to  $\mathcal{H}_{\mathrm{Nos\acute{e}}}$  .



### 5. Puzzling Hamiltonian Thermostating



Despite tremendous temperature gradients there is no heat flow in these 60-particle φ<sup>4</sup> chains. The results are similar for the canonical and the kinetic thermostats. The interparticle forces are harmonic, with quartic tethers. 6. Puzzle Solved via Liouville Theorem Liouville's phase-space continuity equation implies (for Hamiltonian systems) that the comoving phase volume is conserved.

> But Heating *increases* phase volume. Cooling *decreases* phase volume.



Conclusion : Hamilton cannot work for Nonequilibrium Steady States [ There can be no Heat Flow ! ]



# 7. Pictures of Shear and Heat Flow using Nosé-Hoover thermostats



# 7. Nonequilibrium MD ← Nosé-Hoover

Equations of motion do *add* or *subtract* heat :

{ dp/dt = F – 
$$\zeta$$
p }  $\rightarrow$  Heat out =  $\int \zeta(p^2/m) dt$   
Heat out/T =  $\Delta S = \int \zeta dt(p^2/T) = \int \zeta dt$ 

 $\zeta$  is the entropy production rate in the thermostat Steady heat flow or shear flow  $\rightarrow$ ( d ln f/dt ) =  $\Sigma \zeta > 0 \rightarrow$  Phase volume  $\rightarrow 0$ 

#### Puzzle : How can phase volume vanish ?

# 8. Fractal Explanation of the Puzzle



Phase Volume does Vanish ! The "Lyapunov Spectrum" describes rate-of-change of 1, 2, ... 6N-dimensional phase-space volumes :

 $\lambda_1$  for a line segment  $\lambda_1 + \lambda_2$  for a triangle  $\lambda_1 + \lambda_2 + \lambda_3$  for a tetrahedron Using Gram-Schmidt-Benettin



### 8. Definition of the Lyapunov Spectrum



By following the motion of N satellite systems orthonormally constrained about an N-dimensional reference system, the N Lyapunov exponents are given by forces needed to maintain orthonormality. The algorithm was developed by Benettin's group.

# 9. Interesting Example of Lyapunov Fractal Instability → vanishing phase volume



Isokinetic Galton Board : gravitational Work is Converted to extracted Heat via frictional  $\zeta$ .



Cross sections of phase space at Fields of strength E = 1, 2, 3, and 4. There can be a mix of conservative + dissipative parts of phase space.

#### 9. Classical Textbook Fractals (with holes)



Isokinetic Galton Board Generates Fractal Phase-space Cross Sections



# 9. MultiFractal Galton Board Sections [-1 <sin( $\beta$ ) < +1 as function of $\alpha$ < $\pi$ ]



# 9. Another Interesting Example of Fractal Lyapunov Instability

 $\phi^4$  Heat Flow (Hooke's Law + quartic tethers) The dimensionality loss, 35/50, implies zero phase volume with entropy of minus infinity.





Aoki + Kusnezov in Venice

#### **Generic Nonequilibrium Phase Space Flow**



9. Hamiltonian Irreversibility and Symmetry Breaking

Levesque-Verlet bit-reversible trajectories can be followed either way by using integer arithmetic.

 $q(t+dt) - 2q(t) + q(t-dt) = Integer [F(t)dt^2/m].$ 

Two neighboring trajectories  $\rightarrow$  important particles .



# 9. Hamiltonian Irreversibility & Symmetry Breaking!

Two symmetrized trajectories → important particles.
By considering Lyapunov instability we can distinguish two trajectories going forward/backward in time.



Lyapunov exponents serve to distinguish future from past.



# **10. Summary from our Simulations**

**Equilibrium** is well understood (Monte Carlo, Perturbation Theory, Molecular Dynamics).

Nonequilibrium is quite complex. Hamiltonian Mechanics fails for heat flow. Despite time reversibility (dS/dt) < 0 is not observed. The phase-volume of stationary states is zero.

The Second Law is the result, with a fractal, rather than smooth, phase-space distribution . Still, for Hamiltonian nonequilibrium systems Lyapunov distinguishes the past from the future .

# For additional details see www.williamhoover.info

### Simulation and Control of Chaotic Nonequilibrium Systems

is our current project, which should be completed by this year's end, in plenty of time For Doug's 90<sup>th</sup> Birthday !



# **Happy Birthday Doug**

